

About the topic

* **ANOVAS:** belong to the F family of tests and they are parametric tests normally

used for determining if, based on their means, >2 samples are statistically

significantly different (Miguel, 2021).

• **Dependent sample t-tests:** it is used to compare the differences in means

of two related groups (* the same participants will be involved in both groups).

* Different terms used for dependent sample t-tests: within-subjects

measures, repeated measures, paired samples, before and after measures, matched

pairs...

When to use a dependent sample t-test with example?

- EG. To investigate whether there is a difference between students'
 - performance in math class before and after a 2-month intensive

training program.

- differences before & after (values)
- ✤ 1 IV (2 levels with and without the training) & 1DV
- Same participants involved in both conditions;

What is within-subjects ANOVA?

- * Different from between-subjects ANOVA!
- Within-subjects ANOVA= Repeated measures ANOVA :

One-way ANOVA (for 3 or more related groups);

Extension of dependent sample t-test;

To discover overall differences;

When to use within-subjects ANOVA with example?

Eg. Investigation on the effect of <u>a 2-month vocabulary training</u>

program on students' reading comprehension at 3 different time points.

- ✤ 1 IV (2levels with & without the training) & 1 DV;
- Same participants involved in both conditions, but differences in 3 time points;
- ✤ To find out: changes in mean scores over various time points or

differences in mean scores over various conditions

ALWA

What are the assumptions to be considered?

Dependent sample t-test & within-subjects ANOVA:

- DV continuous (interval or ratio) & IV categorical (nominal or ordinal);
- ✤ Normally distributed differences in DV & no outliers;
- Correlated groups are required;
- Sphericity to be assumed. (The variances of differences between related

groups are equal)

design".)

(Same parametric assumptions as mentioned for topic 9 "ANOVA between-subjects

Question to think?

Investigation on the effects of video games on learners' math

scores at 3 time points (pre, one-month & post).

- ✤ IV & possible factor levels?
- ✤ DV?
- Dependent sample t-test or a within-subjects ANOVA? (If possible, give

a reason)

What is the effect size?

- Quantification of the size of the difference between two group means
- Quantification of the size of association between variables

Why do we need the effect size?

- Whereas a p-value indicates if an intervention works, the effect size indicates how much an intervention works, independent of sample size
- Effect sizes are standardized

Questions to think about:

- Why is it an issue that the p-value is dependent on the sample size? (As one of the reasons why we need effect size)
- What is the advantage of effect sizes being standardized?

What is the effect size?

Questions to think about:

- Why is it an issue that the p-value is dependent on the sample size?
 - When the sample size is small, strong and important effects can be non-significant (Type II Error is made)
 - When the sample size is large, even trivial effects can have significant p-values
- What is the advantage of effect sizes being standardized?
 - We can quantitatively compare the results of studies conducted in different settings

- Effect Size = value of standardized distance between two means = $d = \frac{\mu_{experimental} \mu_{control}}{\sigma}$
- ✤ d = 1 indicates the means differ by one standard deviation
 - e.g *d* = 0.8 means that on average, an object of the experimental group scores 0.8 standard deviations higher than the average person of the control group
- Cohen's *d* should accompany the results of **t-tests**, especially if results are significant

η^2 (eta squared)

- Eta squared is the proportion of variance accounted for by main effects or interaction effects in ANOVA
- The sum of squares is a measure of how much an entire set of data varies around a mean
- between-subjects ANOVA
- $\eta^2 = SS_{conditions} / SS_{total}$ repeated measures ANOVA
 - ✤ SS_{between-groups} or SS_{conditions} is the sum of squares of the effect you are looking at
 - SS_{total} is the sum of squares of all effects, errors and interactions: it tells us how much variation there is in the dependent variable
- η^2 is additive and can never exceed 1; i.e. one cannot account for more than 100% of the variance

η² (eta squared) – Example

- For example, we are studying people's happiness self-rated on a 100 point scale. The considered factors are participants' gender (male vs. female) and their employment status (employed vs. unemployed vs. part-time employed.
- After performing ANOVA, we get the following results:
 - Total SS = 62.29
 - ✤ Gender SS = 13.24
 - Employment Status SS = 19.58
- Dividing each SS by the Total SS gives us the :
 - Eta squared Gender: 13.24 / 62.29 = 0.21 = 21%
 - Eta squared Employment Status: 19.58 / 62.29 = 0.31 = 31%
- Interpretation:
 - ✤ 21 percent of all variance in the dependent variable "happiness" is attributable to gender
 - ✤ 31 percent of all variance in the dependent variable "happiness" is attributable to employment status
 - → most important main effect

Interpreting effect size

✤ Cohen's d:

✤ d=0.2 (small), d=0.5 (medium), d=0.8 (large)

If two groups don't differ by at least 0.2 standard deviations, the difference

of both means is trivial, even if the results are significant

SPSS

READY

Background:

40 participants in a 2 month vocabulary training program. Participants are tested on their reading comprehension at three different time points (pre, midway & post intervention effects)

Research Question:

Are the test scores different between test 1 and test 3?

