NOTES FOR CHAPTER 3

'8 See Englebretsen (1986a).

% For more on this point see Vendler (1967, ch. 2), Paduceva (1970), and
Chastain (1975). A theory similar to Sommers’s is found in Heim
(1982, ch. 3).

% See Englebretsen (1984b, 1985e).

2! See Sommers (1982, app. A) and Englebretsen (1982d).

2 A fine account of this is offered in Dipert (1981).

* For a similar account of proper names see Lockwood (1 971).

* See Englebretsen (1972c) for a clarification of Sommers’s account of this
distinction.

* A much more extensive examination of this device is found in Engle-
bretsen (1984b).

% Other logicians, including especially Boole and Frege, had held similar
views. Frege took every statement to refer to either the True (what
makes the statement true) or the False (what makes the statement
false).

“In ch.14 of Englebretsen (1987), I try to show that while, with respect to
any term ‘P’, a given thing may be either P or nonP, with respect
to any constitutive characteristic [p], every domain is either [p] or
un[p]. In other words, the polarity of nonsentential terms is
reversible but the polarity for sentential terms is not. This fact is

28 the true basis for the contrary/contradictory distinction.

For recent work on this question see, for example, Braine (1978), Evans
(1982), Henle (1962), Johnson-Laird (1983), Johnson-Laird and

Byrne (1991), Osherson (1975), Wetherick (1989), and Rips
(1994),
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We cannot go back to the prison that would confine all logic to the
Aristotelian syllogism, but it is possible to defend (a) something like the
view that the form “Every X is Y” is more fundamental than either “For
all x, fix)” or “If p then q”" and (b) the traditional ignoring (in inference
by subalternation, etc.) of terms that have no application.

A.N. Prior

Plus/Minus

Certainement calculer c 'est raisonner, et raisonner c est calculer . . . .
Lorsque je dis que les quantités sont ajoutées ou soustraites, et que
conséquemment je les distingue en quantités en plus et en quantités en
moins, je ne les confonds pas avec I'opération qui les ajoute ou qui les
Soustrait; et on voit comment, étant les mémes en algébre que dans toutes
les langues, il n 'y a de différences que dans la maniére de s 'exprimer:
mais quand on nomme quantité positive |'addition d'une quantité, et
quantité négative la soustraction d'une quantité, on confond l'expression
des quantités avec I'expression de I'opération qui les ajoute ou qui~1es
Soustrait, et un pareil langage n'est pas fait pour répandre la Iumz:ere.
Aussi les quantités négatives ont-elles été un écueil pour tous ceux qui ont

entrepris de les expliquer. Condill
ondillac

The concepts of addition and subtraction. The rudiments of logic.
Don De Lillo

i Shapter three I offered a brief summary of the many contributions to term
!Oglc made over the past several years by Sommers. Such a summary cannot
o 21y measure serve as a substitute for Sommers’s own work, but I hope
it will kindle a degree of interest in it. As well, it is meant to show to
Z(;me EXtent just how Sommers’s logical ideas are actually the latest stagef

maililvery long historical development that did not, contrary to tlz‘e view 0
* Fonteiporey logicians, end with Frege or retreat to a few Colleges
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of Unreason.” My aim in the present chapter is to give a simple,
consolidated picture of the logical algorithm for term logic (the plus/minuys
system envisaged by Hobbes, Leibniz, and De Morgan and built by
Sommers). Along the way I will offer a few modest amendments and
additions.

According to the Scholastic logicians, as we have seen, the proper concern
of logic is at once both speech and thought (scientia sermocinalis and
scientia rationalis). As a science of thought, it aims at an account of what
were commonly known as the three “acts of the intellect”: (1) under-
standing/comprehension, (2) composition and division, (3) reasoning/
syllogistic. The first deals with the meaning of terms; the second with the
formation of sentences from terms; the third with the formation of arguments
(syllogisms) from sentences. The nature and order of the three parts was
claimed to have been inspired by Aristotle’s Categories, De Interpretatione,
and Prior Analytics. In modern terms, it would be fair to describe the
content of the three studies as (1) semantics, (2) syntax, (3) deduction.
Serious debates have erupted from time to time among post-Fregean
logicians, but traditional logicians were in general agreement about this
ordering. One cannot understand syllogisms without first accounting for the
sentences that constitute their matter. And these, in turn, require a prior
account of the terms that constitute sentential matter. Post-Fregeans have
been particularly worried about the relative order of semantics and syntax.
Some give priority to the former; others to the latter; and still others take
semantics and syntax to be interdependent. As we saw in chapter two above,
whatever view is taken, there is a sense in which the standard system of
mathematical logic now must give pride of place to at least a certain
measure of semantics. In particular, the syntactic theory of the standard
lqgl_c rests on the prior division of the elements of the lexicon into absolutely
distinct categories: general terms (predicates) and singular terms (names,
pronouns, individual variables). For all the talk of those who would give
priority to syntax, the fact remains that such lexical classification must rest
on s§mantic distinctions. Ironically perhaps, in spite of the traditional
pr 191'“}' of semantics, pre-Fregean logicians avoided the temptation to allow
logical syntax to be determined by semantics. The first act of the intellect
was directed toward understanding the meanings of terms. In studying this
act, the logician is concerned with accounting for the various semantic roles
that any ter:m can play in a sentence. The theory of supposition and
comprehension (in all of its many guises) was meant to provide a complete
account of t?le extensional and intensional meanings of any (used) term.
tT;here was little interest at this stage in classifying kinds of terms. All
Tms—singular, general, relational, sentential, compound, and so on—Wwere
given t_he Same semantic treatment and were passed on to the secor}d,
:’1“::(3;:31 ;;Zglz :ir::c(i)ivided. This traditional way, approaching syntax w1tﬁ

n, was followed by Sommers. I shall follow it as well
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ﬁhere is a systematic ambiguity of plus and minus expressions in
mathematical language. This ambiguity is not only benign, it is a source of
great expressive power for the mathematician. Leibniz, De Morgan, and
Sommers have suggested that natural language has a logic that, like
arithmetic and algebra, makes use of two kinds of basic formal expressions,
the signs of opposition. In fact, their common position seems to be that all
the expressions of natural language that carry the responsibility for
determining logical form are either positive signs or negative signs or signs
definable in terms of these. If this is so, it means, among other things, that
one could build an artificial formal language that would model natural
language by using the mathematicians’ opposition signs for all formatives.
The result would be an algorithm for natural-language reckoning that would
model natural statements as arithmetical, indeed algebraic, formulae and
inference as algebraic calculation. | There is little doubt that this was
Leibniz’s goal throughout his logicaTstudies. and Sommers has effectively
reached that goal in his own logical work.

It would seem, therefore, that the idea of using signs of opposition
to model natural-language formatives is a good one, leading, as it seems to
have done, to rich programmes of logical investigation and to viable systems
for logical reckoning. One of the consequences of this idea has been, as we
saw, great optimism among those who have shared it thatla clear and precise
account of the nature of logical formatives, and their distinction from
nonlogical expressions, can be provided. In a sense, their account is quite
simple: logical formatives, unlike other expressions, are oppositional in just
the way that plus and minus are oppositional in mathematics.; But to
appreciate fully this kind of account, we need to look more closely at the
oppositional character of formatives, their roles in inferences, and the kind
of algorithm that could model those inferences. For if natural language has
alogic (something assumed by all traditional logicians but denied by many
modem logicians), then it ought to be possible to devise a formal language
that models all kinds of statement-making sentences, as well as infer‘er?ce
Patterns among them. In other words, it ought to be possible for the !oglClan
T° construct a formal system that closely matches the expressive and
inferential powers of a language such as English.

The Simple System

We begin with a simple, abstract formal system consisting of the following:
Upper-case letters, 2 plus sign, and a minus sign (as well as any parenthese,S 2
bra_ckets, etc., that we need for punctuation). The letters are the system s
variables, its lexicon or vocabulary; the plus and minus signs are its
Ommatives. The plus is a binary formative; the minus is a unary formative.
The formation rules are:

() Every letter is a term.
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(i) IfXisaterm,sois -X.
(iif) IfXandY are terms, so is X+Y (called a phrase).

Our binary connective, +, is symmetric; thus the terms of a phrase like A+B
can be commuted to give us B+A (for convenience, we will usually allow
formulae to be their own quotations). As well, + is associative. Thus a term
like A+(B+C) is equivalent to (A+B)+C.

So far the system is extremely simple—and weak. We can apply
commutative and associative rules to phrases to yield new (and equivalent)
terms. But we could not, for example,ﬁerive a new phrase from a pair of
phrases, neither of which is equivalent to the new phrase. What is needed,
of course, is a binary connective that is transitive. | Suppose we had such a
connective, perhaps *. Then we could formulate a deduction rule such that,
for instance, A*C followed from A*B and B*C. As yet, we have no
transitive binary connective, but e can define one in terms of our unary
minus and binary plus.\ Notice that if X+Y is a term, so is = (X+Y):sA
system consisting of just a unary minus and a binary plus is already familiar
tous. We can all do arithmetic using just negative and nonnegative numbers
and addition. Subtraction is a binary operation defined in terms of
negativity and addition. Thus: 3-2 = 3+(-2), where the minus sign in 3-2
is a binary operator defined by the binary plus (addition) and the unary
minus (negativity) of 3+(-2). In like manner, we will define a binary minus
in terms of our unary minus and binary plus as follows:

Delis Vi e (oX 4Y)

(Compoare: =510 Fl'his new binary connective is reflexive and
transitive, and, unlike our binary plus, is nonsymmetric.

We now have a binary plus, a binary minus, and a unary minus. As
well, we have implicitly defined a unary plus. \Thus:

D2 +X =df _.(_X)

And then, as in arithmetic and algebra, we suppress unary plus signs when
convenient, taking all unmarked terms as implicitly positive. The addition
of these defined formatives simply amounts to a conservative extension of
the original system.

_ The system of four formatives (two binary, two unary) is still
I e!at"’ely simple, but it has far greater expressive powers than does our
original system of a binary plus and a unary minus. And the introduction of
our transitive binary connective yields increased inference power. Letus
say that the expressive power of any formal logic is a function of the extent
to which it can formulate natural-language expressions. The greater the
number of kinds of natural-language expressions that can be formulated, the

greater the expressive power of the system. \ The inference power of a logic

—_—
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is a function of the extent to which it can model inferences made in the mode
of a natural language. Ideally, the logician wants not only a system ex-
hibiting power (expressive and inferential), but, as well, a system F}?at is
simple (relative to alternative logics of comparable power). An additional
criterion of adequacy might be naturalness. One logic is more natural than
another in the sense that the first formulates natural-language expressions in
ways that are closer (syntactically) to the original than does the second. The
criterion of naturalness has not been accepted by all logicians (recall Frege’s
views about this), and even among those who do accept it, naturalness has
often been honoured more in word than in deed. We will apply the criterion.

Formulating English

The simple system we have in hand thus far can be used to formulate many
natural-language (e.g., English) expressions. Let our variables stand for
natural-language terms. In natural languages such as English, terms come
in charged (positive/negative) pairs (e.g., ‘massive’/‘massless’, ‘wed’/
‘unwed’, ‘confidence’/‘nonconfidence’, ‘painful’/‘painless’). These cha.rges
are clearly reflected by our unary formatives. And, just as a sign of positive
charge on terms is rarely explicit in English, our positive unary sign is
generally left tacit. b

Our binary plus has the formal features of nonreﬂexnvn.ty,
symmetry, and nontransitivity. In English there are several formatxv;
expressions with just these formal features. The most obvious of these is
‘and"_,jas in ‘wealthy and happy’, where ‘and’ connects a pair of terms tc,)
form a compound term, and in ‘It is raining and it is cold’, where ‘and
connects a pair of sentences to form a compound sentence.' Let us p]ace'a
phrase in angular brackets when it formulates a conjunctive term, anq in
Square brackets when it formulates a conjunctive sentence. We mlght
formulate our two samples here as (W+H) and [r+c], respectively (adqptmg
in the latter case the additional convention of symbolizing logically
Unanalysed sentences by lower-case versions of our variables);( .

