Session start question

https://app.sli.do/even t/4rtwrkkj

Empirical Research Methods 1 ANOVA between groups (independent samples): One-way and Two-way ANOVA between groups

Miguel Rejón,

Room 1.14

m.rejon@edutech.uni-saarland.de

Before we start 1/2: Info and tools

- T-test interpretation: clearer now? Let me know! MS Teams, padlet or slido
- Exam: update coming soon. Very likely to be on 08.02. in-person. If not in SB, let me know!
- Slido for session start question and anonymous Q&A
- MS Teams for comments, questions, etc
- SPSS for exercise livecast

Before we start 2/2: ERM1 recap and SPSS workshop before the exam

https://padlet.com/mrejon/y71gbr4qt5yx720d

Contribute until Wednesday Jan 20

Add ("+" button), comment, or like posts

Agenda

- Recap of previous concepts related to today's topic
- Updated "What do I test?" chart. F-Distribution
- T-test vs one-way ANOVA
- Two-way ANOVA. Multifactorial design and plot interpretation for main and interaction effects
- ANOVA extra info: Omnibus test; a priori and post hoc tests
- ANOVA essentials recap
- ANOVA on SPSS
- Self-paced exercises (for you)
- Qualis course evaluation survey

Recap

- Independent Variable: a.k.a. IV, <u>factor</u>, input variable, experimental variable, and predictor (variable). Is the variable that is manipulated in our experiment. We expect the IV to have an effect on the dependent variable
- Factors: IV
- Levels: the possible values within a factor. If a factor is a category, a level is a sub-category
- Dependent Variable: a.k.a. DV, outcome variable, response variable. Is the variable that we measure <u>within our experiment</u>. We expect the DV to be affected, or depend of, the independent variable
- Categorical Variable: Nominal scale variable with labels used for distinguishing the levels of a factor. <u>The labels can be numerical but won't be treated as such!</u>
- Null hypothesis: Hypothesis that states no difference or change between factors and/or levels
- Alternative hypothesis: Hypothesis that states the existence of a difference or change between factors and/or levels. Can either be directional or non-directional.
- Significance level: a.k.a. p-value, measure of the probability that an observed difference could have occurred just by random chance. That's why we want p-values to be as small as possible.

F distribution: The probability distribution for ANOVAs

ed

http://www.statisticshowto.com/wp-content/uploads/2013/09/f-table.jpg

t-test vs. One-way ANOVA

With two groups: both are applicable, but t-test is more common

Independent Samples Test

Tests of Between-Subjects Effects

Dependent Variable: alter

Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Corrected Model	35,920 ^a	1	35,920	3,751	,055
Intercept	65917,947	1	65917,947	6882,861	,000
sex	35,920	1	35,920	3,751	,055
Error	1417,413	148	9,577		
Total	73176,000	150			
Corrected Total	1453,333	149			

a. R Squared = ,025 (Adjusted R Squared = ,018)

t-test vs. One-way ANOVA

With more than two groups:

- Alpha inflation: The probability of making an alpha error is increasing when you calculate many t-tests
- △ → ANOVA: efficient procedure to compare several groups, avoids alpha inflation
- With more than one factor:
 - $\square \rightarrow$ ANOVA: ability to test multi-factorial designs
 - Main effects
 - Interaction effects

Multi-factorial design for a 2-way ANOVA

ANOVA calculates:

- Main effect for coffee
- Main effect for milk
- Interaction between coffee and milk

1- From the above factorial design, which are the factors and which are the levels?

2- How would a 1-way ANOVA factorial design look like?

Milk factor: are the lines ends apart from each other? NO \rightarrow No main effect Factor milk.

Coffee factor: are the lines inclined indicating a diff between the coffee factor levels? YES \rightarrow Main effect Factor coffee.

11.01.20

Interaction effect: do the lines cross each other or are about to? NO \rightarrow No interaction effect between factors milk-coffee

Milk factor: are the lines ends apart from each other? YES \rightarrow Main effect Factor milk.

Coffee factor: are the lines inclined indicating a diff between the coffee factor levels? YES \rightarrow Main effect Factor coffee.

