Session start question

https://app.sli.do /event/kugjanfy

Empirical Research Methods 1

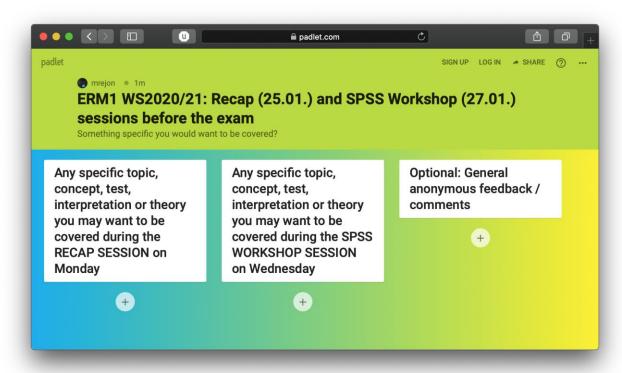
Repeated measures tests: t-test with dependent samples, repeated measures ANOVA (within subjects design).

Effect size

Miguel Rejón,

Room 1.14

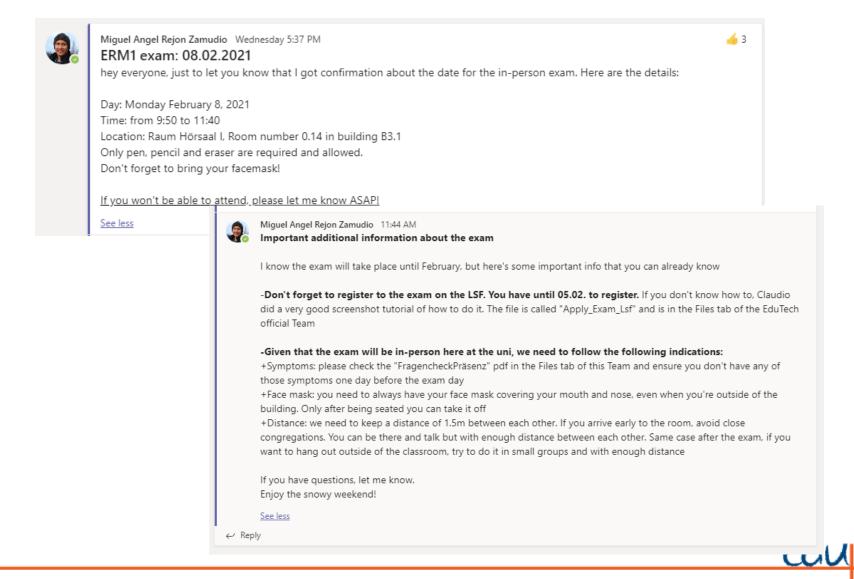
m.rejon@edutech.uni-saarland.de



Before we start 1/3: Info and tools

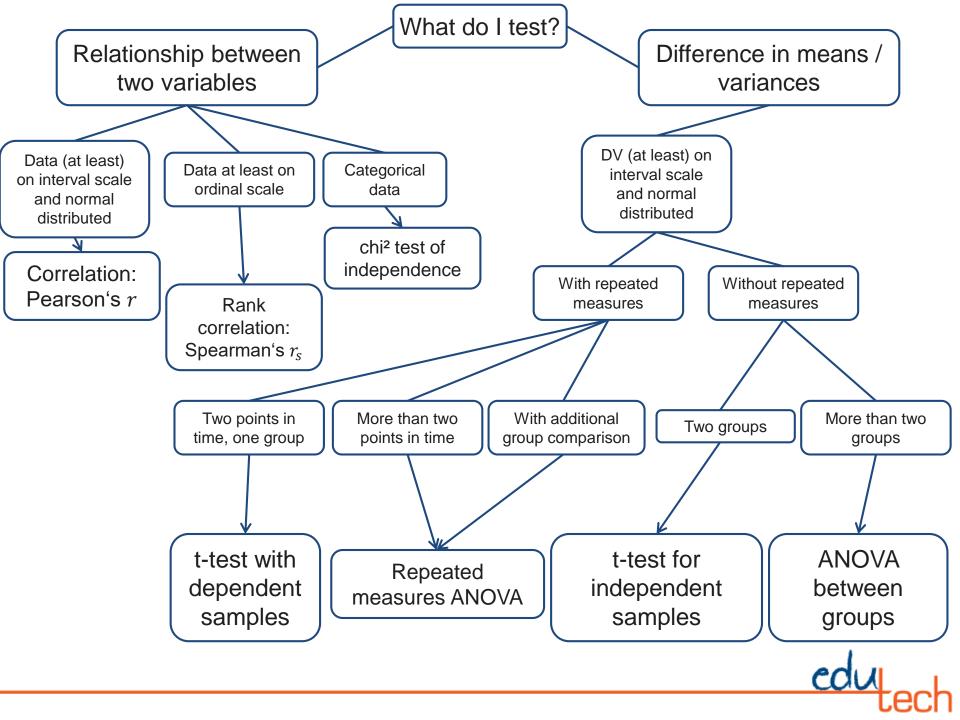
- Slido for session start question and anonymous Q&A
- MS Teams for comments, questions, etc
- SPSS for exercise livecast
- Last topic session and 2nd to last Monday session before the exam
 - Next week: recap week
 - Next next week: no sessions
 - Nex next next week: Exam! (08.02.)

