Quick Links

Remark:

Continuing the positive experience from the last semesters, we have decided to offer the course "Audio/Visual Communications & Networks" in a format that considers the possibility for as well students as lecturer and tutors to give and / or consume parts of the course online using webconference tools:

  • One unit per week will be devoted to a pre-announced chapter of the underlying 5GNR eBook.
  • The other units of the week based on a manuscript will be devoted to the mathematical background of the techniques introduced.

In case (parts of) the course will be offered online the used tool and dial-in information will be published on this course website.

Course Details

Classroom

The lecture will be offered in a hybrid format (classroom plus remote participation via MS Teams). Under special circumstances it might be advantageous or even required to omit the classroom and switch to fully remote. This will be announced on time.

For participating remotely please join the MS-Teams Team by sending a join request under the following link: AVCN WS 2024/25 Team

Introduction

The course will focus on 5G New Radio, which is the recently specified fifth generation cellular system.
All students have access to a recent 5GNR eBook (see Literature).

Audio/Visual Communications & Networks will focus on 5G since from a telecommunications perspective the combination of audio/visual data – meaning inherently high data rate and putting high requirements on the real-time capabilities of the underlying network – and wireless transmission – that is unreliable and highly dynamic with respect to the channel characteristics and its capacity – is the most demanding application domain.
The lecture will build on the foundation layed as well in „Signals and Systems / Signale und Systeme“ as in „Digital Transmission and Signal Processing“ and it will apply the building blocks introduced there. The course will aim at being self-contained, however, it will not be able to repeat basic mathematical concepts and tools introduced in „Digital Transmission and Signal Processing“.

The course will introduce the frequency bands available for 5G and their characteristics with respect to propagation, it will shed light on several multiple access (MA) schemes like TDMA, FDMA, OFDMA and SDMA and the corresponding duplex schemes TDD and FDD. A part of the course will be devoted to so called MIMO (multiple input multiple output systems), since the use of several phase- and amplitude-correlated antennas has boosted the data-rate of telecommunications systems.

Prerequisites

Audio/Visual Communications & Networks“ is a course during the main study period and by such requires a solid foundation of mathematics (differential and integral calculus) and probability theory. The course will build on the mathematical concepts and tools taught in „Digital Transmission and Signal Processing“ while trying to enable everyone to follow and to fill gaps by an accelerated study of the accompanying literature. „Signals and Systems“ as well as „Digital Transmission and Signal Processing“ are strongly recommended but not required.

Course Structure

Basic Rules

  • Please note that small changes and corrections will be applied to the lecture notes throughout the semester. If you find mistakes or have suggestions how to enhance the lecture notes we appreciate your input! 
  • Please don’t hesitate to tell us if you have any comments or suggestions related to lecture notes, task sheets, exercises or even organizational things. We will improve it soon so you can benefit from it, not only future students.
  • There will be weekly quizzes with 5 questions for 15 minutes every week. These quizzes are graded individually and the points will be published online.

Lectures

  • Place: Campus C6.3, Room: 9.05  (possible to join remotely via MS Teams)
  • Time: Tuesday 10:30 - 11:45 and Wednesday 12:15 - 13:45 (start  October 15th)

Tutorial

  • Place: Campus C6.3, Room: 9.05  (possible to join remotely via MS Teams)
  • Time: Thursday 14:15 - 15:45

Quizzes

  • Place: Campus C6.3, Room: 9.05 (or online via Moodle)
  • Time: Tuesday 10:00–10:30

Exam Dates

  • The exams will be held as ORAL exams.
    We will schedule all exam slots on the two dates as given below. The exact time of each slot and how you can choose a certain slot will be announced during the lecture.
  • Main Exam 18th & 19th February, 2025, Place & Slots tbd
  • Re-Exam CW13, Place & Slots tbd

Task Sheets

  • Task sheets are published on the day succeeding the tutorials and are available online.
  • You do not have to submit the solutions, instead work on the tasks until the following tutorial.
  • During the tutorial you can solve the task sheet questions and get 1 point on every task you have contributed individually.

