Session start question

https://app.sli.do/even t/csqy6yc2

Empirical Research Methods 1 t-test for independent samples

(Or: What does beer have to do with statistics?)

Miguel Rejón,

Room 1.14

m.rejon@edutech.uni-saarland.de

Before we start 1/2: Info and tools

- Wheel of names: great idea! Keep using it!
- New! Slido for session start Q and Q&A at the end
- MS Teams for comments, questions, etc
- Padlet for ideas and extra anonymous feedback
- SPSS for exercise livecast

Before we start 2/2: ERM1 recap and SPSS workshop before the exam

		_	-	_	_		-	
		Seminar Dates			First presentation	Worksheet (WS)	Tutorial dates	Γ
1	Session	(Mondays)	Seminar topic	Who presents?	draft deadline	submission deadline	(Wednesdays)	
	11	25.01.2021	Recap	Tutors + Miguel			27.01.2021	Γ
	12	01.02.2021	Exam	everyone			03.02.2021	

- Monday 25.01.: Recap session. Review of the most important seminar topics
- Wednesday 27.01.: Tutorial workshop. SPSS workshop lead by tutors
- Want to learn something specific during the Recap session or the SPSS tutorial? Write it in Padlet: <u>https://padlet.com/mrejon/y71gbr4qt5yx720d</u> until Wednesday 20 of Jan.

Before we start 2/2: ERM1 recap and SPSS workshop before the exam

https://padlet.com/mrejon/y71gbr4qt5yx720d

Contribute until Wednesday Jan 20

Add ("+" button), comment, or like posts

Agenda

- Previously on ERM1: Normality testing
- Independent samples t-test
 - Degrees of freedom
 - T-distribution
 - T-values

Independent samples t-test on SPSS

Previously on ERM1: Normality testing

Determining normal distribution in SPSS

♦ Analyze \rightarrow Descriptive Statistics \rightarrow Explore \rightarrow Plots

Previously on ERM1: Normality testing

Tests of Normality

	Kolm	ogorov-Smir	nov ^a	5	Shapiro-Wilk	[
	Statistic	df	Sig.	Statistic	df	Sig.
negativ	,134	150	,000	,951	150	,000

a. Lilliefors Significance Correction

Here, the Shapiro-Wilk test got a sig. value of 0.000, which means...?

The H0 of the Shapiro-Wilk test states that the data is normally distributed, therefore with a sig. = 0.000 we reject the H0.

Therefore, our data is NOT normally distributed

Remember: 1) This is a normality test, 2) We don't always want to reject the H0

Previously on ERM1: Normality testing

According to the S-W test, the data is not normally distributed, what now?

- ♦ If $n \ge 30$: carry on
- If n < 30: do a data transformation (beware!) or use a non-parametric test (specially when other parametric assumptions are also violated)
- ◇ All in all: T and F families of tests are robust enough to handle non-normal distributions. Ideally, try to always have a n ≥ 30

Degrees of Freedom and the t distribution

- If = degrees of freedom = How many values can I vary?
- Degrees of freedom (df) of an estimate is the number of independent pieces of information that went into calculating the estimate. It's not quite the same as the number of items in the sample. In order to get the df for the estimate, you have to subtract 1 from the number of items." (Glen, n.d., para 1)
- "In statistics, the degrees of freedom (DF) indicate the number of independent values that can vary in an analysis without breaking any constraints." (Frost, 2020, para. 1)
- "Degrees of freedom are often broadly defined as the number of "observations" (pieces of information) in the data that are free to vary when estimating statistical parameters." (Minitab Blog Editor, 2016, para. 9)

Degrees of Freedom and the <u>t distribution</u>

t distribution:

- Similar shape as a normal distribution
- □ Used when we compare 2 means but don't know a) the population standard deviation (σ) and/ or b) have a sample ≤ 30. (Either of these which happen very often!)
- Thicker tails for accommodating more variation
- Required: mean, variance and degrees of freedom

Degrees of Freedom and the t distribution

Image source: https://www.youtube.com/watch?v=Uv6nGIgZMVw

Student's t?

- Student's t statistic, Student's t distribution, Student's t-test
- The t distribution is named after William Gosset who used the pseudonym "Student" for publishing
- Gosset worked for the Guiness brewery and was interested in applying statistics to develop better beers
- The t-test we use nowadays builds on his (and others') work

t-value. What's it?