Before we start 2/3: recap sessions next week


https://padlet.com/mrejon/y71gbr4qt5yx720d

Contribute until Wednesday Jan 20

Add ("+" button), comment, or like posts


Before we start 3/3: Important info about the exam!

Agenda

- Updated "What do I test?"
- Synonyms for "Within subjects"
- Within vs between subjects designs
- Effect size: definition; for t-tests; for ANOVAS
- Today's topics on SPSS

Within subjects, repeated measures, paired (samples), dependent samples. They all mean the same

- Both for ANOVAs and t-tests
- Same participants, individuals or objects are tested more than once. This can mean one of 2 things:
- 1. Same participants are assigned to only 1 level but are measured (in terms of the DV) more than once. A.k.a. <u>Pre- post-test study</u>. E.g., Attitude change before and after attending a workshop.
- 2. Same participants are assigned to more than 1 level and are measured (in terms of the DV) once for each level. Measurement is normally done immediately after exposure to each level. A.k.a. Within-subjects study. E.g., Task completion using 3 different apps.
- You can them both: You can have independent samples and dependent samples analyses on your same data; provided that the experiment is well designed and the RQQ and hypotheses are clearly defined.

Within or between?

Example research question: Do you learn more with text or video?

Independent samples t-test (total n = 50 subjects)

IV	Condition 'text'	Condition 'video'				
n	25	25				
DV	Knowledge test					

Dependent samples (paired samples) t-test (total n = 25 subjects)

n	25
IV	Condition 'text'
DV1	Knowledge test
IV	Condition 'video'
DV2	Knowledge test

Within or between? You can have them both

Pre- post-test experimental design with a 2x2 factorial design.

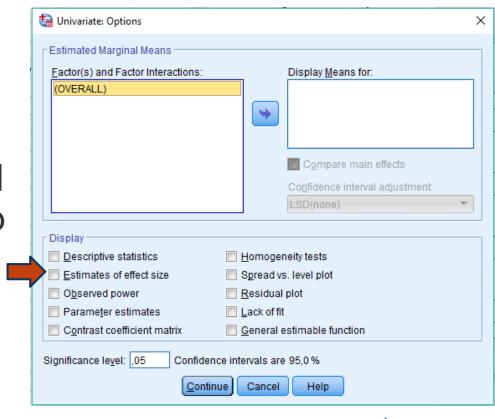
Within comparisons. Between comparisons

DV	Condition 1 pre-test	Condition 2 pre-test	Condition 3 pre-test	Condition 4 pre-test			
IV		Facto	r 'text'				
	ye	es	nc				
	Factor	'ideo'	Factor	'video'			
	yes	no	yes	no			
Exp. groups	Condition 1: Text + Video	Condition 2: Only text	Condition 3: Only Video	Condition 4: Control group			
n	25	25	25	25			
DV	Condition 1 post-test	Condition 2 post-test	Condition 3 post-test	Condition 4 post-test			

Effect size – Why?