In the Analytics, Aristotle tended to paraphrase. categorical
sentences by using a single formative expression between pairs of terms.
For example, he would write (the Greek version of) ‘A belongs to some B
and ‘A belongs to every B’, rather than ‘Some B is A’ and ‘Every Bis A’
The first of these, ‘belongs to some’, is a binary connective that forms a
Sentence from a pair of terms. It is'the Scholastics’ I-connective—as yvhgn
they formulateq the conclusion of Darii as ‘SiP’. Such a conpectlve 1S
ronreflexive, symmetric, and nontransitive. So, like ‘and’, it can be
fOl’rylulated using our binary plus (for we can think of our binary plus as
having been createq with just those formal features and no others—recall De

Organ’s notion of the purely formal copula, =). We could then formulate
anl Categorical, paraphrased first as ‘P belongs to some S’, as P+§-j_

All of the other three categorical forms can be expressed in our

————
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formal language. 'Xn O categorical makes use of our binary plus and unary

minus. ‘NonP belongs to some S’ would be formulated as -P+S. A and E
{ categoricals are the contradictory negations of O and I, respectively. Thus
: we could formulate ‘P belongs to no S’ as -(P+S). And, given D.1, this can
be expressed in terms of our defined binary minus as ~P-S, where the
second minus is now our defined binary connective and can be read as
! ‘belongs to every’. Similarly, we could formulate ‘P belongs to every S’ as
f -(-P+S), which, by D.1 and D.2, is equivalent to P-S. The new connective,

[The English connective ‘if” has the formal features of reflexivity,
nonsymmetry, and transitivity. This suggests that we can formulate it using
our defined binary minus, and a bit of calculation shows that we can indeed
doso. A sentence of the form ‘p if q’ is the contradictory of ‘(both) not p
and q’, which is symbolized as [-p+q]; its negation would be - [-p+q]. By
applying D.1 and D.2, we get [p-q] for ‘p if q’. In effect, we have defined
‘if’ in terms of ‘not’ and ‘and’.

It might be objected at this stage that we are treating ‘and’ and
‘belongs to some’ as equivalent expressions (likewise for ‘if” and ‘belongs
to every’). But from a purely formal point of view they are equivalent; both
‘and’ and ‘belongs to some’ are nonreflexive, symmetric, and nontransitive
(and both ‘if” and ‘belongs to every’ are reflexive, nonsymmetric, and
transitive). They share the same formal features. (This fact is the one De
Morgan sought to express when he tried to reduce, for example, ‘only if* to

is’.) Moreover, the following kinds of equivalences ought to convince one
of the formal parallels we have drawn.

Some AisBandC = Band C belongs to some A = B belongs
tosome Cand A = B+(C+A) = (B+C)+A

Here the associativity of our binary connective reflects the formal
equivalence in English between ‘and’ and ‘belongs to some’. Similar
equivalences show that ‘if’ and ‘belongs to every’ are formally equal.

Every Ais Bif C = B if C belongs to every A = B belongs to
every Cand A = B-(C+A) = (B-C)-A

Relationals

Thus far, we have seen thatas

o ystem of two unary and two binary formatives
can

€ used to express a wide variety of kinds of natural-language
EXpressions: conjunctive and conditional terms, conjunctive and conditional
sentences, and categoricals. But it can be used to express still more.

: Consider a sentence like ‘Some boy loves every girl’. Its
Ar'lstotelian paraphrase is ‘Loves every girl belongs to some boy’, which we
might begin to formulate ag (L every G)+B. We are now tempted to
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symbolize ‘every’ by our binary r‘ninus Asince we have alre’ady used it for
‘belongs to every’. Yet, ‘every’ and bglongs to every’ appear to be
different expressions: are they formally equivalent—do they share the same
formal features of reflexivity, nonsymmetry, and transitivity? Thg answer
is yes. One way to see why this is so is found in L.eibn.lz’s idea that
relational terms are “Janus-faced,” facing in two directions at once.
Consider ‘Paris loves Helen’. Leibniz_would analyse this initially as ‘Paris
loves and, eo ipso, Helen is loved’. The relational term ‘loves’ applies to
‘Paris’ as subject and to ‘Helen’ as object.| In ‘Some boy loves every girl’,
the expression ‘loves every girl’ has ‘girl’ as the object of the relation—that
is, ‘loves’ (with its passive face, ‘is loved’) is said to belong to every girl (by
virtue, eo ipso, of ‘loves every girl’ being said to belong to some boy).
Leibniz was correct that relational terms are Janus-faced, but he was wrong
to conclude that relational sentences must therefore be conjunctions.

MRelative terms, such as ‘loves’, ‘killed’, and ‘gave . . . to’, can be
predicated of more than one term at a time. We will indicate this by
subscribing to each subject or object of a relation a unique numeral, which,
in turn, will be subscribed to the relational term, along with other such
numerals, in the appropriate order, to indicate how the relational is to be
read. Thus, in formulating ‘Some boy loves every girl’ we symbolize ‘boy’
as ‘By’, ‘girl’ as ‘G,’, and ‘loves’ as ‘L,,": (L,,~-G,)+B,.

Our letter variables can be used to symbolize any kind of simple
(noncompound, nonsentential. nonrelational) term. So far, we have used
them to formulate general count nouns (e.g., ‘logician’) and adjectives (e.g.,
‘happy’). But they can be used as well to symbolize general mass nouns
(eg., ‘wine’, as in ‘Some wine is sour'—i.e., ‘Sour belongs to some wine’,
or, $+W). And, most importantly, they can be used to symbolize singular.
terms, especially proper names. Thus, to assert ‘Socrates is wise’ is to say
of Socrates that wise (=wisdom) belongs to him, in other words, ‘Wise
belongs to Socrates’: W+S. Notice that we have used our binary plus here.
This is justified if a sentence like ‘Socrates is wise’ can be commuted (since
S _binary Plus is symmetric). And, indeed, ‘Socrates is wise is logically
*quivalent to ‘Some (one who is) wise is Socrates’—that is, ‘Socrates
belongs to some (one who is) wise’, or S+W. But suppose [ add ‘Some
Greek is Socrates’—that is, S+G. Now, from ‘Socrates is wise’ and ‘Some
Greek.is Socrates’ one can intuitively derive ‘Some Greek is wise’, W+G.
Yet this is contrary to our observation that the binary plus is nontransitive.
g:,llz nsosl‘t“iOn here is to see that a sentence like ‘Sc:cra}es is wise’ (‘Wise
Socrafes’o iome Socrates’) is loglcglly. equivalent to ‘Wise beloig\svt? SeveTrg
et t.h' n other words. when S is singular we can say W+S = )

S 15 50, we will make an important change to our formal system.

Splitting Connectives

W : 3 .
ebegan with 5 formal system consisting of just a unary minus and a binary

155




CHAPTER 4

plus. Recognition of the formal features of these operators revealed a
surprising expressive power, which was then greatly increased by adding to
the system defined unary plus and binary minus operators. However, in
spite of this greatly increased power of expression, we have et to achieve
very much naturalness. For example, Aristotelian paraphrases of categorical
sentences are less than perfectly natural. TIn English, for example, the
expressions formulated so far as binary formatives in fact often (indeed, in
some cases, usually) come not as single expressions (e.g., ‘belongs to some’)
but as a pair of expressions—split (e.g., ‘some . . . is...’). What is clearly
wanted, then, is a way to split our binary connectives, so that they more
closely match their natural-language counterparts, while simultaneously
keeping their formal features (symmetry, transitivity, etc.).

Let us begin by looking at some formatives in English for
combining pairs of sentences to form compound sentences. For example,
we say ‘Sue will go to the party only if Ed is not there’, or ‘Ed will not be
there if Sue goes to the party’, where the binary connective, or formative, is
asingle expression occurring between the two constituent subsentences. But
we just as readily express the same proposition by splitting the connective:
‘If Sue goes to the party then Ed will not be there’, with the single
connective, ‘.. .if.. .’ (or ‘... only if . . .”), now split into “if . . . then .. ..
So, in English, at least. we form conditionals with split as well as unsplit
binary formatives. The same is true for compounds such as conjunctions
and disjunctions. Thus, ‘. ..and .. can be split into ‘both . ..and.. .,
and ‘... or..." can be split into ‘either . .. or .. .’. ]

When it comes to compound sentences and phrases, both split and
unsplit formatives are common. What now of formatives used to bind terms
into categoricals? We have seen that the Aristotelian formatives ‘belongs
to some’ and ‘belongs to every’ are not always natural. What is natural is
split versions of these. We do not ordinarily say ‘Happy belongs to some
bachelor’, but rather ‘Some bachelors are happy’, where the single binary
formative is now splitinto ‘some .. .are...’. In the same way, we normally
split ©. . . belongs to every ...’ into ‘every .. .is...’. When it comes to
relational expressions, however, we have seen that the unsplit version is the
norm. Thus we say ‘Some boy is kissing every girl’, with ‘every’ as an
unsplit binary formative connecting the terms ‘kissing’ and ‘girl’ to form the
relational expression ‘kissing every girl’, but the split binary connective
‘some . . . is’ connecting the terms ‘boy’ and the relational phrase to form
the categorical sentence.|
; Traditional logicians were of two minds (perhaps appropriately)
when it came to the categorical formatives. On the one hand, they
developed an algorithm that took such connectives as unsplit. Thus they
v‘.lsed the a, e, I, and o signs as symbols for the unsplit term connectives
belongs to every’, “belongs to no’, *belongs to some’, and ‘does not belong
to Somg’—that is; ‘PaS’, ‘PeS’, ‘PiS’, and ‘PoS’, for the four standarfi
categorical forms. On the other hand, they recognized the natural split
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versions of such formatives, and, indeed, elaborated various semantic
theories based on the analyses of categoricals formed with split connectives.
TEach half of a split Aristotelian formative can be treated as if it
were an independent logical expression. Yet it must always be kept in mind
(though this has not always been so in the tradition) that the two parts of any
split connective are just that—parts of a whole. They are not two
formatives; they are two parts of a single formative. arts of these
formatives are called, respectively, the quantifier and the qualifier. In what
Méll' restrict the use of the term logical copula (or simply, copula)
@“@E\spﬁt Aristotelian formative, The part of a sentence consisting of
aquantifier and a term is the subject; the part consisting of a qualifier and
the other term is the predicate. A subject, then, is a quantified term. Thus,
from a formal point of view, object expressions in relationals are logical
subjects, since they are quantified terms. Predicates are qualified terms.
The fact that traditionally qualifiers were often called copulae indicates the
longstanding ambivalence over split and unsplit formatives for categoricals.\

Quantifiers are of two kinds: particular (expressed in English
usually by expressions such as ‘some’, ‘one’, ‘a(n)’, ‘at least one’) and
universal (e.g., ‘all’, ‘every’, ‘each’). It should be kept in mind that in
ordinary uses of English particular quantifiers can often play the logical role
of universal quantifiers, though this can be determined by context.
Moreover, in the ordinary use of a natural language, contextual clues often
allow the explicit use of any quantifier to be suppressed. _

Qualifiers are of two kinds as well: affirmative and negative.
English examples of affirmative qualifiers are such words as ‘is’, ‘are’,
‘was’, ‘were’; negative qualifiers include ‘is not’, ‘isn’t’, ‘ain’t’, ‘was not’,
‘wasn’t’.