Interaction effect: do the lines cross each other or are about to? YES → Interaction effect between factors milk-coffee

Milk factor: are the lines ends apart from each other? YES \rightarrow Main effect Factor milk.

Coffee factor: are the lines inclined indicating a diff between the coffee factor levels? NO \rightarrow No main effect Factor coffee.

Interaction effect: do the lines cross each other or are about to? NO \rightarrow No interaction effect between factors milk-coffee

Milk factor: are the lines apart from each other? Kinda \rightarrow Posible main effect Factor milk.

Coffee factor: are the lines inclined indicating a diff between the coffee factor levels? Kinda \rightarrow Possible main effect Factor coffee.

Interaction effect: do the lines cross each other or are about to? Almost→ Very likely interaction effect between factors milk-coffee

...that's why we always check the results table

ANOVA = "Omnibus" test

- Significant" means:
 - There is a difference, somewhere. At least two groups differ significantly from each other.
- What remains unclear:
 - Where exactly is the difference? Which groups differ significantly from each other?

A priori and post-hoc ANOVA tests

- A priori / planned contrasts
 - If you have specific hypotheses, you can check them with contrasts
- Post-Hoc
 - You find something interesting in your data and want to analyze it in more detail afterwards

(You don't need to select and apply a priori or post-hoc test in the exam, but you need to be aware that they exist and when you would need one.)

Reporting ANOVA

"Comparing post-test means, we found a small negative significant main effect of individual preparation on knowledge outcomes, $F(1;124) = 5.121; p = .025; \eta_p^2 = .04$."

- $F = 5.121 \rightarrow$ F-value, result from the ANOVA
- (1;124) → df (n of groups minus 1; n of observations minus n of groups)
- $p = .025 \rightarrow$ result from the significance test
- $\eta_{p^2} = .04 \rightarrow$ Effect size (next week)

Tsovaltzi, D., Judele, R., Puhl, T., Weinberger, A. (2015). Individual preparation and argumentation scripts in social networking sites. In O. Lindwall, P. Häkkinen, T. Koschman, P. Tchounikine & S. Ludvigsen (Eds.).

ANOVA recap

- ANOVAs: belong to the F family of tests, therefore they produce a F-value. They are parametric tests normally used for determining if, based on their means, >2 samples are statistically significantly different
- One-way ANOVA: used when you have only 1 factor/IV with >2 levels and only 1 DV
- Two-way ANOVA: a.k.a. "Factorial ANOVA", used when you have >1 factor (with multiple levels each) and only 1 DV

ANOVA recap

		Independe	ent Variables
		1	>2
Dependent variables	Dependent 1 variables	<u>One-way ANOVA</u>	Factorial ANOVA
	>2	Multiple ANOVAS	MANOVA

Inspired from the table found at: https://www.statisticssolutions.com/conduct-interpret-factorial-anova/

Exercise 1: Two-way ANOVA. Problem description

Using Beispieldatensatz_S9, test the following (<u>alternative*</u>) hypotheses:

- a) HA1: There is an interaction effect between gender and condition on the number of remembered negative adjectives (negativ).
- b) HA₂: There is a main effect of gender (sex) on the number of remembered negative adjectives (negativ).
- c) HA₃: There is a main effect of condition (bed) on the number of remembered negative adjectives (negativ).

*This means that for each HA, there is a corresponding H0

Exercise 1: Two-way ANOVA. Why not oneway?

- We have 3 hypotheses: 2 main effect ones, 1 interaction effect one
 - □ Therefore, we have 2 IV (a.k.a. factors)
 - One-way ANOVA is only when you have 1 IV

ta Be	eispielda	tensatz_S9.sav	DataSet1] - IBM SI	PSS Statistic Data Editor				
<u>F</u> ile	<u>E</u> dit	<u>V</u> iew <u>D</u> ata	a <u>T</u> ransform	<u>Analyze</u> <u>G</u> raphs <u>U</u> tilities	E <u>x</u> tensions	<u>W</u> indow	<u>H</u> elp	
				<u>P</u> ower Analysis	>			
_	-	Name	Type	Reports	>	Values	Missing	Colum
	1	vpnr	Numeric	Descriptive Statistics	>	10	None	8
	2	sex	Numeric	<u>B</u> ayesian Statistics	>	maennlic	9	8
:	3	alter	Numeric	Ta <u>b</u> les	>	пе	99	8
4	4	bed	Numeric	Compare Means	>	strukture	9	8
!	5	negativ	Numeric	General Linear Model	>	🛄 Univaria	te	_
a (6	neutral	Numeric	Constalized Linear Medale	`			

edi

In the "Univariate" window, allocate the necessary variables from the left box [1] to the corresponding box in the right side [2]. Once completed, click on the "Plots" button [3]