- Result from conducting a t-test → "provides" a pvalue which is what we use to determine statistical significance
- Result of comparing 2 means relative to their variability → t-value formula is a ratio
- A t-test and its t-value will allow us to determine if, by comparing their means (relative to their variability ;-)), if <u>2 groups</u> are different

t-value. Signal and noise

Variability = spread

Same difference between the 2 means

Effect = t-value

Numerator: the strength of the "signal"; the raw difference (or delta (Δ)) of the means (\overline{x} ; μ)

Denominator: the surrounding noise, i.e. the variability, in the data

t-value. The ratio of signal and noise

The bigger the signal (i.e. the means Δ) and the smaller the noise (i.e. the variability), the more likely that the groups are significantly different

Images source: http://www.socialresearchmethods.net/kb/statsimp.php

t-value. Spooky math formulas

Туре	T-statistic	Degrees of freedom
One-sample t-test	$t = \frac{m - \mu}{s/\sqrt{n}}$	df = n - 1
Paired t-test	$t = \frac{m}{s/\sqrt{n}}$	df = n - 1
Independent samples t- test	$t = \frac{m_A - m_B}{\sqrt{\frac{S^2}{n_A} + \frac{S^2}{n_B}}}$	$df = n_A + n_B - 2$

edu

t-value. Final steps

- Set an α (e.g. 0.05) and determine the df to determine the critical t-value (t_{crit})
- Compare the t_{crit} with the t-value (t_{emp}) obtained from the formula
- If [t_{emp} > t_{crit}], then our t-value is "unlikely enough" and we reject H0

Student's t, t, t: Distribution, value, test. Recap

- T-Distribution: Similar as a standard normal distribution but with thicker tails to accommodate dispersion (a.k.a. uncertainty)
- T-Value: result of a t-test which will allow us to obtain a p-value and determine statistically significant results
- T-test: parametric test that compares the means of 2 groups to determine if the groups are different

Using Beispieldatensatz(a.k.a. ExSh_9_Beispieldatensatz_A3), test the following hypothesis:

There is a difference in age depending on the gender.

I will do it live.

Analyze > Compare means > Independent-samples t test

DV	IV	Gro	up Statist	lics	
	sex	N	Mean	Std. Deviation	Std. Error Mean
alter	maennlich	52	22,54	2,477	,344
	weiblich	98	21,51	3,374	,341

There was no sign. difference regarding age depending on participants' sex: t(148) = 1.937, p = .055

*If the Levene test becomes significant, the homogeneity is not given and you need to read the results from the row "equal variances not assumed"

Describe an experimental situation which would require an independent samples t-test and another which would require a one-sample ttest

Define, RQ (or QQ), H0 and H1, state if your H1 is directional or not, sample size

Report the results:

Group Statistics

	AlterCluster	N	Mean	Std. Deviation	Std. Error Mean
pos_percent	up to 19 years	25	34,6838	9,23946	1,84789
	20-29 years	123	33,4802	16,90847	1,52459

Independent Samples Test

		Levene's Test Varia	for Equality of nces				t-test for Equality	st for Equality of Means				
							Mean	Std. Error	95% Confidenc Differ	e Interval of the rence		
		F	Sig.	t	df	Sig. (2-tailed)	Difference	Difference	Lower	Upper		
pos_percent	Equal variances assumed	6,964	,009	,345	146	,731	1,20362	3,48908	-5,69201	8,09924		
	Equal variances not assumed			,502	62,130	,617	1,20362	2,39563	-3,58499	5,99222		

There was no sign. difference regarding "pos_percent" depending on participants' age cluster: t(62) = .502, p = .617

Report the results:

Group Statistics

	bed	N	Mean	Std. Deviation	Std. Error Mean
ges	strukturell	50	7,20	3,162	,447
	emotional	50	12,02	4,206	,595

Independent Samples Test

		Levene's Test Varia	Levene's Test for Equality of Variances				t-test for Equality	ty of Means				
		_					Mean	Std. Error	95% Confidence Differ	e Interval of the ence		
		F	Sig.	t	df	Sig. (2-tailed)	Difference	Difference	Lower	Opper		
ges	Equal variances assumed	4,273	,041	-6,477	98	,000	-4,820	,744	-6,297	-3,343		
	Equal variances not assumed			-6,477	90,979	,000	-4,820	,744	-6,298	-3,342		