[Given any pair of terms, it is easy to see that using pairs of a
quantifier and a qualifier one could form four possible kinds of senFences
(viz., the four classical categorical forms): universal affirmations, umv.ersal
negations, particular affirmations, and particular negations. | Each form is Fhe

’ result, we recall, of splitting the single formative, the copula, whzc.h

| connected the terms to form a categorical. Thus ‘P belongs to every S =

| now formed as ‘Every S is P’; ‘P belongs to some S’ is now ‘Some S ISP
"Pbelongs to no S* is now ‘No S is P’: “NonP belongs to some S’ is now

| ‘Some S is nonP’. We have symbolized our unsplit formatives (copulae) by
*and - signs. How shall we symbolize our formatives now that we have
plit them into quantifiers and qualifiers?

We are going to continue to use plus and minus signs as our only
formative symbols. This means that our original unsplit copulae signs must
Now be rendered as pairs of signs (quantifiers and qualifiers). In the case of
qualifiers, the chojce of signs is natural. Affirmative quality can b‘;
$Ymbolized by +; negative quality can be symbolized by - _O“IIChglceﬂ?e
:;gn§ for the two quantifiers is now determined algebrm? Y iy i

quirement to preserve commutativity for I categoricals and reflexivity
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transitivity for A categoricals. Consider ‘Some logicians are fools’, which
had been symbolized (with an unsplit formative) as F+L. Splitting the
connective, and using + for the affirmative qualifier, we have the following
first approximation: some L + F. Now, given that such a sentence can be
commuted (i.e., its two terms can exchange places to yield a formally
equivalent sentence), we have F+L = L+F. So, our particular quantifier must
be symbolized in a way that will guarantee some L + F =some F+ L. And
clearly, only a + will do here: +L+F = +F+L (‘Some logicians are fools’ =
‘Some fools are logicians’).

Symbolizing the particular quantifier by + suggests that the
universal quantifier be symbolized by -. And, indeed, the proper algebraic
equivalence is preserved for transitivity by doing so. Consider ‘Every
logician is a philosopher, and every philosopher is wise, so every logician
is wise’. The transitivity that ‘every . . . is’ inherits from ‘belongs to every’,
and that guarantees this logical truth, can be preserved only by symbolizing
the universal quantifier as a minus. Thus, ‘Every logician is wise’ is
formulated as ~-L+W. It is easy to see that ‘every . .. is’ is nonsymmetric.

There is a second way to show the proper symbolism for universal
quantifiers. Recall that our original system consisted of a binary plus and
a unary minus. We then defined binary minus in terms of our binary plus
and unary minus, and we defined a unary plus in terms of our unary minus.
Our binary plus and unary minus were elementary formatives. Let us take
the split version of our binary plus, along with our unary minus, as
elementary as well, defining other split formatives in terms of them. Thus
an | categorical and an O categorical can be formulated using only
elementary formatives: Some S is P (+S+P), Some S is nonP (+S+(-P)). A
and E forms are the contradictory negations of O and I forms, respectively.
They can be formed by applying the unary minus to the entire sentence. So
We can negate our I sentence, ‘Some S is P’ to give us ‘Not: some S is P’
(=[+S+P]), an E form. Likewise, we can negate our O sentence, ‘Some S is
nonP’, to give us ‘Not: some S is nonp’ (=[+S+(-P)]), an A form. These
defined forms are not natural, however.] What is required is a method that
will allow us to distribute these external minus signs into parenthetical
expressions. And this is Jjust what we have in arithmetic and algebra (e.g,
~(2+3)=-2-3). Consequently, we will adopt

—

D3 e X=X, = df. =(+X+Y)

Our E form can now be simplified, using D.3, to give us -S-P. Applying
Q.3 to our A form yields, first, -S-(~P), which, after then applying D.2,
glves us ~S+P. In effect, then, we have symbolized the universal quantifier
by a minus, defined in terms of our elementary formatives. i

Our new formulations for the categoricals closely match their
natural-lz'mguage Counterparts. Each consists of a sign for quantity, a subject
term, a sign for quality, and a predicate term.
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A E [ 0
Every SisP NoSisP Some S is P Some S is nonP
j =5 +£F -S-P +S+P +S+-P

It is important to keep in mind that a pair consisting of a quantifier and a
qualifier is simply a split version of a logical copula, an unsplit formative.

Just as the formatives connecting pairs of terms for forming
sentences have been split, we can split those formatives when they are used
to form compound terms and sentences. Thus, just as we split ‘belongs to
some’ to give us ‘some . . . is’, we can split ‘and’ to give us ‘both . . . and’.
And just as we defined ‘every . .. is’ in terms of ‘some . . . is’ and our unary
minus, we can define ‘if . . . then’ in terms of ‘both . . . and’ and minus. So,
in summary, we have the following formulations (with which we will take
the liberty of using the traditional labels for forms having the same formal
features).

A E I 0
Every Sis P NoSisP Some S is P Some S is nonP
=S+P -S-P +S+P o+ Stop
Ifpthenq If p then not q Bothpand q Both p and not q
i 2l “P-q +ptq Lot

The parallelism between the categorical and compound forms herg is
striking, and hints at the possibility of a single algorithm for analysing
inferences involving either kind of statement. For convenience, I shall
continue to refer to the first part of any split connective as a quantifier and
the second part as a qualifier. Thus, for example, we will talk of ‘if’ as a
Quantifier and ‘then’ as a qualifier.

So far, we have seen that our formatives can be used to express not
only statements formed from simple terms (e.g., the categoricals), but also
conjunctive and conditional compound terms and conjunctive and con-
fiitional compound statements. But if we are to build a system of logic ?hat

| ISas natural as possible, we cannot ignore disjunctive compounds. (;01}51der
@ simple disjunctive statement of the form ‘Either pob e I e
| Negation of ‘Both not p and not q’. So we could initially formulate it as
~[H-pI+[~q)). This formula, after we have algebraically distributed the
| °Xternal minus sign, yields -[-p]-[-q], or, more briefly, --p--q. (I‘(eep .
 Mind that the first and third minuses here constitute a split connective; the,
+ | S¢cond and fourth are unary.) We will use the defined ‘-~ ... v
| Mtation as a formulation of “either . . . or’. For example, ‘Some senator is
‘aliberal or a democrat’ could be formulated as +S+(--L--D).

Itis important to note that in introducing our splitting p'm,edufe wlel
et reducing ‘every . . is to “if . . . then’ (nor ‘some .. . are’ to “bot
*+-and’) or vice versa. We are simply symbolizing each of these i
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expression, - ...+ (and +. . . +), that has just those formal features shared
by each formative. Compare this to the practice of others who tried to
reduce compounds to categoricals. For example, De Morgan wrote, “In the
forms of propositions, the copula is made as abstract as the terms: or is
considered as obeying only those conditions which are necessary to
inference” (1926: ix). Logicians such as Leibniz and De Morgan tried to
place all of the burden of form on the “copula” (seen as equality, =) rather
than on the logical copulae (e.g., Aristotle’s or my split formatives).

Wild Quantity

I am now in a position to explain my earlier claim that ‘Wise belongs to
some Socrates’ and ‘Wise belongs to every Socrates’ are equivalent. These
sentences are in their unsplit, Aristotelian formats. 'Let us split the
connectives here to give us ‘Some Socrates is wise’ and ‘Every Socrates is
wise’. My claim, then, is that these are, in effect, logically equivalent (the
Leibniz-Sommers wild quantity thesis). When the subject-term of a
sentence is singular, there is no logical difference between taking the
quantifier to be particular and taking it to be universal. (Singular statements
are simply particulars that semantically, nonformally, entail their
corresponding universals. One might say that their “default” quantity is
particular.) In natural language, this logical indifference to quantity for
singulars is reflected in the fact that no quantifier at all is attached to
singular subjects.| Nonetheless, sentences with singular subjects enter into
all kinds of logical relations with other sentences, and, as we will see, from
alogical point of view they can be thought of as having whichever quantifier
we want them to have.

Singular sentences are indifferent to quantity because they happen
to share the formal features of both particulars and universals. For example,
‘Socrates is wise’ is like ‘Some philosopher is wise’ in that it is commutable.
Just as ‘Some philosopher is wise’ is logically equivalent to ‘Some wise
(person) is (a) philosopher’, ‘Socrates is wise’ is logically equivalent to
fSome wise (person) is Socrates’. This suggests that singular sentences are
implicitly particular in quantity; thus ‘(Some) Socrates is wise’ is, formally,
+S+W. But, unlike particulars, singulars are both reflexive and transitive
(like universals). Thus, Just as ‘Every human is human’ is tautologous, s
1s.‘Socrates is Socrates’ tautologous. Moreover, just as ‘Every logician is
wise’ follows from ‘Every logician is a philosopher’ and ‘Every philosopher
Is Wise’, 50 does ‘Socrates is wise’ follow from *Socrates is a philosopher’
and ‘Every philosopher is wise’. This suggest that singular sentences are
lrré;j_l{;itly universal in quantity. Thus: ‘(Every) Socrates is wise’, formally:

. We have seen that singular terms can be subject-terms, which
requires that they be logically quantified. We have seen as well that such
quantity is not overt in natural language, but that logic requires that such
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subjects have (as any logical subject must) some (at least tacit) quantity.
And we have seen that there are reasons for taking the quantity of singular
subjects to be indifferently either particular or universal. There is one
further consideration that should strengthen our resolve to so treat singulars
(and that will, in the long run, actually contribute to the simplicity of our
system).

We have, so far, made no semantic distinctions among the terms fit
for formulation by our symbolic algorithm. Any term, singular or general,
mass or count, abstract or concrete, or whatever, can be symbolized by one
of our letter variables for terms. And any term can be either quantified or
qualified, so that any term can be a logical subject and can also be a logical
predicate. In other words, our variables are semantically opaque. One
might object at this stage that we have, after all, introduced the semantic
singular/general distinction into our discussion. Yet it should be noted that
we have recognized this distinction not by a distinction of variables but by
a formal distinction, for, while the singular/general distinction is indeed
semantic, its only effect on formal inference (i.e., its only logical effect) is
syntactic (i.e., due to the indifference to quantity of singular terms when in
subject positions). But this still leaves us with the fact that any kind of term
can also be qualified, and thus become a logical predicate.

When singular terms are in predicate positions, the subjects of
those sentences are usually singular as well. Sentences whose terms are both
singular are no different, formally, from other sentences. They consist of a
pair of terms connected by a formative. When the formative is split, one
part of it is the quantifier and the other is the qualifier. Now, modern
mathematical logicians have assumed what was not generally assumed
before the late nineteenth century: that all predicate terms must be general
(the other side of the Fregean Dogma). This assumption presents logicians
with a problem when it comes to accounting for sentences in a natural
language. Consider, for example, ‘Shakespeare is Bacon’. Ignoring for now
the problem of whether the subject is quantified, what is the logical form of
the predicate? If predicate terms cannot be singular, then ‘is Bacon’ cannot
be construed as a qualified term. Since ‘Bacon’ is undeniably a term (}’-‘,"’:ﬂ
though it is singular), the only option appears to be to deny that tl}e ‘is’ in
Sucha case is a qualifier. And this is exactly what the modern logician does.
He or she claims that i’ (and such words) is systematically ambiguous.
So{netimes it is a genuine qualifier and other times it is itself a general term.
It is a qualifier whenever it accompanies a general term, but when it
accompanies a singular term, since that term cannot be the predicate term
(and there must be 5 predicate term), ‘is’ itself must do duty as the predicate
:enn_ Thus ‘is’ in such cases must, contrary to all apE)ce‘ql“?nCCS_, be a.ginera;

°M. In these cases, the ‘s’ is taken to be the “ ‘is’ of 1d(:.ntlty, i

Senerally read as a contraction of the expression ‘is identical t’, which is,

In “fm, Wwithout question a general term. ‘Shakespeare is Bacon' IS taken to
© “Shakespeare is identical to Bacon’, and the general term here is
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appropriately symbolized by ‘=", which, as in mathematics, indicates the
equivalence relation par excellence.