Correction

  • The quizzes and task sheets for this course will be divided into two parts (6 in each block respectively). It is necessary to pass both the blocks individually to be eligible for the exam.
  • Weekly Quizzes and Task Sheets:
    • Each weekly quiz is worth 5 points in total, which adds up to 30 points total for all quizzes in each block.
    • Each task sheet contains minimum 3 tasks, which adds up to 18 points total for all tasks in each block.
    • Final points are calculated by adding up over all quizzes and task sheets within a block.
    • You need minimum 19.2 (40%) points in total to pass a block and must pass both block A and B to be eligible for the exam.

MATLAB

  • UdS has a MATLAB campus license which can be used by all university students for non-commercial purposes.

Literature

Erik Dahlman, Stefan Parkvall, Johan Skold: "5G NR  : The Next Generation Wireless Access Technology", Elsevier Science & Technology, 2018.
This book is available on: https://ebookcentral.proquest.com/lib/sulb/detail.action?docID=6353377.
You need to create an account: https://ebookcentral.proquest.com/auth/lib/sulb/login.action

Simon Haykin, Michael Moher: "Modern Wireless Communications", Prentice Hall, 2011

Additional Material

Aura Ganz, Zvi Ganz, Kitty Wongthavarawat: "Multimedia Wireless Networks - Technologies, Standards, and QoS", Prentice Hall, 2004

Matthew S. Gast: "802.11ac: A Survival Guide", O'Reilly, 2013

John G. Proakis, Masoud Salehi: "Communication Systems Engineering 2nd Edition", Prentice Hall, 2002

Ulrich Reimers: "Digital Video Broadcasting - The Family of International Standards for Digital Video Broadcasting", Springer, 2005

Claude E. Shannon, Warren Weaver: "The Mathematical Theory of Communication", University of Illinois Press, 1963

William Stallings: "Wireless Communications & Networks 2nd Edition", Prentice Hall, 2005

Quick Links

Remark:

Our lectures and tutorials are designed for active participation in presence. To further support general measures as energy-saving periods we do, however, also offer remote participation. The course Digital Transmission & Signal Processing therefore is in a format considering the possibility for as well students as lecturer and tutors to give and / or consume parts of the course online using web-conference tools:

  • Course material, quizzes and assignments will be done in Moodle.
  • Lectures will be offered in MS-Teams in a hybrid fashion (lecture hall plus Teams).
  • The content will be based on our DTSP-book that is available in various formats (ipynb, pdf, html).

Course Details

Classroom

The lecture will be offered in a hybrid format (classroom plus remote participation via MS Teams). Under special circumstances it might be advantageous or even required to omit the classroom and switch to fully remote. This will be announced on time.

For participating remotely please join the MS-Teams Team by sending a join request under the following link: DTSP WS 2024/25 Team

Introduction

Digital Transmission & Signal Processing is the basic course on telecommunications. It refreshes foundations laid in "Signals and Systems / Signale und Systeme" but will also include current developments on using Artificial Intelligence / Neureal Networks in Telecommunicaiton.

To establish a strong foundation, the course will give an introduction into the various building blocks modern telecommunication systems incorporate. Sources, sinks, source and channel coding, modulation and multiplexing are the major keywords, but we will also deal with dedicated concepts like A/D- and D/A-converters and quantizers in a little bit more depth.

The course will refresh the basic transformations (Fourier, Laplace) that give access to system analysis in the frequency domain, it will introduce derived transformations (Z, Hilbert) for the analysis of discrete systems and modulation schemes. It will also introduce algebra on finite fields to systematically deal with error detection and correction schemes that play an important and ubiquitous role in modern communication systems.