In the "Univariate: Profile plots" window, allocate the necessary variables from the left box [1] to the corresponding box in the right side [2]. Once completed, click on the "Add" button [3] which will show the to-becreated plot in the box below [4]. Ensure the other options are defined as shown Click on the "Continue" button [5] to close the window and go back to the main "Univariate" window.

Note: for extra fun, also Add a "sex*bed" plot

Once back in the main "Univariate" window, click on the "Post-Hoc" button

In the "Univariate: Post-Hoc Multiple Comparisons for Observed Means" window, allocate the necessary variables from the left box [1] to the corresponding box in the right side [2]. Once completed, mark the "Tukey" checkbox [3]. Ensure the other options are defined as shown. Click on the "Continue" button [4] to close the window and go

back to the main "Univariate" window.

Eactor(s): 1 sex bed	Post Hoc Tests for: 2 sex bed
Equal Variances Assum	ned
<u>L</u> SD <u>S</u> -N-	K 👝 🗌 <u>W</u> aller-Duncan
<u> </u>	y 3 Type I/Type II Error Ratio: 100
Sidak Tuke	y's-b Dunn <u>e</u> tt
Scheffe Dune	an Control Category: Last
R-E-G-W-F Hocl	berg's GT2 Test
□ R-E-G-W- <u>Q</u> □ <u>G</u> ab	iel $\textcircled{O} \geq -sided \textcircled{O} < C_{\underline{O}}ntrol \textcircled{O} > Control$
Equal Variances Not A	sumed
Ta <u>m</u> hane's T2 Du	nnett's T <u>3</u> Games-Howell Dunnett's C
-	

Once back in the main "Univariate" window, click on the "EM Means" button

0	Gesanitzani en	NOTE NO	ine u
🔚 Univariate			>
	<u>D</u> eper	ident Variable:	Model
🗞 vpnr	🛸 🛷 ne	egativ	
🔗 alter	Fixed	Factor(s):	Contrasts
neutral	🔒 s	ex	Plo <u>t</u> s
✓ positiv	🔶 🥳 bi	ed	Post Hoc
ges AlterCluster	Rando	om Factor(s):	<u>E</u> M Means
			<u>S</u> ave
	►		Options
	<u>C</u> ovari	ate(s):	<u>B</u> ootstrap
	•		
	₩LS	Weight:	
OK	Paste Rese	t Cancel Hel	р

In the "Univariate: Estimated Marginal Means" window, allocate only the "(OVERALL)" factor located in the left box [1] to the box in the right side [2]. Click on the "Continue" button [3] to close the window and go back to the main "Univariate" window.

Univariate: Estimated Marginal Means	×
Estimated Marginal Means	
Eactor(s) and Factor Interactions:	Display <u>M</u> eans for: 2 (OVERALL)
	Compare main effects Confidence interval adjustment: LSD(none)
3 <u>Continue</u> Cancel	l Help

Once back in the main "Univariate" window, click on the "Options" button

In the "Univariate: Options" window, mark the indicated checkboxes [1], [2], and [3]. Leave the rest unchecked. Click on the "Continue" button [4] to close the window and go back to the main "Univariate" window.

o onnote negati	1010 00					
🔚 Univariate: Options	×					
Display ✓ <u>D</u> escriptive statistics ✓ <u>E</u> stimates of effect size O <u>b</u> served power	 ✓ <u>Homogeneity tests</u> ✓ Spread-vslevel plots ☐ Residual plots 					
Parame <u>t</u> er estimates	Lack-of-fit test					
☐ C <u>o</u> ntrast coefficient matrix ┌ Heteroskedasticity Tests	<u>General estimable function(s)</u>					
Modified Breusch-Pagan test	F test					
Breusch-Pagan test	White's test					
Parameter estimates with robust star	ndard errors					
HC3						
● HC <u>4</u>						
Significance level: .05 Confidence intervals are 95.0 %						
4 Continue Cance	Help					
	edu					

Once finally back in the main "Univariate" window, click on the "OK" button to start the analysis.