Needless to say, this logic, like traditional logics, makes no
assumption about the semantics of predicate terms.” Singular terms, like
general terms, can be qualified and thus predicated. ‘Shakespeare is Bacon’
is construed, then, as a pair of terms connected by a formative. The
formative in such a case has been split and the quantifier part suppressed.
But such an analysis now presents a problem for us. So-called identity
i sentences are transitive, reflexive, and symmetric, all of which are
guaranteed in a formal system that analyses them as pairs of singular terms
connected by a general term that is itself an identity (equivalence) relation.
How can our system preserve these features for such sentences? Since they
have singular subjects, we are free to assign to them whichever quantifier we
choose in any given context. By taking our tacit quantity to be particular,
we guarantee that sentences like this are commutable (for all I categoricals
are commutable—‘belongs to some’., ‘some . . . is’ are symmetric). By
taking our tacit quantity to be universal, we guarantee (by the reflexivity and
transitivity of ‘belongs to every’, ‘every...is’) the reflexivity and transitivity
of sentences whose terms are both singular. In summary:

Symmetry: (Some) Shakespeare is Bacon.
So (some) Bacon is Shakespeare.
Reflexivity: (Every) Bacon is Bacon.

Transitivity: (Every) Shakespeare is Bacon.
(Every) Bacon is Johnson.
So (every) Shakespeare is Johnson.

We have symbolized the particular quantity by a plus and the

universal quantity by a minus. Whenever the logical quantity of a formula

/ ] is indifferently either particular or universal we will follow Sommers and
.| indicate its quantity by * (e.g., ‘Shakespeare is Bacon’ becomes *S+B).

Before leaving the topic of symbolization, we can take an

additional step toward the naturalization of our symbolic language.
| Sentences like

|
¢
)

] (“{ith split connectives) can be read as having the predicate ‘isn’t P’. But
‘ thl.S is a contraction of ‘is not P’. [s this ‘not’ binary or unary? Were we
using a language like Latin, our question would be: Is the predicate to be
read as ‘non est P’ or as ‘estnon P’? In other words, is the predicate to be
'parsed as ~(+P) or as +(-P)? As it tumns out, the two are logically
equivalent. The rule of obversjon was the traditional logician’s recognition
of this equivalence. English, unlike Latin, allows us to suppress even the
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appearance of a difference by contracting the ‘is’ and the ‘not’ to give
‘isn’t’. Consider: ‘No human is immortal’ is equivalent to ‘Not a human is
immortal’, which equals ‘Every human isn’t (fails to be) immortal’, which,
in turn, is equivalent to ‘Every human is mortal’. Symbolically:

~H-(-M) = -[+H+(-M)] = ~-H-(-M) = -H+M

Our system is further simplified and naturalized by two additional
notational conventions. Consider the relational sentence ‘A man gave a rose
to a woman’. Here, the subject is ‘a man’ and the (complex) relational
predicate is ‘gave arose to a woman’. The phrase ‘gave a rose to a woman’
consists of a logical predicate, the (complex) relational term ‘gave a rose’,
and a subject-term, ‘woman’. These are connected by the unsplit binary
plus. This relational term is itself composed of a (simple) relational term,
‘gave’, and a subject-term, ‘rose’, and they are connected also by the unsplit
binary plus. Fully symbolized, the sentence is:

+M 1 +((+G 12+R2)13+W3)l

This formula is cluttered with several numerical subscripts. It can be
simplified by adopting a pair of conventions. First, the final 1 is unnecessary
(just as both subscripts are in +F,+B, [= ‘Some flowers are blue’] to yield
*+F+B). Such subscripts merely indicate which pair of terms constitutes a
phrase. We will assume that for any well-formed phrase the two terms that
constitute it must share at least one numerical subscript, which may be
Suppressed if unnecessary (as when there are no other subscripts or when
one of the terms is relational). So our formula now becomes:

+M,+((+G;#Ry),;;tW;)

The subscribed 1 and 3 indicate that the complex relation of having given
arose holds between a man and a woman. Thus, in effect, we are takmg all
relations to be binary, two-place. However, we can adopt an adqunal
convention of amalgamating the subscripts of complex relations to }fle!d
relations of higher degrees. In other words, relational terms nested within
relational terms are amalgamated, fusing their subscribed numerals so as to

| Preserve order. Thus:

+M, +((+G ;3R )W)

Now we see ‘gave” as a three-place relation. The convention gives usanew
f°.”“ula that is simpler and more natural. One further note before lea\‘/mgf
this section: We assume that every well-formed phrase consi§ts of a pair 0
(possibly complex) terms sharing a common (but sometimes lmPhC“_z
Subscript.  We will soon specify a deduction rule that will permI
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simplification from complex formulae. For example, from our formula
above we can derive any of the following:

1. *M+(+G»*R;)
2. *MH(+G 5+ Ws)
3. +G»*R,
4 Gt W
5. tM+Gy

(where apparently extraneous subscripts, such as the 2 and 3 of the fifth
formula, are ignored). But we cannot derive:

6. +M+R,
7. +M+W,

The derivable formulae can be read as:

1.1 A man gave a rose.

2.1 A man gave to a woman.

3.1 Something given was a rose.

4.1 Someone given to was a woman.
5.1 A man gave.

DON and EQ

Our system of split connectives provides us with a formal logic that is
relatively natural, simple, and expressively powerful. Its ability to model in
aperspicuous manner a wide variety of kinds of inferences will be a measure
of its deductive power.

A natural deduction system consists primarily of a small set of rules
for deducing the conclusion from the premises of valid arguments. If the
arguments can be formulated in a single, abstract notational system, then the
deduction system amounts to an algorithm for manipulating the symbolic
representations of the premises in order to arrive at the symbolic
representation of the conclusion. The notational system of variable letters
and plus and minus signs was motivated by our desire to use an algebra-like
algorithm for deduction. Indeed. | have already made use of a part of such
an algorithm when, for example, | showed the equivalence of phrases with
symmetric formatives after commutation of their terms (+S+P = +P+S).

The fundamental principle of this algorithm recalls the ancient law
known as the dictum de ompi et nullo. As we have seen, this has often been
claimed (though not without challenge) as the underlying principle (.)f
traditional syllogistic reasoning. In effect, the law says that whatever is said
of all or none of something is likewise said of what that something is said of.
In other words, any term predicated (affirmed or denied) of a universal
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subject (quantified term) is predicated in the same manner (affirmatively or
negatively) of any subject of which the universally quantified term is
predicated (viz., affirmed). | Consider, for example, the inference

d\e_ e

Every A is B

Pe Every Bis C

Soevery A is C

This inference satisfies the law and is valid. The term C, affirmed of the
universally quantified term B (as in the second premise), is affirmed (in the
conclusion) of the subject, ‘Every A’, of which that term, B, was affirmed
of (in the first premise).

Consider next the inference

Some boy kissed a girl.
Every girl is a female.
So some boy kissed a female.

Here, what is affirmed of a universally quantified term (‘female’ in the
second premise) is affirmed in the conclusion of the subject of which that
quantified term (‘girl’) has been affirmed (‘some boy kissed’ in the first
premise).

The dictum de omni et nullo applies directly to classical valid
syllogisms and, as we saw, can be extended to apply to inferences involving
relationals. But, as stated., it is hard to see how it can be extended to apply
to all kinds of inferences. Nevertheless, a close inspection of the law and
my examples reveals what Sommers saw, that the law really amounts.to a
rule of substitution.! It says, in effect, and most generally now, that, given
asentence with a universally quantified term (subject or object) and another
sentence in which that term is positively qualified, we can deduge a third
sentence that is exactly like the second sentence except that the given term
has been replaced by the first sentence minus the given term In classx.cal
W&!@e given term is the middle term; the first sentence is the major
bremise; the second sentence is the minor premise; the second sentence
Inus the middle term is the minor term; and the first sentence minus the
’E}Q,d‘lg_t*e&rr_g» is the major term._In effect, we substjggte,@m@
middle term in the minor premise to get the conclusion. Thus we substituted

orBin ‘Every A is B’ to ge; the conclusion of our first example a.bOVC,
and ‘female’ for © girl’ in ‘Some boy kissed a girl’ to get the conclusion of
our second example. This rule. allowing the substitution of one term for
an.Other in certain circumstances, always results in the cancellation of a terr_n
(viz, the middle term). The cancellation of terms suggests alge'bralc
addition, a5 when we add ‘a+b’ and ‘c-a’ to get ‘b+c’, where pairs of
PPPOsitely charged terms of an addition are cancelled. This is exactly Wha(;

appens in thig logical algorithm. Middle-term pairs are oppositely charge

—
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. and, so, can be cancelled. We symbolize the two inferences above as
|

|

& -A+B
=B+E
=A+C

Notice here that the middle term, B, is positive in the minor and negative in
the major. We cancel these two, in effect, adding the premises to get the
sum—the conclusion. For a valid inference, it all adds up.

2. 4B (K +Gy)
-G+F
+B+(+K ,+F,)

In this case, as in 1, the application of the substitution law amounts to

adding the premises algebraically (i.e., cancelling middle terms) to get the
conclusion as sum.

Consider now a slightly more difficult inference.

NoAisB
Some B is C
So some C is not A

Before applying the dictum directly, we would have to commute both the
major apd minor premises. Once we recognize the law as merely a rule of
algebraic addition, however, we merely need to symbolize and add:

3: =A-B
+B+C
+C-A

But in carrying out this addition we see the need for a logical restriction.
Notice that we could have added our two premises to get -A+C (‘Every A
is C’), which does ot follow from our premises. +C-A and -A+C are
algepraically equal, but they are definitely not logically equal. What we
require is a further restriction on premise addition to guarantee validity. The-

equivalence of the conclusion with the algebraic sum of the premises,i._S_a/

necessary but not sufficient conditi idity. A second requirement,
which is also a necessary condition for validity, will, conjointly with the
other restriction, be a sufficient condition for validity.

: Keep in mind that our split binary connectives will be said to
consist of two parts: the quantifier and the qualifier, and we will continue to
use this terminology even for split binary connectives that combine with
phrases and sentences as well as with simple terms. We can now say that
our second necessary condition for the validity of any inference is this: the
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number of conclusions with particular quantity must be the same as the

number of premises with particular quantity. It follows that in the case of
"1627&1717 equivalence the two statements must not only be algebraically equal
but must have the same quantity as well. From now on, we will refer to the

necessary and sufficient conditions for validity as EQ. E reminds us of the
algebraic equivalence condition; Q reminds us of the quanti ition.

'} EQ: A conclusion follows validly from a set of premises if and

{ only if (1) the sum of the premises is algebraically equal to the
| conclusion and (2) the number of conclusions with particular
|| quantity (viz., zero or one) is the same as the number of
{ premises with particular quantity.

