Empirical Research Methods

Introduction, basic concepts

Miguel Rejón, Room 1.14

m.rejon@edutech.uni-saarland.de

Literature

We won't work with a specific textbook, but rather with our **collection of online resources** in the wiki.

However, if you would like to use a book additionally, I can recommend these (optional!):

Empirical research methods

What we will learn in this course:

- What are empirical research methods?
- Why do we need research and scientific approaches?
- What are the basic concepts of empirical research?

"Empirical"?

"Empirical evidence, also known as sensory experience, is the information received by means of the senses, particularly by **observation and documentation of patterns and behavior through experimentation**. The term comes from the Greek word for experience, ἐμπειρία (*empeiría*)."

(**Empirical evidence.** In *Wikipedia*. Retrieved September 13, 2018, from https://en.wikipedia.org/wiki/Empirical_evidence)

An example

You observe the following:

"If I don't get my coffee in the morning, I do not feel productive during the day"

→ Does coffee really increase mental performance?

An example

Assuming that there is a question* you would like to answer, e.g.

- Does coffee increase mental performance?
- Are tablets helpful for mathematics learning?
- Is collaborative learning more effective than individual learning?
- \rightarrow Do research!

* Research questions are usually derived based on prior work of other researchers or theoretical considerations, and not everyday observations.

Steps in Research

Research question and hypotheses

- 1. Formulate your **research question**: "Does coffee increase mental performance?"
- 2. Formulate your null and alternative **hypothesis**:
 - Null hypothesis / H0 (stating no difference, no relationship)

M_c = M_w (The mean performance after drinking coffee is the same as the mean performance after drinking water)

Alternative hypothesis / H1 (stating a difference, a relationship):

directional hypothesis

water)

directional hypothesis

Or: $M_C \neq M_W$ (The mean performance after drinking coffee is <u>different</u> from the mean performance after drinking water

non-directional hypothesis

Variables: IV and DV

- What exactly are you investigating? What are relevant aspects of your research question*?
 - Coffee consumption

→ Independent variable / IV (will be manipulated in the experiment)

Mental performance

→ **Dependent variable / DV** (will be measured in the experiment)

Caution!

Do you really measure what you want to measure? How do you define "coffee consumption" and "mental performance"?

→ Operationalization of variables

Control and confounding variables

- Many factors can influence mental performance. But for our experiment, we are specifically interested in the effect of <u>coffee</u>
- \rightarrow We vary only this one aspect and keep the others as standardized as possible
- Control variables: Factors that potentially have an impact should be controlled
 - In our example: E.g., breakfast, amount of sleep, …
- Confounding variables: Other random factors that cannot be controlled
 - In our example: E.g., bad weather, noisy construction site nearby

Variables: Levels of measurement / scale levels

	Possible relations and operations*	Example
Nominal scale	<pre>= / ≠ Equality / inequality</pre>	Study subject (Computer Science ≠ Psychology ≠ Education)
Ordinal scale	<pre>> / < Greater / smaller (ranking, sorting)</pre>	University degrees (Bachelor < Master < PhD)
Interval scale	+ / - Intervals between values are meaningful and equal	Temperature in °C
Ratio scale	× / ÷ Meaningful zero value	Number of credit points (0- 120); Temperature in K

ed

*Each higher scale level has all the features from the lower scale level(s)

Adapted from: Pospeschill, M. (2006). Statistische Methoden. Strukturen, Grundlagen, Anwendungen in Psychologie.

Collecting data: Sample vs. population

- Choose your target group, e.g. students aged 20-30 years
- → But: You cannot investigate all participants with these features
- From the population of all students aged 20-30, you randomly select an acceptably large number: the sample
- ...Sample?
- Consists of research participants
 / subjects
- …Randomly?
- \rightarrow Random selection to represent the population well
- …acceptably large?
- \rightarrow Can be calculated

Collecting data: Lab vs. field

Example for lab experiment	Example for field experiment
Participants are invited to the university at 8 a.m.	Participants are instructed to start their daily routine at home with coffee (vs. water).
They receive exactly 200 ml of coffee (vs. water).	After a short break, they are supposed to complete a performance
25 minutes later, they take part in a performance test, while an EEG is recorded.	test on their private laptops at home.

Testing hypotheses

Testing hypotheses

Select the appropriate statistical test

(in this case: t-test might fit*)

- Take the decision:
 - □ Reject the H0 (\rightarrow support for the H1) □ OR: Keep the H0

* Don't worry, you will learn about this later.

Generating further research questions

- Based on the findings, usually, follow-up questions can be derived...
 - Does it matter how much coffee you drink?
 - Do milk and sugar play a role?

Δ...

 \rightarrow The research questions and topics become more concrete and refined

The research cycle

<u>cdu</u>tech

QUESTIONS?

THANK YOU FOR YOUR ATTENTION!