Tests of Between-Subjects Effects

Interaction effect:

No sig. interaction between gender (sex) and conditon (bed): F(2;144) = .208, p = .813, $\eta_{\,p}{}^2$ = .003

Main effects:

No sig. main effect of gender (sex): F(1;144) = .579, p = .448, $\eta_{p}^{2} = .004$

Sig. main effect of condition (bed): F(2;144) = 4.494, p = .013, $\eta_p^2 = .059$

This means that within the factors of the "Bed" variable, 1 or more of its levels should be sig. different to each other. To see this more in detail, we need to check the post-hoc results.

Multiple Comparisons

Dependent Variable: erinnerte negative Adjektive

Tukey HSD

(1)	(1)	Mean Difference (I-			95% Confide	ence Interval		
() Verarbeitungsbedingung	(J) Verarbeitungsbedingung	J)	Std. Error	Sig.	Lower Bound	Upper Bound		
strukturell	bildhaft	-1.10	.374	.010	-1.98	22		
	emotional	-1.04	.374	.017	-1.92	16		
bildhaft	strukturell	1.10	.374	.010	.22	1.98		
	emotional	.06	.374	.986	82	.94		
emotional	strukturell	1.04	.374	.017	.16	1.92		
	bildhaft	06	.374	.986	94	.82		
Based on observed means. The error term is Mean Square(Error) = 3.489.								
*. The mean difference is significant at the ,05 level.								

Verarbeitungsbedingung (bed) factor has 3 levels: strukturell, bildhaft, and emotional.

The mean of each level is compared to each other to look for significance, hence the 6 comparisons. Half of the comparisons are the same, therefore we focus on 3 of them.

Multiple Comparisons

Dependent Variable: erinnerte negative Adjektive

i ne mean difference is significant at the jub level.

Tukey HSD

	(1)	(1)	Mean Difference (I-			95% Confide	ence Interval	
	() Verarbeitungsbedingung	(J) Verarbeitungsbedingung	J)	Std. Error	Sig.	Lower Bound	Upper Bound	
	strukturell	bildhaft	-1.10	.374	.010	-1.98	22	
•		emotional	-1.04	.374	.017	-1.92	16	
	bildhaft	strukturell	1.10 [*]	.374	.010	.22	1.98	
		emotional	.06	.374	.986	82	.94	
	emotional	strukturell	1.04 [*]	.374	.017	.16	1.92	
		bildhaft	06	.374	.986	94	.82	
	Based on observed means. The error term is Mean Square(Error) = 3.489.							
	+ TI							

From these post-hoc results we can conclude that, from the IV "Verarbeitungsbedingung", the levels: Strukturell and Pictographic are significantly different (p = .010) Strukturell and Emotional are significantly different (p = .017) ...in terms of the DV (remembered negative-adjectives)

Exercise 1: Two-way ANOVA. Problem description

Using Beispieldatensatz_S9, test the following (alternative) hypotheses:

- a) HA₁: There is an interaction effect between gender and condition on the number of remembered negative adjectives. \rightarrow Fail to reject H0₁
- b) HA₂: There is a main effect of gender (sex) on the number of remembered negative adjectives (negativ). \rightarrow Fail to reject H0₂
- c) HA₃: There is a main effect of condition (bed) on the number of remembered negative adjectives (negativ). \rightarrow Reject HO₃, accept HA₃
 - a) Structural and Pictographic conditions are sig. diff. (p = .010)
 - b) Structural and Emotional are significantly different (p = .017)

- http://wwwstage.valpo.edu/other/dabook/ch13 /c13-1.htm
- https://www.statisticssolutions.com/conductinterpret-factorial-anova/

SELF-PACED EXERCISES

Three self-paced exercises about ANOVAS including their answers and explanations

Self-paced Exercise 1. Problem description

Using Beispieldatensatz_S9, conduct an ANOVA to test the following hypotheses:

- a) There is a main effect of age (AlterCluster) on the number of remembered neutral adjectives (neutral).
- b) There is a main effect of condition (bed) on the number of remembered neutral adjectives (neutral).
- c) There is an interaction effect between gender and condition on the number of remembered neutral adjectives.