The principle EQ amounts to a definition of ‘validity’ and accounts
for classical conversion, obversion, contraposition, and all valid categorical _
‘and hypothetical syllogisms. We can use if, in effect, as a_decision
procedure for determining validity. Thus, with our example 3 inference
above we now know that +C- A, but not - A+C, follows from the premises.
Both formulae satisfy the equality condition, but only the former also
satisfies the quantity condition.

Rules of Inference

Once an inference has been determined to be valid, what is next required is
aproof of that validity. As we have said, the fundamental principle of our
algorithm for proving validity is the dictum de omni et nullo. We will see
what role it plays in proving validity shortly.

Let us say that a proof is a finite sequence of formulae such that
the first n (n20) formulae in the sequence are the premises, the last formula
is the conclusion, and every formula is justified by as least one rule of
inference. In the algorithm offered here, there are two kinds of infgrence
rules. Rules that permit the creation of a new formula on the basis of a
single previous formula are Rules of Immediate Inference; rules that permit
the creation of anew formula on the basis of a pair of previous formulae are
Rules of Mediate Inference. The main rule of mediate inference will be th'e
dictum de omnj et nullo, also often called the Rule of Syllogism' S
normally the case for systems of proof, each of these rules is nothing more
Fhan asimple and obvious pattern of valid inferences. And, as is usual, there
S 10 restriction on the number of rules in this system. But too many rules,
While making proofs short, will fail to model perspicuously the ways ¥e
Ordinarily deduce conclusions from premises; too few rules, while leakmg
each step in a proof perspicuous, render proofs too long to be practical.

ke others, seek an optimal number of rules; as we shall see, the nmber o
¢ kept relatively low because, unlike the standard algorithm now in genaril
US¢, this one recognizes the common formal features of statements
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composed of simple terms as well as those composed of subsentences. Any
subsentence is a sentence; any sentence is a phrase; any phrase is a
(complex) term. This is a term logic. A single set of rules will suffice for
reckoning inferences involving all kinds of statements. A further
consideration in choosing these rules is my intention to preserve as many of
the correct logical insights of traditional logic as possible.

Before presenting the rules of inference, I will define ‘tautology’
in my system and show how tautologies can occur in proofs. [ define a
tautology as follows: any universally quantified formula that is
algebraically equal to zero is a tautology. Note that we could think of a
tautology as the conclusion of a valid zero-premise argument. Such an
inference satisfies EQ; the algebraic sum of the premises is zero and so is
the conclusion, and the number of particular conclusions (0) is the same as
the number of particular premises (0). In general, statements of the.
universal affirmation form_-X+X will be tautologies. Obviously, the
negation of any tautology will be a contradiction. A contradiction is a
particularly quantified formula that is algebraically equal to zero.

[ begin with the Rules of Immediate Inference. Such rules allow

the creation of a new formula on the basis of a single previous formula in the
proof sequence.

Rules of Immediate Inference

Premise (P): Any premise or tautology can be entered as a line in proof.
(Tautologies that repeat the corresponding conditional of the
inference are excluded. The corresponding conditional of an
inference is simply a conditional sentence whose antecedent is the

conjunction of the premises and whose consequent is the
conclusion.)

Double Negation (DN): Pairs of unary minuses can be added or deleted
from a formula (i.e., recalling D.2, - -X=X).

External Negatiop (EN): An external unary minus can be distributed into or
out of any phrase (i.e., recalling D.3, -(zX£Y)=#X7Y).

Internal Negation (IN): A negative qualifier can be distributed into or out of
any predicate-term (i.e. X~ (2Y)=tX+(zY)).

Notice that we need different rules here, because external negation. is term-

negation while internal negation is actually negative quality. External
mrs’tﬁﬁfﬁf{ﬁ;ﬂ negation is part of a split binary formative. The

sﬁrSt minus of -[+S+P] is a (sentential-)term negation. So we have: -

[+S+P] = -S-P. But the minus of +S-P is a qualifier. Thus: .+S'P &
*S+(=P) = +8-(+P). Consequently, we have a rule for distributing term
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negation and a rule for “amalgamating” a qualifier and the unary formative

of the following term—namely:

(= )i
T e
(L) =
o () e

Commutation (Com): The binary plus (split: +...+) is symmetric
(ie., +X+Y=+Y+X).

Association (Assoc): The binary plus (split: +...+) is associative
(i.e., +X+(+Y+Z)=+(+X+Y)+2).

Contrapos_i_t_i_c_m (Contrap): The subject- and predicate-terms of a universal
affirmation can be negated and can exchange places
(i.e., -X+Y=-(-Y)+(-X)).

Predicate Distribution (PD): A universal subject can be distributed into or
out of a conjunctive predicate (i.e.. -X +(+Y + Z) = +[-X + Y] +
[-X + Z]) and a particular subject can be distributed into or out of
adisjunctive predicate (i.e., +X + (-(-Y) - (-2)) = --[+X + Y]-
-[+X + Z)).

Iteration (It): The conjunction of any term with itself is equivalent to that
term (i.e., +X+X=X).

Notice that the traditional rules of conversion are preserved in the rules
above. I turn now to the rules of mediate inference.

Rules of Mediate Inference

Qig{zgngg Omni et Nullo (DON): If a term, M, occurs universally quaﬂtiﬁf"d
in a formula and either M occurs not universally quantified or its
logical contrary occurs universally quantified in another formula,
deduce a new formula that is exactly like the second except. that M
has been replaced at least once by the first formula minus its
universally quantified M.

EWSE@B | (Simp): Either conjunct can be deduced from 2 comiunctgve
formula; from a particularly quantified formula with a co{ljuncnve
subject-term, deduce either the statement form of the subject-term
Or a new statement just like the original but without one of the
conjuncts of the subject-term (i.e., from ++X+Y)+Z deduce ar;y
of the following: +X+Y, +X2Z, or +YZ), and from a universally

—_—

169




CHAPTER 4

quantified formula with a conjunctive predicate-term deduce a new

statement just like the original but without one of the conjuncts of

the predicate-term (i.e., from -X+(+Y+Z) deduce either - X+Y or
-X+7).

Addition (Add): Any two previous formulae in a sequence can be conjoined
to yield a new formula, and from any pair of previous formulae that
are both universal affirmations and share a common subject-term
a new formula can be derived that is a universal affirmation, has
the subject-term of the previous formulae, and has the conjunction
of the predicate-terms of the previous formulae as its predicate-
term (i.e., from -X+Y and - X+Z deduce - X+{(+Y+Z)).

Note that Add incorporates, in part, It. For example, from - X+Y and - X+Z
one can deduce - X+(+Y+Z), which, by It, equals -(+X+X)+(+Y+Z).

It should be noted that DON accounts for all valid first-figure
syllogisms (and much more besides). As I said earlier, DON amounts to a
rule of substitution (the predicate-term of a universal statement can be
substituted for the subject-term of that statement in any other statement in
which that subject-term occurs positively). The subject-term just mentioned
is the middle term of traditional syllogistic. In effect, DON permits the
Ccancellation of middle terms.~ The same rule accounts not only for
syllogistic inference, but for such an inference as modus ponens and for
Instances of Leibniz’s Law as well. That modern logic must make use of
three different rules for these three kinds of inferences while this logic needs
only one is due to the fact that I, unlike most modern logicians, take
categoricals (including relationals and singulars), compound statements, and
“identity statements” as all sharing a common logical syntax—each is
viewed as a pair of (possibly complex) terms connected by a binary
connective/formative (split or unsplit).

[ will now show how DON operates in these three kinds of cases
and then give some sample proofs to illustrate all of the rules spelled out
above. First, consider Cesare. Its premises are symbolized as -M-P,
-S+M. The conclusion, -S-P, follows directly by DON since -P replaces
M in the minor premise (a statement in which M occurs positively, not
universally quantified).

Consider next a slightly more complex inference. ‘Every animal
runs from a bear. All bears are carnivores. Hence, every animal runs from
some carnivore.’” The premises are formulated as -A+(+R;+By), -B+C.
The middle term here is B, which occurs universally quantified in the second
premise and positively in the first. Thus, by DON, C can replace B in the
first premise to yield the conclusion -A+(+R,*+C,). Before going on, it
should be noted that the usual proof for this simple inference using the
standard predicate calculus requires twelve steps beyond the premises,
makes use of such rules as conditional proof, addition, simplification, modus
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ponens, universal instantiation, existential instantiation, universal
generalization, and existential generalization. Now, the original argument
is extremely simple, and virtually any rational person can draw the
appropriate conclusion from the given premises quickly and with very little
effort. A system of logic making use of a rule like DON can at least claim
some degree of psychological reality. The standard system now in place
cannot, does not, and would not.

A general modus ponens inference can be formulated as -p+q, +p,
therefore +q. Again, the conclusion can be seen to follow directly by DON.
Here, the middle term is p, which occurs quantified universally in the first
premise (recall that we have agreed to call the first part of any split binary
connective a quantifier) and positively in the second premise. DON simply
allows us in such cases to substitute the predicate of the first premise for p
in the second premise. An alternative account of modus ponens (following
Sommers’s method of incorporating statement logic into term logic) would
treat the second premise and conclusion as having as their subjects the
singular term ‘the (actual) world’, *W. Thus: -p+q, *W+p, therefore
*W+q, a Barbara or Darii syllogism. Recall that a formula like *W+p can
be read as ‘the (actual) world is a p-world’. Notice that not only modus
ponens but rules of the sentential calculus such as modus tollens and chain
argument are also merely instances of DON.

Finally, consider Leibniz’s Law. This rule is explicitly a rule of
substitution. It says that from premises of the general form ‘a is identical to
b’ and ‘b is so-and-so’ one can derive the conclusion ‘a is so-and-so’. The
rule embodies the notion that when two terms stand in an identity relatiqn
one can be substituted for the other in any (nonintensional) statement in
which the other is used. In other words, one can derive ‘Pa’ from ‘a=b’ and
‘Pb’. Nonetheless, this rule is merely another instance of DON. We
formulate the premises as *a+b, *b+P. The middle term here is b, which
(8iven that it is singular) is indifferent with respect to quantity in the second
Premise, and, so, allows us to regard it as universally quantified. It occurs
Positively in the first premise. So, by DON, the conclusion, *a+P, follows
directly, since we can simply substitute the term predicated of universal b
for b in the other premise. i

I offer now a few sample proofs using the system outlined above.

From ‘No P is M’ and ‘Every S is M’ derive ‘No S is P

l. -P-M B

2. -S+M P

3. -[+P+M] 1, EN

4. -[+M+P] 3, Com
5. -M-P 4,EN

6. -S-p 2,5, DON
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From ‘Every circle is a figure’ derive ‘Every drawer of a circle is a drawer

of a figure’:
b e P
2. ~(D+C)yH(D+C) P (tautologous assumption)
3. -(D+C)+(D+F) 1,2, DON

From ‘Every boy loves some girl’, ‘Every girl adores some cat’, ‘All cats are
mangy’, and ‘Whatever adores something mangy is a fool’ derive ‘Every
boy loves a fool’:

2 'Bl+(+L12+G2)
5 ‘Gz+(+A23+C3)
H=CEM

. ~(+Au+MHF
5 ‘Gz+(+A23+M3)
¢ =G+tE

2 'Bx+(+L12+Fz)

oy il - 8 = e |

-
AN W W
7 e Bl
Z2Z2Z

]

3

N OB W —

0]
0)
’ 2 O

The traditional term logic failed to hold the field against the new
logic introduced by Frege. For the most part, this was due to its inability to
offer adequate analyses for three kinds of inferences—those involving
singulars, relationals, and compound sentences. We have seen that this
disadvantage in inference power was not inherent in term logic. Sommers,
following suggestive hints from his pre-Fregean predecessors, has built 2
new version of the old logic of terms. As we have also seen, it enjoys the
same advantages of expressive and inference power as does the Fregean
logic. Indeed, its powers here actually exceed those of the Fregean system,
for just as the old logic was faced with three kinds of inferences beyond its
capacity, the new Fregean logic is faced with three kinds of inferences
beyond its scope.