There was a sign. difference regarding "ges" depending on the experimental condition (strukturell vs. emotional): t (91) = -6.477, p = .000

Report the results:

Group Statistics

	bed	N	Mean	Std. Deviation	Std. Error Mean
pos_percent	strukturell	50	36,0633	20,33905	2,87638
	emotional	50	35,4023	12,30672	1,74043

Independent Samples Test

		Levene's Test for Equality of Variances					t-test for Equality	of Means			
							Mean	Std. Error	95% Confidence Differ	e Interval of the rence	
		F	Sig.	t	df	Sig. (2-tailed)	Difference	Difference	Lower	Upper	
pos_percent	Equal variances assumed	8,148	,005	,197	98	,845	,66106	3,36194	-6,01060	7,33273	
	Equal variances not assumed			,197	80,639	,845	,66106	3,36194	-6,02860	7,35073	

There was no sign. difference regarding "pos_percent" depending on the experimental condition (strukturell vs. emotional): t(81) = .197, p = .845

References

365 Data Science. (2017, Aug 11). Student's T Distribution [Video]. YouTube. https://www.youtube.com/watch?v=32CuxWdOlow

Elliott AC, Woodward WA. Statistical analysis quick reference guidebook with SPSS examples. 1st ed. London: Sage Publications; 2007

Frost, Jim. (2020, July 15). *Degrees of Freedom in Statistics.* Retrieved from https://www.statisticsbyjim.com/hypothesis-testing/degrees-freedom-statistics/

jbstatistics. (2013, May 4). *Introduction to the t Distribution (non-technical)* [Video]. YouTube. https://www.youtube.com/watch?v=Uv6nGIgZMVw

Minitab Blog Editor. (2016, April 08). *What Are Degrees of Freedom in Statistics?* [Blog post]. Retrieved from https://www.blog.minitab.com/blog/statistics-and-quality-data-analysis/what-are-degrees-of-freedom-in-statistics

Stephanie Glen. (n.d.). *Degrees of Freedom: What are they*?. Retrieved from https://www.statisticshowto.com/probability-and-statistics/hypothesis-testing/degrees-of-freedom/

Further reads

http://www.socialresearchmethods.net/kb/statsimp.php

https://blog.minitab.com/blog/statistics-and-quality-data-analysis/what-is-a-t-test-and-why-is-it-like-telling-a-kid-to-clean-up-that-mess-in-the-kitchen

http://www.sthda.com/english/wiki/t-test-formula

https://www.statisticssolutions.com/transforming-data-for-normality/

https://www.surveymonkey.com/mp/t-tests-explained/

https://conjointly.com/kb/statistical-student-t-test/

https://statisticsbyjim.com/hypothesis-testing/t-tests-t-values-t-distributions-probabilities/

https://www.youtube.com/watch?v=zJ8e wAWUzE

https://www.youtube.com/watch?v=iYiOVISWXS4

https://www.youtube.com/watch?v=Uv6nGIgZMVw

Further reads

https://statisticsbyjim.com/hypothesis-testing/degrees-freedom-statistics/

https://support.minitab.com/en-us/minitab-express/1/help-and-how-to/basic-statistics/inference/supporting-topics/tests-of-means/types-of-t-tests/

https://blog.minitab.com/blog/statistics-and-quality-data-analysis/what-is-a-t-test-and-why-is-it-like-telling-a-kid-to-clean-up-that-mess-in-thekitchen

https://blog.minitab.com/blog/statistics-and-quality-data-analysis/what-are-t-values-and-p-values-in-statistics

https://blog.minitab.com/blog/statistics-and-quality-data-analysis/what-are-degrees-of-freedom-in-statistics

https://www.real-statistics.com/students-t-distribution/t-distribution-basic-concepts/

Q&A: today's topic; ERM1 in general

		'Ç U&A	ılı Polis		<u> </u>
As	sk the speaker				
P	🖌 Type your que	estion			
			?		
			1		
		There are no qu Ask the	estions asked yet.		
				As	
		s	lido		

https://app.sli.do/even t/csqy6yc2

WEBCAMS ON FOR THE GOODBYE!