Which parametric test is suitable for the above study design?

			ullities	E <u>x</u> te	nsions	<u>W</u> indow	Help
			Ч	H		1	
gender	scoe 🛷 test_scoe	1 start and	0				
male		32	2 🛷 test_sc	ore_3	var	V	ar
male	2	28	28	30			
male	3	2	26	27			
male	2	6 3	0	30			
male	2	7 2	4	25			
male	2	1	-	24			
male	26			17			
male	27	26		32			
male	30	20		29			
male	24	20		31			
male	26	24		29			
male	33	20		28			
male	33	32		32			
male	28	30		31			
female	37	20		32			
female	21	20		38			
female	22	25		29			
female	24	23		32			
female	28	26	2	21			
female	28	20	2	28			
female	28	21	2	9			

Research Question: Are the test scores different between test 1 and test 3?

Dependent sample t-test

In SPSS

H_A : μ1 ≠ μ2

→ The means of test scores of test 1 and test 3 are not equal and the observed difference is not likely to have occurred by chance alone.

$H_0: \mu 1 = \mu 2$

 \rightarrow The means of test scores of test 1 and test 3 are equal.

) (hs <u>U</u> tilities E	<u>x</u> tensions	Window Help
) gende	r 🛷 test_scoe	1 st test score	2		
ma	le	32	-2 V test_score	a_3 var	var
ma	le	28	28	30	
ma	le	30	26	27	
mal	e	26	30	30	
mal	e	27	4	25	
male	e 2	2	6	24	
male	2	1	5	17	
male	2	7 20	6	32	
male	3	26	5 2	29	
male	2/	28	3 3	1	
male	26	24	2	9	
male	33	28	2	8	
male	33	32	32	2	
male	28	35	31		
female	37	28	32		
female	21	38	38		
female	21	29	29		
female	22	25	32		
female	24	21	21		
female	20	26	28		
female	20	27	29		

<u>F</u> ile	<u>E</u> dit	<u>V</u> iew	<u>D</u> ata	Transform	ו	•	F
	H				7		F
		~			-		C
		💰 ge	nder	🖋 test_sco	re_		E
1			male		:		Т
2	2		male		:		C
3	}		male		:		C
4	Ļ		male		:		c
5	;		male		1		N
6	;		male		1		0
7	'		male		:		<u>c</u>
8	}		male		1		F
9)		male		:		L
1(0		male		1		Ν
11	1		male		1		C
12	2		male		- :		D
13	3		male		- 1		S
14	4		male		- 1		N
1	5		male		:		<u>n</u>
10	6		male		1		F
17	7		male		1		5

ower	Anal	ysis	T BORNE	
Report	s			
) <u>e</u> scri	ptive	Statist	tics	
<u>B</u> ayes	ian S	tatistio	s	
a <u>b</u> les				
o <u>m</u> pa	are M	eans		
<u>3</u> enera	al Lin	ear Mo	del	
Genera	ali <u>z</u> ed	l Linea	r Models	
/li <u>x</u> ed	Mode	els		
orrela	ate			
Regres	sion			
. <u>og</u> line	ear			
leural	Net <u>v</u>	<u>/</u> orks		
lassi	fy			
<u>)</u> imen	sion	Reduc	tion	
Sc <u>a</u> le				
<u>l</u> onpa	rame	tric Te	sts	
oreca	is <u>t</u> ing			
urviva	ıl			

Analyze \rightarrow Compare Means \rightarrow Paired-Samples T Test

Paired Samples Statistics

		Mean	Ν	Std. Deviation	Std. Error Mean
Pair 1	amount of correctly translated words in test1	27,53	40	5,208	,824
	amount of correctly translated words in test3	29,18	40	4,924	,779

Dependentsamples t-test

SPSS Output

Paired Samples Correlations

	Ν	Correlation	Sig.
Pair 1 amount of correct translated words & amount of correct translated words	tly 40 in test1 ectly in test3	,775	,000

We can see that there is a statistically significant difference between both test scores. We now want to find out how much the vocabulary training program worked. We can calculate the effect size ourselves...

$$d = \frac{\mu_{experimental} - \mu_{control}}{\sigma} = \frac{29.18 - 27.53}{3.409} = 0.48$$

	Group 1	Group 2
Mean	27,53	29,18
Standard Deviation	5,208	4,924
Correlation	0,7	775
Effect Size <i>d_{Repeated} Measures</i>	0.4	172
ffect Size <i>d_{Repeated} Measures, pooled</i>	0.4	185
Effect Size <i>d</i> _{Individual} Groups	0.3	317