Consider the simple inference *Plato taught Aristotle. So Aristotle
was taught by Plato’. The standard system formulates this inference as

Tpa / Tpa

Unschooled intuition, as well as grammar, sees the conclusion as
semantically equivalent but syntactically distinct from the premise. We
naturally take a sentence in the active voice and its “passive transform” to
be different sentences even though they share the same truth conditions.
Taking logical form as nothing but the revelation of truth conditions, Quine
!1as said, “The grammar that we logicians are tendentiously calling standard
IS @ grammar designed with no other thought than to facilitate the tracing of
truth conditions. And a very good thought this is” (Quine, 1970: 35-36)-
Frege had held the same view, and on the basis of it he dismissed the
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active/passive distinction. His claim was that since they “express the same
thought” the grammatical difference between them “is of no concern to
logic” (Frege, 1979: 141). The present system formulates the arguments as

*PH(FT*Ay) 1 *AFGET,*P)

It turns out that though the premise and the conclusion entail one another,
the two are formally distinct. The transformation from active to passive (or
vice versa) is accomplished in this case by an application of Com (twice)
and Assoc.

A second type of inference beyond the scope of standard predicate
calculus is represented by the argument ‘Socrates taught a teacher of
Aristotle. So one whom Socrates taught taught Aristotle’. The best that
mathematical logic can do in terms of formulation is

(3x)(Tsx & Txa) / (3x)(Tsx & Txa)

Again, the standard system is powerless to exhibit the formal difference
between the premise and the conclusion. In the present system, the
inference has the form

*SHETHETR*AY) [ +(*S+T ) HFTR*A)

Moder grammarians call this a case of “associative shift.” While modern
logicians see it as a trivial reiteration, this logic recognizes the formal
distinction between premise and conclusion. The conclusion is derived by
an application of Assoc. i
The third kind of inference that challenges the Fregean logician 1s
represented by the following example: ‘Plato taught Aristotle with a
dialogue. So Plato taught Aristotle.” The standard formulation is

(3x)(Dx & Tpax) / Tpa

The two relational predicates are distinct; one is a three-place function (‘,. :
-1aught . .. with . . ."); the other is a two-place function (‘. .. taught.... . ).
For the inference to be valid there must be a hidden assumption of an
analytic, semantic tie between these two predicates (like the one between,
52y, ‘bachelor’ and ‘unmarried’). The formalization below retains a more
Natural syntax and preserves the common-sense view that ‘taught’ 15
Univoca] throughout its two uses here.

*Py+H((+T,5*A)+D;) / *p|+(+les*Az)

(The subscribed numerals here are not to be confused with bound vafrial'l’:::
of the Predicate calculus. The latter simultaneously keep track of refere
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and the order of subjects and objects with respect to interpretations of
relational predicates. The subscribed numerals perform only the second of
these tasks.) The inference proceeds by the application of Assoc and Simp.

The standard logic is essentially mute in the face of inferences
involving passive transformations, associative shifts, or simplifications with

polyadic predicates (relationals). I conclude this section with an example

of a simple inference that is beyond the scope of the standard system in all
three ways: ‘A man loves a woman. So some lover is aman.” My proof is

L +M,+(+L ), +W,) P

2. +H(+M,+L,))+W, 1, Assoc
3. +W,H(+M,+L,,) 2, Com
4. +W,+(+L,,+M)) 3, Com
S LM 4, Simp

Notice that each of the intermediate lines in the proof “makes sense” in
natural language. Thus:

2. What some man loves is a woman.
3. A woman is what some man loves.
4. A woman is loved by some man.

Names and Other Pronouns

First, it is of fundamental importance to grasp that the properness of
proper names is a feature—in Saussurean terms—of ‘parole’, not of
‘langue .

L.J. Cohen

Augustus, meeting an ass with a lucky name, foretold himself good
Jortune; I meet many asses but none of them have lucky names. ”
Swift

Singular terms, especially names and personal pronouns, are a prominent
feature of natural-language discourse. Pronouns, in the guise of individual
variables, play an important role in the formal language of the predicate
calculus. Even Quine’s Predicate Functor Algebra, which eliminates such
variables, is meant to reveal just what their roles are in the calculus. 1have
followed Leibniz and Sommers in giving them wild quantity when used as
subject-terms.  Whatever grounds exist for distinguishing names and
pronouns from general terms are semantic ones. Although my path has
been, in contrast to the Fregeans, to degrade this distinction in the buildlflg
of a formal language, the semantics of such terms demands our special
attention.

There is both a classical and a modern semantic theory for the
standard predicate logic. The former holds that all singular expressions
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refer, and that reference is determined by the sense of those expressions.
Since general terms are terms with sense, pronouns and names are
replaceable by appropriate definite descriptions, whose senses are
determined by the senses of the general terms that occur in them. The
classical semantics is most closely associated with Frege and Russell. The
more modern theory, associated particularly with Kripke and Putnam, holds
that a distinction must be made between singular expressions that are “rigid”
and those that are not. Pronouns and names are rigid; definite descriptions
are flaccid. The former, unlike the latter, do not have their references
determined by their senses. Rigid designators refer directly to their referents
without detour through senses or meanings. Thus a rigid designator refers
to or designates the same object in all of its referential uses (cf. Salmon,
1986). Since the new theory is usually part of a possible-worlds semantics,
it is said that a rigid designator refers to the same object in every possible
world in which that object exists. A logic of terms requires something like
the rigid/nonrigid distinction. But it need not accept the entire modern
theory of semantics. It especially eschews possible worlds.

My semantic theory recognizes at least two levels of reference for
terms: denotation and reference (proper). In the normal, nonvacuous case,
every term used in a statement, whether the term is charged positively or
negatively, has a denotation determined by its signification and the domain
(of discourse) relative to which the statement is made. What a term signiﬁes
is a property. For example, ‘red’ signifies the property redness, ‘wise’
signifies the property of wisdom, ‘pious’ signifies piety, ‘nonsquare’
signifies nonsquareness. Whatever is denoted by a term has the property
signified by that term. The converse need not hold. Every used term is used
?n aused (statement-making) sentence, or statement. Every such sentence
IS used relative to some specifiable domain of discourse. A domain is a
nonempty totality of compossible objects. Ordinarily our domain of
discourse is simply the actual world. But any world, any part of the actual
world, or any set of objects could serve as a domain. When we say ‘Some
man held a horse on his shoulders’ our domain is, ordinarily, the actual
world. When we say ‘Some man held the Earth on his shoulders’ our
domain is, presumably, the world of Greek mythology. A term used ina
Sentence denotes the objects that have the property signified by that term
and that are in the domain relative to which the sentence is used. We can
think of denotation, then, as the intersection of a domain and the set of
Objects having a given property. ~ We have seen that normally each term
uT%d in a sentence has a denotation. Now, each term used in a sentence 1s
e“he_r quantified (i.e., it is a logical subject) or qualified (a logical
Predicate). Subjects have a mode of “reference,” however, not shared by
Predicates. Every term used in a sentence, whether a subject-term Of 3
Predicate-term, has a denotation, but only a subject (quantified term) yelets

™ the proper sense). The referent of a subject is determined by its quanttlht}’
and the denotation of its term. A universally quantified subject refers to the
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entire denotation of its subject-term; a particularly quantified subject refers
to some (possibly specifiable) part (perhaps the whole) of the denotation of
its subject-term. So, while predicate-terms may denote, they do not refer.
Thus far, no distinction has been made between singular and
general terms. In the standard predicate calculus the distinction is all-
, important. A general term used in a statement makes reference
'\ (denotatively) to one or more individuals. A term whose denotation is either
| unique or not unique to individuals is not a general term. A term whose
J denotation is not individual is a mass term (e.g., ‘wood’, ‘water’, ‘wool’,
\/; ‘wine’). Mass terms, those with nonindividual denotation, and singular
/ terms, those with unique individual denotation, contrast with general terms,
those with nonunique individual denotation, in having tacit quantity when
used as subjects. When a mass term is explicitly quantified it is because the
term is being used with an understood, thus implicit, phrase such as
‘sample(s) of’, ‘piece(s) of’, ‘drop(s) of", ‘chunk(s) of’, and so on. For
example, ‘Water is dripping in the sink’ is understood as ‘Some drops of
water are dripping in the sink’, and ‘Wood is combustible’ is understood as
‘All samples of wood are combustible’. Terms like ‘drops of water’ and
‘samples of wood” are not mass but general. Singular terms denote uniquely;
they denote just one individual object. A singular subject (a logical subject
whose term is singular) refers to the object denoted by its term. The implicit
logical quantity of a singular subject is always understood to be particular.
The canonical form of ‘Socrates is wise’ is ‘(Some) Socrates is wise’.
Particularly quantified subjects make undistributed reference to the
denotations of their terms. Universally quantified subjects refer distrib-
utively; they refer to the entire denotations of their terms. Since we know
the subject of a given sentence to be singular (with tacit particular quantity),
we can infer a corresponding universal sentence from it. This, again, is the
wild quantity thesis. Such inferences are informal, depending as they do on
our extra-logical knowledge of the denotations of the subject-terms.

We saw above that the denotation of a term is in part determined
by its signification. What a term signifies is a property. The term ‘red’
signifies the property of redness and ‘wise’ signifies wisdom. Let [T] be the
property signified by the term ‘T’. Thus. ‘red’ signifies [red] (= redness)
and ‘wise’ signifies [wise] (= wisdom). A singular term such as ‘Socrates’
signifies a property as well. The term ‘Socrates’ signifies [Socrates] (= the
property of being Socrates, Quine’s Socratizer). Indeed, [Socrates], [wise],
[Greek], [teacher of Plato], and [philosopher] are some of the properties that
Socrates has. Many things have the property [Greek]; not so many things
have the property [wise]; a small number of things have the property
[teacher of Plato]; Just one thing has the property [Socrates]. As long as
Socrates belongs to our domain of discourse we will denote Socrates by
‘Socrates’, since he is what has the property [Socrates]. Indeed, in any
domain in which Socrates is located, the use of ‘Socrates’ will denote (and,
when in subject position, refer to) Socrates, for the signification of

3
N
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‘Socrates’ is invariable from one domain to another. Names are rigid. As
subject expressions, their references are immutable.