Self-paced Exercise 1. Tasks

- 1. Which ANOVA do you need to conduct and why? One-way or Two-way?
- 2. On SPSS, why do you need to use the variable "AlterCluster" and not the "alter" variable?
- 3. Outline the factor(s) and their levels
- 4. Report the results

Note: next 2 slides contain the answers for the 3 tasks including the output and reported results

Self-paced Exercise 1. Task answers

1. Which ANOVA do you need to conduct and why? One-way or Two-way?

A1: A two-way ANOVA needs to be done because there are more than 2 factors that we will compare and we're interested on finding interaction effects

2. On SPSS, why do you need to use the variable "AlterCluster" and not the "alter" variable?

A2: Because "alter" is a continuous scale variable and with age being a factor in this study, we need a categorical variable

3. Outline the factor(s) and their levels:

A3: Factor 1: age (AlterCluster). Levels: 4 [1. "up to 19 years"; 2. "20-29 years"; 3. "30-39" years; 4. "40-49 years"]

Factor 2: Verarbeitungsbedingung (bed). Levels: 3 [1. strukturell (structural); 2. bildhaft (pictorial); 3. emotional (emotional)]

4. Report the results

A4: On the next slide

Self-paced Exercise 1. Output and task 4 answer

Tests of Between-Subjects Effects

Dependent Variable: erinnerte neutrale Adjektive

Source	Type III Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared
Corrected Model	149.472 ^a	7	21.353	7.039	.000	.258
Intercept	102.204	1	102.204	33.691	.000	.192
bed	57.132	2	28.566	9.417	.000	.117
AlterCluster	17.217	3	5.739	1.892	.134	.038
bed * AlterCluster	.510	2	.255	.084	.919	.001
Error	430.768	142	3.034			
Total	2194.000	150				
Corrected Total	580.240	149				

a. R Squared = .258 (Adjusted R Squared = .221)

There is a sign. main effect of bed on the DV "neutral": F (2, 142) = 9.417, p = .000, η_p^2 = .117 There is no sign. main effect of AlterCluster on the DV "neutral": F (3, 142) = 1.892, p = .134, η_p^2 = .038 There is no sign. interaction effect of bed*AlterCluster on the DV "neutral": F (2, 142) = 0.084, p = .919, η_p^2 = .001

Self-paced Exercise 2. Tasks

Next slide contains an ANOVA output. Based on that output, respond the following questions:

- 1. Determine if it's the output from a one-way or two-way ANOVA and explain why
- 2. Determine the factor and its levels, and the DV
- 3. Report the results
- 4. Determine if a post-hoc test would be needed and why.

Self-paced Exercise 2

Report the results:

Tests of Between-Subjects Effects

Dependent Variable: neutral

Source	Type III Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared
Corrected Model	23,215 ^a	3	7,738	2,028	,113	,040
Intercept	50,743	1	50,743	13,300	,000,	,083
AlterCluster	23,215	3	7,738	2,028	,113	,040
Error	557,025	146	3,815			
Total	2194,000	150				
Corrected Total	580,240	149				

a. R Squared = ,040 (Adjusted R Squared = ,020)

Beware: Next 2 slides contain the answers and interpreted results!