... or we can use another platform, e.g: https://www.psychometrica.de/effect_size.html 4. Effect size estimates in repeated measures design

Paired Samples Test

Paired Differences									
				95% Confidence Interval of the Difference					
	Mean Std. Deviation Mean Lower Upper						t	df	Sig. (2-tailed)
Pair 1	amount of correctly translated words in test1 - amount of correctly translated words in test3	-1,650	3,409	,539	-2,740	-,560	-3,062	39	.004

t(39) = -3.062, p = 0.004; d = 0.485

There is a statistically significant difference between both test scores. The vocabulary training program had a medium effect. We can discard the H_0 which stated that the means of the test scores of test 1 and test 3 are equal

Background:

40 participants (20 male, 20 female) in a 2 month vocabulary training program. Participants are tested on their reading comprehension at three different time points (pre, midway & post intervention effects)

Research Question:

Does the gender of a participant have an effect on the test scores (all three tests)?

Which parametric test is suitable for the above study design?

à 🗖			utilities (E <u>x</u> tensions	Window Help
) gender	test_scoe_	1 🛷 test score	2		
male		32	28 test_score	e_3 var	var
male		28	20	30	
male		30	20	27	
male	2	26	30	30	
male	2	7	24	25	
male	2	1	20	24	
male	2	6	5	17	
male	27	2	6	32	
male	30	2	6	29	
male	24	2	8 3	31	
male	26	24	2	9	
male	33	28	2	8	
male	33	32	3	2	
male	28	35	31	1	
female	37	28	32	2	
female	21	38	38		
female	21	29	29		
emale	24	25	32		
emale	24	21	21		
emale	20	26	28		
male	20	27	29		

23

Research Question:

Does the gender of a participant have an effect on the test scores (all three tests)?

H_{A1} : There is an interaction effect between gender and time of testing on the test scores.

 H_{01} : There is no interaction effect between gender and time of testing on the test scores

H_{A2} : There is a main effect of the test time on the test scores.

H₀₂: There is no main effect of the test time on the test scores

*** [Data	Transform		Analyze <u>G</u> rap	hs	Utilities	E <u>x</u> t	ensions	<u>W</u> ind	ow	Help
) gende	er	scoe	1	🖉 test coore	0	•					
ma	ale		- 32	 test_score 	_2	🖋 test_so	ore_3	8 va	r	var	
ma	ale		28		28		3	0			
ma	le		30		26		27	7			
ma	le		26		30		30)			
mal	le		27		24		25				
mal	е		21	2	26		24				
mal	е		21	1	5		17				
male	e		20	2	6		32				
male	9			2	6		29				
male				28	3		31				
male		2	4	24	Ļ		29				
male	-	2	6	28			28				
male		3.	3	32			32				
male		33	3	35			31				
female		28		28			32				
female		37		38			38				
female		21		29			29				
female		22		25			32				
femalo		24		21			21				
female		28		26			20				
female		28		27			20				
emale	_	28		25			.9				

<u>F</u> ile	<u>E</u> dit	<u>V</u> iew	<u>D</u> ata	Transform
42 : te	est_sco	re_3		
		💰 ge	nder	🖋 test_scoe_
	7		male	:
1	8		male	
1	9		male	
1	0		male	
1	1		male	
1	2		male	
1	3		male	4
1	4		male	4
1	5		male	:
1	6		male	:
1	7		male	1

A L DOM EL		Win
ower Analysis	>	
Reports	>	
escriptive Statistics	>	
ayesian Statistics	>	/ar
a <u>b</u> les	>	
o <u>m</u> pare Means	>	
eneral Linear Model	>	🎆 <u>U</u> ni
Generali <u>z</u> ed Linear Models	>	Mu
/li <u>x</u> ed Models	>	Re Re
orrelate	>	
egression	>	UCR Va
<u>og</u> linear	>	
leural Net <u>w</u> orks	>	
lassify	>	

<u>W</u> in	dow <u>H</u> elp			
			Q	
/ar	var	var	var	
₩ <u>U</u> ni ₩ <u>M</u> u	variate Itivariate peated Measu	ures		-
<u>W</u> an	riance Compo	onents		

Analyze → General Linear Model → Repeated Measures

Repeated Measures: Profile Plots × Eactors: Horizontal Axis: gender test_time test_time Separate Lines: gender Segarate Plots:		
Plo <u>t</u> s: <u>A</u> dd Chang <u>e</u> Remove	Repeated Measures: Options	
Chart Type:	Descriptive statistics	✓ <u>H</u> omogeneity tests
● Line Chart	✓ Estimates of effect size	Spread-vslevel plots
● <u>B</u> ar Chart	Observed power	<u>R</u> esidual plots
Error Bars	Parameter estimates	Lack-of-fit test
Include Error bars	SCP matrices	General estimable function(s)
 Confidence Interval (95,0%) Standard Error <u>M</u>ultiplier: 2 	Residual SS <u>C</u> P matrix	
Include reference line for grand mean	Significance level: ,05 Con	nfidence intervals are 95,0 %
4 <u>Continue</u> Cancel Help	2 <u>Continue</u>	Cancel Help