Definite descriptions have the form ‘the x’, where ‘x’ is a (usually
complex) general term. While ‘x’, as used in a sentence relative to a
specifiable domain, denotes all the objects in the domain that have [x], if
there is but one such object the term ‘the X’ similarly used, will denote it.

| As subject expressions, definite descriptions are not rigid in reference
| because their constitutive general terms have denotations that may vary from
| one domain to another. Thus, for example, ‘man who fought a duel’, when
used relative to the domain of Hamlet, denotes, among other things, Hamlet
but not Hamilton. The same term, used relative to the actual world, denotes,
among other things, Hamilton but not Hamlet. Likewise, the use of ‘the man
who fought a duel’ in subject position may refer on one occasion to Hamlet
. and on another to Hamilton. In summary, since the denotation of a used
term is determined in part by its signification (which is invariable) and in
part by the domain relative to which the sentence in which it is being used
isused (which is variable), its denotation is variable from domain to domain.
Definite descriptions are variable in denotation, as the denotations of their
constituent general terms are variable. Names are invariable (i.e., rigid)
| from domain to domain only because the properties that they signify cannot
H (as those signified by general terms can) be possessed by different objects
in different domains. Consider again the term ‘man who fought a duel’.
Here, it is possible to have two different domains relative to which the
denotation of the term is nonempty, yet which are such that the two set_s of
objects constituting the denotation are disjoint. In contrast, consider
‘London’. Here, given any two domains, if the denotation of ‘Lf)ndon’
relative to each is nonempty it can only be because London is in both
(compare the actual world and the world of Sherlock Holmes). So names,
but not definite descriptions, are rigid. What of pronouns?
: Here, roughly, is one version (Kripke, 1972/80) of how names are
Introduced into discourse (the so-called causal theory). Narpes are
intrOduced in an initial “baptismal ceremony” (‘1 name this cth}
Socrates”,” ‘I dub thee “Sir Lancelot”,” ‘Let’s call this place “London’”,
Henceforth this bridge will be called “Pons Asinorum”’). A subsequent
user of the name, in the normal course of events, will use that name to
designate (denote) the same object only if such use can, in theory, be traced
back through intermediary uses, ultimately ending in the initial baptism. As
long as the intention of each user was to denote just the object that the
Preceding user intended to denote, the denotation from the baptism to th;
Present use is constant. Constancy is preserved by a uniformity of share
lqtentior,s (to denote). Uses of a name to refer to the same object on
Hierent occasions are links in a chain of intentions. i :
; Our theory, derived from Sommers, holds that nominal §ub_lects a.rel
Simply links in anaphoric chains. Indeed, names, sO used,‘are just specuf\c
Uty pronouns, “pro-pronouns.” And generally, most links in an anaphorl
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i chain are pronominal. But how do chains get started? And how are their
links bound together? On this theory, initial reference to an object must
always be by the (sometimes implicit) use of an indefinite description. We
say (or assume) such statements as ‘A child is born’, ‘Here is a newly
discovered mountain’, ‘There is a star’. These sentences have the overall

I form ‘Some X is Y’, where ‘some X’ is indefinite but makes specific
reference. (Compare: ‘Some man is at the door’—specific—and ‘Some man
will be the first to walk on Pluto’—nonspecific.) Subsequent reference to
the object is pronominal: ‘A child is born. She is beautiful.” According to
Sommers’s theory, pronominal subjects are, like any subject, logically
analysable as quantified terms. As singulars they enjoy wild quantity. The
denotation of the term of a pronominal subject, the “pro-term,” is
determined in part by the reference of its antecedent. In our example the
antecedent of ‘she’ is ‘a child’; the denotation of the pro-term is also partly
determined by the ascription of its antecedent sentence. The antecedent
sentence ascribes the property of being born to the referent of its subject.
The pro-term of the subsequent anaphoric pronoun, then, denotes a child
who is born. The reference of the pronoun is determined by its implicit
quantity and the denotation of its pro-term. Since it denotes al// of what the
antecedent refers to, it has universal quantity, but it also inherits the quantity
of its antecedent. So, in effect, a pronoun whose antecedent is particular
(the normal case) has wild quantity. As Quine has said, “[Pronouns] may
have indefinite singular terms as antecedents but they can be supplanted only
by definite singular terms” (1976: 46). In our example, ‘she’ refers to the
child who is born. In fact, we could make this explicit by using the definite
description ‘the child who is born’. where the definite description is
anaphoric. Thus: ‘A child is born. She (or: the child who is born) is
beautiful.” And we could go on: ‘She has red hair.’ In this last statement,
‘she’ refers to the child who is born and is beautiful, as ascriptions are
accumulated from link to link in an anaphoric chain.

We have yet to introduce names into these chains. Thus far, the
initial link in a chain is an (often implicit) indefinite description having the
logical form ‘some X’. Subsequent links are anaphoric, picking up the
referents and ascriptions of their antecedents. These links are pronominal
or, when the ascriptions are explicit, definite descriptions. Sometimes,
though far from always, we make such frequent reference to an object or
have such interest in it that, by fiat or custom, we create an expression
whose job is to refer specifically to just one object. These expressions are

., hames. We name an object in what Kripke calls a baptismal ceremony. Bl_lt

\\ our introduction of the name there is not the initial link in an anaphoric

5. l chain containing uses of that name. Names are (nonvariable) pronouns.

|| Nominal reference is a special kind of pronominal reference.

Names are usually introduced after (or perhaps at the same time ?}S)

[ pronominal reference has been made to the object named. Thus: ‘A child
is bom. She is beautiful. She has red hair. Let’s call her Lucy.” Even
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where no intervening pronominal links occur between the initial link and the
nominal one, we cannot say that the naming of an object is the initial link in
an anaphoric chain. Suppose upon the birth of a child I say, ‘Let’s call her
(this, that, it) Lucy’. On such an occasion, the object being named has been
picked out by “her’; and this pronominal reference must be accompanied by
an indefinite reference, such as ‘a child’, in an implicit statement, such as ‘A

¢ child is born’, or ‘Here is a child’. Names, then, are like any other pronouns

in that when used as subjects their denotations are determined by the

| referents of their antecedents and the accumulated ascriptions, and, as

singular subjects, they have wild quantity. Names differ from other
| pronouns in that they are introduced only on special occasions to make
anaphoric reference to just one specified object. We could do without
names (as we usually do in the case of cows and crows). Names are special-
duty pronouns—they are pro-pronouns. Names, then, are rigid because they
are referentially pronominal; and pronouns are always rigid, in the sense
that they are always used to refer to the same object on each occasion of
their use in a given anaphoric chain. This is guaranteed by the fact that each
pronominal pro-term in a chain is determined by its antecedent’s reference
and the accumulated ascriptions. These are what bind pairs of links in order
to form a cohesive chain. This theory of rigidity contrasts favourably with
the causal theory, which binds links in a referential chain by means of
common intentions on the part of users of those links.

We have seen that for the Fregean the difference between singular
terms and general terms is that the former can never be used as functions (qr
predicates, as they are still called). According to the Asymmetry Thesis, thfs
difference is of the greatest logical import, so let us briefly review this
thesis. According to defenders of Asymmetry: (i) a sentence can be negated
by negating its predicate but not by negating any of its arguments (s¥n.gu.lar
terms), (i) a pair of sentences can be conjoined or disjoined by conjoining
or disjoining their predicates but not by conjoining or disjoining their
arguments. Thus, according to the thesis, ‘Socrates drinks’ is negated by
Socrates is not drinking’ (or ‘Socrates does not drink’), but not by
NonSocrates drinks’; ‘Kant is serious’ is negated by ‘Kant is nonserious
(or ‘Kant is not serious’), but not by ‘NonKant is serious’; ‘Socrates eats
‘:md ‘Socrates drinks’ can be conjoined as ‘Socrates eats and dr.inks’, but

Plato and Aristotle carried the piano’ is not a way of conjoining ‘Plato
| carried the piano’ and * Aristotle carried the piano’. A corollary of (i) is that
Singular terms do not have negations. A corollary of (ii) is that there are no
l°g_1‘ially compound singular terms. Finally, there is the basic, undgrlymg
claim of the Asymmetry Thesis: (iii) singular terms are never pred'lcated-f
Many twentieth-century analysts have offered 2 variety 0
arguments intended to support the various tenets of the Asymmetry Thesis
"¢ SaW in chapter two how Geach and Strawson were prominent among
°5¢ philosophers). Here are the outlines of some of the more important or
ommon argyments.
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(1) Names cannot be negated, because if they could be there
would have to be negative objects that negative names
enote. But there cannot be such objects.

(2) Names cannot be compounded, because if they could be
there would have to be compound objects that such names
denote. But there cannot be such objects.

(3)  All negation is logically sentential. Any colloquial form
of negation that cannot be construed as sentential is not
genuine (logical) negation. Name negation cannot be
construed as sentential, it is not genuine.

(4)  All compounding is logically sentential. Any colloquial
form of compounding that cannot be so construed is not
genuine. Name compounding is not sentential, so it is not
genuine.

(5)  All logical predicates are general terms (adjectives, verbs,
common nouns, etc.). Names are not general terms, so they
are never logical predicates.

Each of these arguments rests on the conclusion of an unstated argument:

(6)  All logical arguments (subjects) are singular. Negated and
compound names are either singular or general. If they are
singular, then they denote impossible objects. If they are
general, they are not singular. Therefore, such terms cannot
be logical arguments. No logical subjects are negated or
compound.

The first premise of (6) is the F regean Dogma. It is essential to the
Asymmetry Thesis.

Some of the claims made in the above arguments cry out for
examination. Defenders of the Asymmetry Thesis hold that a name like
“Socrates’ cannot be negated because the result, ‘nonSocrates’, would have
to name an impossible object. The reasoning here is that any object denoted
by ‘nonSocrates’ would have to lack all of the properties that Socrates has
and have all of the properties that Socrates lacks. But, since the properties
that Socrates lacks are not compossible, it is impossible for an object to have
?" such properties. Thus, such an object is impossible. Suppose Socrates
is white, Greek, and male. By the above reasoning, nonSocrates must be
nonwhite, nonGreek, and female. So far so good. However, the argument
further requires that nonSocrates have all the properties that Socrates lacks.
Well, Socrates lacks the properties of being green, red, black, Roman,
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French, Japanese, and female (and many other properties besides).
NonSocrates may be a black Japanese female, or a yellow French female, or
a green Roman female, and so on, but it/she cannot possibly be all of these.
NonSocrates, so the argument goes, is impossible—so ‘nonSocrates’ is not
a genuine name.

The Asymmetrist’s argument rests on a simple logical fallacy
involving De Morgan’s Laws. The negation of a conjunction is a
disjunction of negations, not, as per the argument above, a conjunction of
negations. Consider: Socrates is white. Thus he lacks the properties of
being green, red, and black, and so on. In other words, Socrates is
nongreen, nonred, and nonblack. What follows with regard to nonSocrates,
then, is not that it/she is (per impossible) green, red, and black, but rather
that nonSocrates is not nongreen, nonred, and nonblack—that is, non-
Socrates is either green or red or black, etc.

There are at least two sources of the confusion over negative
names. One is lack of clarity concerning the distinction between properties
that an object lacks and properties that do not apply to that object. The
number 2 is even and lacks the property of being odd, but it neither has nor
lacks the property of being green. The term ‘green’ simply does not apply
to (span, in Sommers’s terminology) the number 2. Likewise, Socrates may
be white and nonRoman, but he neither has nor lacks the property of being
Marxist. Consequently, whatever properties an object named by ‘N’ has,
nonN can neither have nor lack any properties that N neither has nor lacks.
‘Marxist’ does not apply to Socrates—so it does not apply to nonSocrates
either. Whatever nonSocrates might be, it/she is the same sort of thing (i.e.,
has exactly the same terms applicable to it, is spanned by all the same terms,
belongs to the same categories) as Socrates is. .