Prerequisites

"Digital Transmission and Signal Processing" is a course during the main study period and by such requires a solid foundation of mathematics (differential and integral calculus) and probability theory. The course will, however, refresh those areas indispensably necessary for telecommunications and potential intensification courses and by this open this potential field of intensification to all participants.

Course Structure

Basic Rules

  • Please note that small changes and corrections will be applied to the lecture notes throughout the semester. If you find mistakes or have suggestions how to enhance the lecture notes we appreciate your input!
  • Please don’t hesitate to tell us if you have any comments or suggestions related to the DTSP-Book, the Quizzes, the Tutorials or organisational issues. We will improve it soon so you can benefit from it, not only future students.
  • There will be online weekly quizzes with 5 questions for 15 minutes every week. These quizzes are graded individually and the points will be published online.

Lectures

  • Place: Campus E1.3, Room: HS001 (possible to join remotely via Teams)
  • Time: Tuesday 12:15–13:45 and Wednesday 08:30–10:00 (start October 15th)

Quizzes

  • Place: Campus C6.3, Room: 9.05 (or online via Moodle)
  • Time: Friday 10:00–10:30
  • Tutor: Robin Kremer

Tutorials

  • Place: Campus C6.3, Room: 9.05 (in presence)
  • Time: Friday 10:30–11:45
  • Tutor: Robin Kremer

Exam Dates

  • The exams will be held as WRITTEN exams
  • Main Exam - 18th or 19th February, 2025, Place & Time tbd
  • Re-Exam - CW13, Place & Time tbd

Task Sheets

  • Task sheets are published on the day succeeding the tutorials and are available online.
  • You submit your solution and work on the tasks up to and including the following tutorial.
  • During the tutorial you can discuss and evolve your solutions and get up to three additional points.

Correction

  • The quizzes and task sheets for this course will be divided into two parts (6+6 in blocks A&B respectively). It is necessary to pass both the blocks individually to be eligible for the exam.
  • Weekly Quizzes and Task Sheets:
    • Each weekly quiz are worth 5 points total, which adds up to 30/30 points total for Blocks A/B. These points can be earned individually by everyone.
    • Each task sheet contains minimum 3 tasks, which adds up to 18/18 points total for Blocks A/B. These points can be earned if you individually can demonstrate your understanding on the task during the tutorial and by your submitted solutions.
    • Final points are calculated by adding up over all quizzes and task sheets within a block.
    • You need minimum 40% in total to pass a block and must pass both block A&B to be eligible for the exam.

Exam

  • The exam contains 5 problems (each 10 points), solving 4 of them is sufficient for a 100% passing grade.
  • Minimum point threshold per exam task is 3 points.
  • (Near to) complete solutions are rewarded with 3 bonus points.

Matlab

  • UdS has a MATLAB campus license which can be used by all university students for non-commercial purposes.

Literature (potentially helpful but not required)

Proakis, John G. and Salehi, Masoud: "Communications Systems Engineering", 2nd Edition, 2002, Prentice Hall, ISBN = {0-13-061793-8}

Oppenheim, Alan and Willsky, Alan: "Signals & Systems", 2nd Edition, 1997, Prentice Hall, ISBN = {0-13-814757-4}

Göbel, J.: "Kommunikationstechnik", Hüthig Verlag Heidelberg, 1999, ISBN = {3-82-665011-5}

Ohm, J.-R. und Lüke H.D.: "Signalübertragung", 2004, Springer, ISBN = {3-54-022207-3}

John G. Proakis: "Digital Communications", McGraw Hill Higher Education, 2001, ISBN = {0-07-118183-0}

Bernd Friedrichs: "Kanalcodierung", Springer, 1995, ISBN = {3-54-059353-5}

Papoulis, A.: "Probability, Random Variables and Stochastic Processes", 1965, McGraw-Hill, ISBN = {0-07-119981-0}

Claude E. Shannon, Warren Weaver: "The Mathematical Theory of Communication", University of Illinois Press, 1963, ISBN = {0-25-272548-4}