- Only telling about the 'significance' is not enough: Significant results are also possible for practically meaningless differences
 - → Additionally, report the *effect size*
 - How large is a significant difference?
 - How strong is an effect? How to compare it with effects found in other studies/ data?

Effect sizes – two important measures


- Cohen's d:
 - For t-tests
 - Available in the newest versions of SPSS but not selectable in older versions → Use an internet calculator, e.g.:

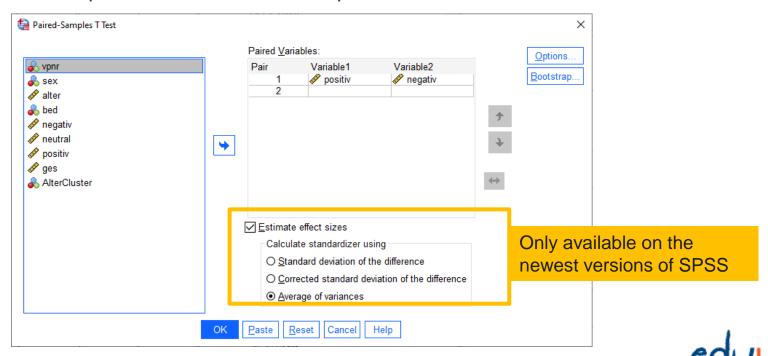
https://www.psychometrica.de/effect_size.html

Effect sizes – two important measures

- η_p^2 :
 - = partial eta-square
 - for ANOVAs
 - Measure of the proportion of explained variance in relationship to the overall variance (percentage)
 - You can select it in SPSS for ANOVAs

Effect sizes – Interpretation

d	r*	η²	Interpretation sensu Cohen (1988)	Interpretation sensu Hattie (2007)	
< 0	< 0	-	Advers	e Effect	
0.0	.00	.000	No Effect	Developmental	
0.1	.05	.003	No Ellect	effects	
0.2	.10	.010		Teacher effects	
0.3	.15	.022	Small Effect	reacher effects	
0.4	.2	.039			
0.5	.24	.060			
0.6	.29	.083	Intermediate Effect		
0.7	.33	.110		Zone of desired effects	
0.8	.37	.140			
0.9	.41	.168	Large Effect		
≥ 1.0	.45	.200			


Effect sizes – Reporting

- ❖ "There was a main effect for argumentation script on learning gains of knowledge about argument quality, F(1,77) = 4.13, p = .046, $\eta_p^2 = .05$, and a significant and strong main effect of subjective learning gains on argument quality, F(1,77) = 11.99, p = .001, $\eta_p^2 = .14$."
- ❖ "Helmert contrasts showed that the control was significantly better than the group awareness condition, t(77) = 2.52, p = .014, d = .856."

Exercise 1. Paired samples t-test

- Open Beispieldatensatz_S10
- Let's assume that the (same) participants first studied positive adjectives, then were tested (t1), then studied negative adjectives, and were tested again (t2)
- Check with SPSS if the amount of remembered adjectives is different from t1 to t2
- Analyze > Compare Means > Paired Samples t-test

Exercise 1. Paired samples t-test

Paired Samples Statistics

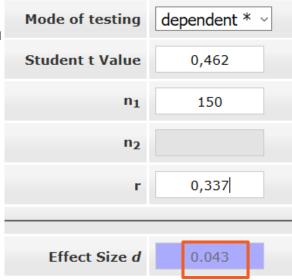
		Mean	N	Std. Deviation	Std. Error Mean
Pair 1	positiv	3,44	150	2,071	,169
	negativ	3,35	150	1,911	,156

Paired Samples Correlations

Pair 1 positiv & negativ 150			N	Correlation		Sig.	
, and a particular of the part	Pair 1	positiv & negativ	150		,337	,000	

Mode of testing dependent * Student t Value 0,462 n₁ 150 n₂ r 0,337 Effect Size d 0.043 https://www.psychometrica.de/effect_size.html#repeated