		Descriptiv	e Statisti	cs
		gender	Mean	5
subjects	amount of correctly translated words in test1	male	27,75	
WITHIPSON		female	27,30	
ANOVA		Total	27,53	
ANO	amount of correctly	male	27,65	
anes Output	translated words in test2	female	27,85	
SP35 0		Total	27,75	
	amount of correctly	male	29,10	
	translated words in test3	female	29,25	
		Total	29,18	

	gender	Mean	Std. Deviation	N
prrectly	male	27,75	4,141	20
ords in test1	female	27,30	6,199	20
	Total	27,53	5,208	40
prrectly	male	27,65	5,122	20
ords in test2	female	27,85	5,224	20
	Total	27,75	5,108	40
orrectly	male	29,10	4,656	20
ords in test3	female	29,25	5,300	20
	Total	29,18	4,924	40

Profile Plots

The means are visualized in the profile plots

Output – Mauchly's Test of Sphericity

Mauchly's Test of Sphericity^a

Measure: test_scores

					Epsilon ^b		
Within Subjects Effect	Mauchly's W	Approx. Chi- Square	df	Sig.	Greenhouse- Geisser	Huynh-Feldt	Lower-bound
test_time	,855	5,810	2	,055	,873	,936	,500

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is proportional to an identity matrix.

- a. Design: Intercept + gender
 - Within Subjects Design: test_time
- b. May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in the Tests of Within-Subjects Effects table.

 $p > 0.05 \rightarrow$ sphericity assumption is met

Tests of Within-Subjects Effects

Measure: test_scores

Source		Type III Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared
test_time	Sphericity Assumed	64,050	2	32,025	6,638	,002	,149
	Greenhouse-Geisser	64,050	1,746	36,679	6,638	,004	,149
	Huynh-Feldt	64,050	1,872	34,223	6,638	,003	,149
	Lower-bound	64,050	1,000	64,050	6,638	,014	,149
test_time * gender	Sphericity Assumed	2,617	2	1,308	,271	,763	,007
	Greenhouse-Geisser	2,617	1,746	1,498	,271	,733	,007
	Huynh-Feldt	2,617	1,872	1,398	,271	,749	,007
	Lower-bound	2,617	1,000	2,617	,271	,606	,007
Error(test_time)	Sphericity Assumed	366,667	76	4,825			
	Greenhouse-Geisser	366,667	66,357	5,526			
	Huynh-Feldt	366,667	71,118	5,156			
	Lower-bound	366,667	38,000	9,649			

$F(2,76)=0.271, p=0.763; \eta^2=0.007$

There is no interaction between test time and gender. We therefore keep our H₀₁ which stated that there is no interaction effect between gender and time of testing on the test scores

Tests of Within-Subjects Effects

Measure: test_scores

Source		Type III Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared
test_time	Sphericity Assumed	64,050	2	32,025	6,638	,002	,149
	Greenhouse-Geisser	64,050	1,746	36,679	6,638	,004	,149
	Huynh-Feldt	64,050	1,872	34,223	6,638	,003	,149
	Lower-bound	64,050	1,000	64,050	6,638	,014	,149
test_time * gender	Sphericity Assumed	2,617	2	1,308	,271	,763	,007
	Greenhouse-Geisser	2,617	1,746	1,498	,271	,733	,007
	Huynh-Feldt	2,617	1,872	1,398	,271	,749	,007
	Lower-bound	2,617	1,000	2,617	,271	,606	,007
Error(test_time)	Sphericity Assumed	366,667	76	4,825			
	Greenhouse-Geisser	366,667	66,357	5,526			
	Huynh-Feldt	366,667	71,118	5,156			
	Lower-bound	366,667	38,000	9,649			

$F(2,76)=6.638, p=0.002; \eta^2=0.149$

There is a significant, large main effect of the test time on the test scores. We therefore discard our H₀ which stated that there is no main effect of the test time on the test scores

References

- https://www.leeds.ac.uk/educol/documents/00002182.htm
- https://www.psychometrica.de/effect_size.html#transform
- https://www.simplypsychology.org/effect-size.html
- https://www.spss-tutorials.com/spss-paired-samples-t-test/
- https://www.spss-tutorials.com/spss-repeated-measures-anova-example-2/
- https://statistics.laerd.com/statistical-guides/repeated-measures-anova-statistical-guide.php

Thank you for your attention