Self-paced Exercise 2. Task answers

Next slide contains an ANOVA output. Based on that output, respond the following questions:

1. Determine if it's the output from a one-way or two-way ANOVA and explain why

A1: it's the output from a one-way ANOVA because there's only 1 row showing 1 factor and there's no row with an interaction effect (e.g. "IV1*IV2")

2. Determine the factor and its levels, and the DV

A2: Factor 1: AlterCluster. Levels: they are not indicated in the provided output screenshot. Assuming it's the same dataset as the one from the self-paced exercise 1, the levels could be: 4 [1. "up to 19 years"; 2. "20-29 years"; 3. "30-39" years; 4. "40-49 years"]. The dependent variable is called "neutral"

3. Report the results

A3: On the next slide

4. Determine if a post-hoc test would be needed and why.

A4: Due to the non-sig. results (p = .113), a post-hoc test would not be needed

Self-paced Exercise 2. Output and task 3 answer

Tests of Between-Subjects Effects

Dependent Variable: neutral

Source	Type III Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared
Corrected Model	23,215 ^a	3	7,738	2,028	,113	,040
Intercept	50,743	1	50,743	13,300	,000,	,083
AlterCluster	23,215	3	7,738	2,028	,113	,040
Error	557,025	146	3,815			
Total	2194,000	150				
Corrected Total	580,240	149				

a. R Squared = ,040 (Adjusted R Squared = ,020)

There is no sign. main effect of AlterCluster on the DV "neutral": F (3, 146) = 2.028, p = .113, η_p^2 = .040

Self-paced Exercise 3. Tasks

Next slide contains an ANOVA output. Based on that output, respond the following questions:

- 1. Determine if it's the output from a one-way or two-way ANOVA and why
- 2. Determine the factor and its levels, and the DV
- 3. Report the results
- 4. Determine if a post-hoc test would be needed and why.

Self-paced Exercise 3

Report the results:

Tests of Between-Subjects Effects

Source	Type III Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared
Corrected Model	7,448 ^a	3	2,483	2,562	,062	,098
Intercept	254,763	1	254,763	262,916	,000,	,787
hand_N	,158	1	,158	,163	,687	,002
Own_MT	2,318	1	2,318	2,392	,126	,033
hand_N * Own_MT	5,609	1	5,609	5,788	,019	,075
Error	68,798	71	,969			
Total	1382,500	75				
Corrected Total	76,247	74				

Dependent Variable: Post_Qu_6

a. R Squared = ,098 (Adjusted R Squared = ,060)

Beware: Next 2 slides contain the answers and interpreted results!

Self-paced Exercise 3. Task answers

Next slide contains an ANOVA output. Based on that output, respond the following questions:

1. Determine if it's the output from a one-way or two-way ANOVA and why

A1: It's the output from a two-way ANOVA because we can see 2 factor rows as well as a interaction effect row

2. Determine the factor and its levels, and the DV

A2: Factor 1: hand_N. Factor 2: Own_MT; DV: Post_Qu_6. The levels of the factors are not shown in the provided output screenshot

3. Report the results

A3: On the next slide

4. Determine if a post-hoc test would be needed and why.

A4: No, even though a statistically sig. <u>interaction</u> effect was obtained, the next step is to conduct a one-way ANOVA to further analyze the interaction effect. This procedure is out of scope of the course but if you're interested you can follow this tutorial:

Self-paced Exercise 3 task 3 answers Report the results:

Tests of Between-Subjects Effects

Source	Type III Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared		
Corrected Model	7,448 ^a	3	2,483	2,562	,062	,098		
Intercept	254,763	1	254,763	262,916	,000,	,787		
hand_N	,158	1	,158	,163	,687	,002		
Own_MT	2,318	1	2,318	2,392	,126	,033		
hand_N * Own_MT	5,609	1	5,609	5,788	,019	,075		
Error	68,798	71	,969					
Total	1382,500	75						
Corrected Total	76,247	74						
Discussion of the second second second								

Dependent Variable: Post_Qu_6

a. R Squared = ,098 (Adjusted R Squared = ,060)

- There is no sign. main effect of hand_N on the DV "Post_Qu_6": F (1, 71) = .163, p = .687, η_p^2 = .002
- There is no sign. main effect of Own_MT on the DV "Post_Qu_6": F (1, 71) = 2.392, p = .126, η_p^2 = .033
- There is a sign. interaction between hand_N and Own_MT on the DV "Post_Qu_6": F(1, 71) = 5.788, p = .019, η_p^2 = .075

Qualis

- Official course evaluation survey from UdS
- Completely anonymous
- Evaluation link: <u>https://qualis.uni-</u> <u>saarland.de/eva/?l=127357&p=pynh61</u>