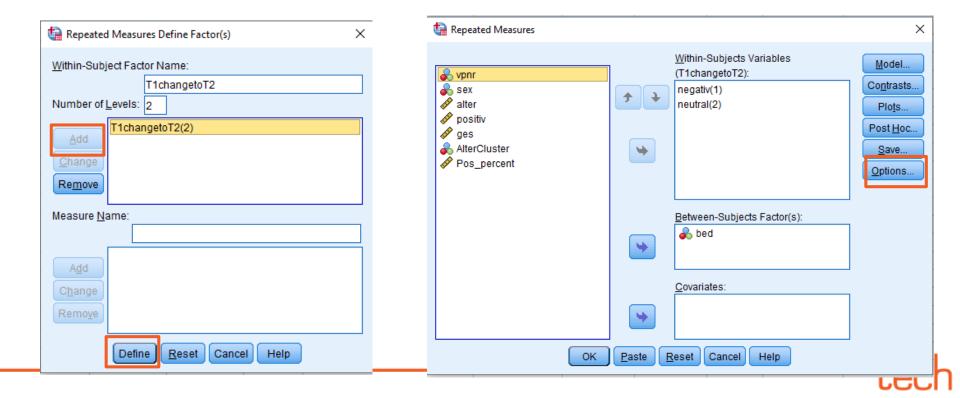
Paired Samples Test


	Paired Differences										
		Mean	Std. Deviation	Std. Error Mean	95% Confidence Interval of the Difference Lower Upper		+		df	Sig. (2-t	(halie:
		Weall	Std. Deviation	Ivicali	Lower Opper		L	,	al I	31g. (2-t	aneu)
Pair 1	positiv - negativ	,087	2,297	,188	-,284	,457	,462		149		,645

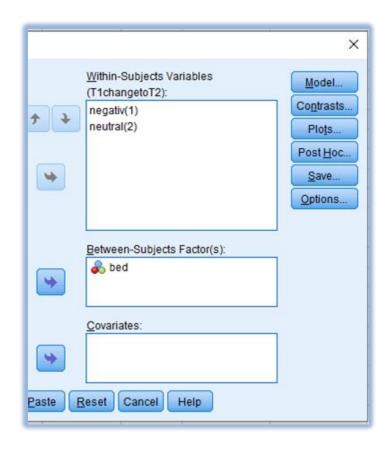
There was no significant change from t1 to t2 (over time): t(149) = .462, p = .645, d = .043

Exercise 1. Paired samples t-test

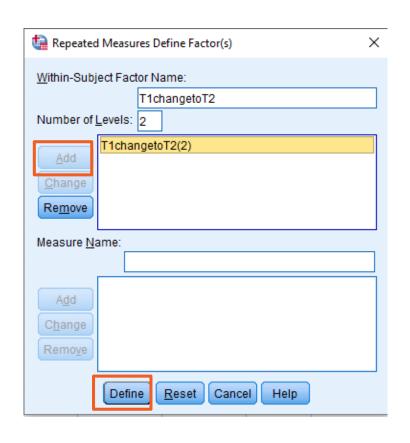
https://www.psychometrica.de/effect_size.html#repeated

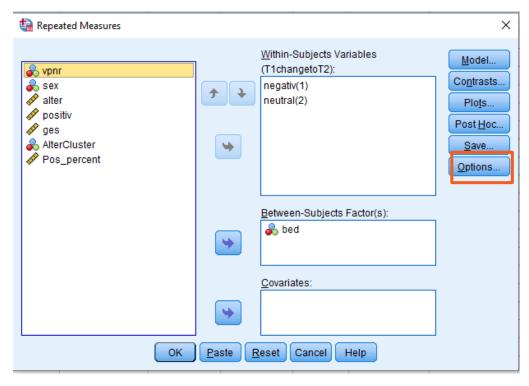

Paired Samples Effect Sizes							
			Standardizer ^a		oint timate	95% Confidence Interva	
Pair 1	erinnerte positive	Cohen's d	1.993		.043	117	.204
Adjektive - erinnerte negative Adjektive	Hedges' correction	1.998		.043	116	.203	

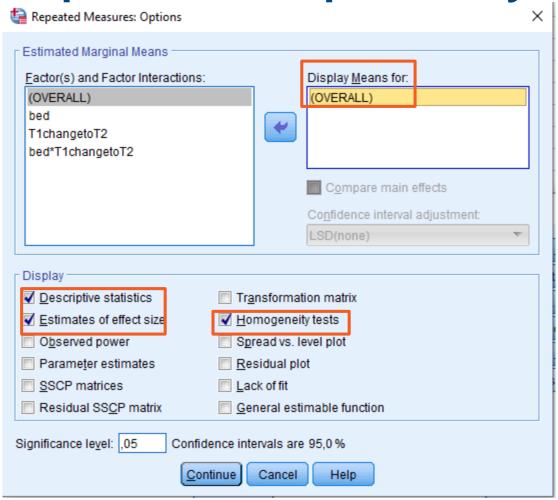
a. The denominator used in estimating the effect sizes.
 Cohen's d uses the square root of the average variance of measures.
 Hedges' correction uses the square root of the average variance of measures, plus a correction factor.


There was no significant change from t1 to t2 (over time): t(149) = .462, p = .645, d = .043

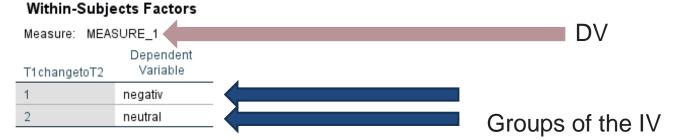
- Check if a possible change from t1 ("negative") to t2 ("neutral") is dependent on the condition ('bed')
- Analyze > General Linear Model > Repeated Measures




- Why repeated measures? Because we will compare 2 measurements across the same data ("negative" and "neutral")
- Why independent samples? Because we want to see the impact of the condition ("bed") on the measured data



Analyze > General Linear Model > Repeated Measures



Note: On the latest versions of SPSS, this step is now splitted and Estimated Marginal Means has its own button

Between-Subjects Factors

		Value Label	N	
bed	1	strukturell	50	
	2	bildhaft	50	
	3	emotional	50	

Descriptive Statistics

	bed	Mean	Std. Deviation	N
negativ	strukturell	2,64	1,601	50
	bildhaft	3,74	1,904	50
	emotional	3,68	2,035	50
	Total	3,35	1,911	150
neutral	strukturell	1,96	1,428	50
	bildhaft	3,82	1,687	50
	emotional	4,06	2,064	50
	Total	3,28	1,973	150

Levels of our factor for the indep. samples analysis part

... repeated measures ANOVAs with multiple factors

- The SPSS output is huge, be careful to select the right tables
- The test for Sphericity* is only used when your factor (i.e. the "within-subjects variable") has more than two levels (rare)
- For now, you can ignore the results for multivariate tests and within subjects contrasts

* Sphericity: The variances of the differences between the within factor levels are homogeneous. If not, use a correction: Greenhousse-Geisser or Huynh-Feldt

Tests of Within-Subjects Effects

Measure: MEASURE_1

Source		Type III Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared
T1changetoT2	Sphericity Assumed	,403	1	,403	,154	,696	,001
	Greenhouse-Geisser	,403	1,000	,403	,154	,696	,001
	Huynh-Feldt	,403	1,000	,403	,154	,696	,001
	Lower-bound	,403	1,000	,403	,154	,696	,001
T1changetoT2 * bed	Sphericity Assumed	14,927	2	7,463	2,841	,062	,037
	Greenhouse-Geisser	14,927	2,000	7,463	2,841	,062	,037
	Huynh-Feldt	14,927	2,000	7,463	2,841	,062	,037
	Lower-bound	14,927	2,000	7,463	2,841	,062	,037
Error(T1changetoT2)	Sphericity Assumed	386,170	147	2,627			
	Greenhouse-Geisser	386,170	147,000	2,627			
	Huynh-Feldt	386,170	147,000	2,627			
	Lower-bound	386,170	147,000	2,627			

There was no significant interaction between the factor 'bed' and the point in time (t1 vs t2):

$$F(2, 147) = 2.841, p = .062, \eta_p^2 = .037$$