: The second, and perhaps more fundamental, source of con‘fu51'on
Is the refusal of standard mathematical logicians to recognize the distinction
between term negation and sentential negation. We have seen that the
logical contrary of a term is semantically equivalent to the disjunction of ?111
terms incompatible with that term. For example, the nonlogical contraries
f’f‘White’ are ‘red’, ‘green’, ‘yellow’, ‘pink’, ‘black’, and so on. ‘Male’ has
‘fe‘male’ (normally). ‘Greek’ has ‘Roman’, ‘French’, ‘Japanese’, and s‘o on.
Six feet tall’ would have infinitely many nonlogical contraries (e.g., ‘four
feet tall’, six feet one inch tall’, ‘six feet two inches tall’). Sentence pairs
that differ only in that their predicate-terms are nonlogical contraries are
them‘sdves nonlogical contraries. Sentence pairs that differ only in t'hat their
Predicate-terms are logical contraries are themselves logical contraries. The
Nonlogica] contrary of a given sentence entails the logical contrary Of‘that
Sentence. The converse need not hold. The logical contrary OieE
sentence entajls the contradictory of that sentence. The converse peed not
old. _Fregean logicians today do not recognize the notion of loglca! b bid
g?’g,at“’}]- As a result, this way of drawing the contra'lry/contra'dxctor)s'
'Stnction is not to be found in standard mathematical logic. Now, if term

———
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cannot be negated, then clearly names cannot be negated.

Nonetheless, we are free to abjure the Fregean Dogma and the
Fregean refusal to recognize term negation. Ordinary language practice (not
to mention the counsel of many contemporary linguists and all traditional
logicians) suggests such a departure from contemporary logical cant. There
are negative terms, and among them are negated names. We have already
seen that the argument that negative names must name impossible objects
is logically (thus fatally) flawed. But there is something else plaguing such
an argument. The simple fact is that the negation of a singular term, such
as a name, is not itself singular—the negation of a singular term is a
general term.

Consider ‘Socrates is not Roman’. As the logical contrary of
‘Socrates is Roman’, we read this as ‘Socrates is nonRoman’, which is
semantically equivalent to ‘Socrates is Greek or French or Japanese or . . .".
What, now, of ‘Socrates taught someone other than Plato’? What could
‘other than Plato’ (logically, ‘nonPlato’) refer to? Suppose I tell you that
someone other than me taught my logic course last year. Logically, I may
be construed as saying ‘Someone who is not me (other than me, nonme)
taught my logic course last year’. To whom am I referring? Well, at least
not to myself. In fact, I refer to some member of the set of professors
excluding me. But in all probability only one of these other professors
taught the logic course. So how could the term ‘nonme’ be general? One
more example: ‘Olivier read every Shakespeare play but Hamler’ (logically:
‘Olivier read every nonHamlet Shakespeare play’). My contention is that
the negation of a singular term (name, pronoun, etc.) is a general term.
Thus, ‘nonPlato’, ‘nonme’, ‘nonHamlet Shakespeare play’ are general terms.
They are not used to make reference to any particular (possible or
impossible) objects. To see how this is so, we need to recall key elements
of my semantic theory.

My view is that every used term, in the normal case, denotes
objects, and the denotation is the intersection of the domain relative to
Wwhich the term is used and the extension of the term. When quantified,
such terms refer. The reference of a quantified term (logical subject) is
determined in part by its denotation and in part by its quantity. Universal
subjects make distributed reference to their entire denotations; particular
subjects make undistributed reference to a part of their denotations. When
I state that Olivier read every nonHamlet Shakespeare play, the term
‘nonHamlet Shakespeare play’ denotes all the plays in the Shakespeare
corpus—minus Hamlet, and the quantifier ‘every’ shows that my reference
isto all of these. The term is prima facie general, denoting not a mysterious,
purported play by the Bard called “NonHamlet,” but the entire body of
plays, excluding just one. Now, recall the example ‘Some nonme taught my
logic course last year’. The term ‘nonme’ denotes all the people in the
domain (say, the faculty) who are not me. But I do not refer to all of them.
My use of a particular quantifier shows that reference here is made to one
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or more of the faculty members, but not necessarily all. Again, ‘nonme’ is
not a singular term. Finally, consider once more ‘Socrates taught some
nonPlato’. To what (or whom) does ‘nonPlato’ refer? Suppose our
statement is made relative to the domain of Athenian philosophy students
in the fifth century B.C. The expression ‘some nonPlato’ must refer
undistributively to those—minus Plato. Again, ‘nonPlato’ is clearly not a
singular term naming a strange object, but a general term denoting a large
number of people (in this case, the fifth-century-B.C. Athenian philosophy
students, minus Plato). ‘NonPlato’ is not an impossible or even strange
name—it is no name at all.

Again, the fact is that the negation of a singular term is not singular.
Recognition of this point would diminish much of the enthusiasm for
asymmetry. Recognition of another, but closely related, point would also
contribute to this general loss of enthusiasm: the conjunction or disjunction
of singular terms is not singular. We saw in chapter two that Strawson has
argued that if, say, ‘Tom and William® did make a reference, it would have
to be to an individual (again, the Fregean Dogma) that possessed all and
only those properties that Tom and William both have. But if Tom were
short and William tall, then this third individual would be neither short nor
tall. If Tom were two-legged and William one-legged, then this third
individual would be neither. Such an individual is impossible. So a
conjunction of names cannot refer—thus cannot be a name. Similarly, a
disjunction of names cannot name. “Tom or William’ would have to name
an individual that had all and only those properties that either Tom or
William possess. But this would require, for example, that such an
individual be both short and tall. In order to preserve the Fregean Dogma,
a statement like ‘Tom and William played squash (together)’ cannot be
construed by the asymmetrist as having ‘Tom and William’ as its subject.
Tenps are either singular or general. If this term is general, it cannot be the
subject; if it is singular, it names an impossible object. Consequently, the
Statement must be paraphrased so that the ‘and’ is seen as a sentential rather
than a term connective. The statement is logically paraphrased as “Tom
Played squash and William played squash’.

Now, the Fregean Dogma is just that—a dogma, and so are such
Well-entrenched beliefs as the one that demands that all connectives
(negation, conjunction, etc.) are logically sentential. Like Euclid’s parallel
POS_tulate, they can be rejected with impunity. We have already seen thata
logic that permits negative names is natural, and so is one that countenances
coml_’OUnd names. The key is, again, the realization that the co.mpoufld of
3 pair of singular terms is not itself singular. ‘Tom and Wll!lam ,_f0f
xample, is not the name of anyone or anything—even an impossnblg ti.lmg’.

Tom my logical point of view, ‘Tom and William’ and “Tom or William
are Quantified terms—logical subjects. They refer distributively and
undxstrnbutively, respectively, to the denotations of their terms. { i

Let us say that ‘a and b are C’ has as its subject ‘a and b’, and tha
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the subject-term is ‘{a,b}’. This latter term we will call a term of explicit
denotation. All used terms have a denotation—but it is almost always
implicit, unstated. Consider the statement ‘Every logician is wise’ (made
relative to the actual world). The term ‘logician’ here denotes Aristotle,
Chrysippus, Abelard, and so on. The number of denoted items is quite large
in this case. In ‘Every Canadian province has a park’, the term ‘Canadian
province’ denotes British Columbia, Alberta, Ontario, Quebec, and so on.
Here the number of objects denoted is only ten. Notice that we could use
terms of explicit denotation in place of ‘logician’ or ‘Canadian province’.
We could say ‘Aristotle, Chrysippus, Abelard, Ockham, Leibniz, Frege,
Russell . . . and Quine are wise’, for example. But clearly there is much
practical advantage in using terms of implicit denotation—and there is no
alternative in cases where the denotation is infinite (e.g., ‘Every prime
greater than 2 is odd’). The advantage virtually disappears, however, when
the number of denoted objects is very small. ‘Every author of Principia
Mathematica was British’ has little to recommend it over ‘Russell and
Whitehead were British’.

Now, the denotation of ‘author of Principia Mathematica’ is
Russell and Whitehead and no one else. Let ‘ {Russell, Whitehead}’ be a
term denotatively equivalent to ‘author of Principia Mathematica’. The first
is denotatively explicit; the second is denotatively implicit. A logical
subject is a quantified term. The reference of a subject is determined by the
denotation of the term and the quantifier. Given that they are made relative
to the same domain, we know that ‘Every author of Principia Mathematica
was British’ and ‘Russell and Whitehead were British’ are equivalent. They
share a common predicate and their subject-terms are denotatively
equivalent. The quantifier in the first case is explicit (‘every’), indicating
that the subject refers to the entire denotation of the subject-term. In the
second sentence there is apparently no quantifier. But, since the two
sentences are logically equivalent, the logical quantity of the second must,
like the first, be universal. The universal quantity here is indicated by ‘and’.
The two sentences have the general forms

(1) Every author of Principia Mathematica was British.
(2) (Every) {Russell, Whitehead} was British.

But in (1) the term “author of Principia Mathematica’ is simply a convenient
shorthand for {Russell, Whitehead}”, just as ‘logician’ is a (very) con-
venient shorthand for ‘ { Aristotle, Chrysippus, Abelard, . . . Quine}’. (2) 15
the logical version of the colloquial ‘Russell and Whitehead were British’.
A5 If ‘and’, as in the example above, indicates universal quantity, tl}en
It is reasonable to expect its dual, ‘or’, to indicate particular quantity
Consider ‘Some (one of the) author(s) of Principia Mathematica was an
earl’. Replacing the term of implicit denotation with a denotatively
equivalent one of explicit denotation yields ‘Some {Russell, Whitehead}
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was an earl’. This is rendered more naturally as ‘Russell or Whitehead was
an earl’. Terms like “Tom and William’, ‘Russell or Whitehead’, and so on,
are not singular terms. They are general terms—indeed, quantified terms
(subjects).

Of course, it is possible to use a term of explicit denotation that
happens to denote just one object. Consider ‘Socrates is wise’. Let us say
that ‘{Socrates}’ is a term whose denotation is Socrates. It is a term of
explicit denotation. A subject of the form ‘every {Socrates}’ refers to the
entire denotation of ‘{Socrates}’, and a subject of the form ‘some
{Socrates}’ refers to a part of the denotation of ‘{Socrates}’. Now, the
entire denotation of ‘{Socrates}’ is Socrates, and the only part of the
denotation of ‘{Socrates}’ is Socrates. So, whether universally or
particularly quantified, the reference in each case is the same object,
Socrates. This is a further explanation of why there is no need for singular
subjects to be explicitly quantified and no logical need to replace a singular
term with its denotatively explicit equivalent. Singular subjects have wild
quantity.

every {Socrates} = some {Socrates} = {Socrates} = Socrates

Truth and What “There’ Is

If what is is what is said, then the more we talk, the more being there is.
Umberto Eco

“There is something better than logic.” “Indeed? What is it?” “Fact._"
Mark Twain

n ' / been in excess of the demand.
S scarce as truth is, the supply has always b5 5

E_Vel’y sentence is a (complex) term. In the normal case, every used term
Signifies a property and denotes those objects (if any) that both have that
Property and are also in the domain of discourse relative to which tl'le t.erm
ISused. Thus, every sentence (used to make a true statement) both signifies
a‘pd denotes. What a true statement (i.e., sentence used to make a stat_emt_?ny)
Signifies is a constitutive characteristic of the domain relative to whlcfh it1s
}lsed_ If the sentence is (used to make) a statement, then it is used \fVlth tl:
mplicit accompanying (truth) claim that the domain is S0 character?zetii-
o Statement denotes its domain. A false statement denotes notflmé%: nr?;
does it signify anything; it is doubly vacuous. Compare the term refb ?n
the term “present king of France’. The first signifies the property © elhi
red and denotes whatever has that property in the domain at h?nd (say, t ;
actual world). The second term expresses the concept of being 2 Preizzl
118 of France. But since nothing corresponds to that conceptin the ac
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world, it is vacuous; it denotes and signifies nothing. A true statement
denotes whatever has the property it signifies. So if the domain at hand has
that property (that constitutive characteristic), then the statement denotes the
domain. Otherwise it denotes nothing. “It is just true statements that have
a corresponding entity” (Davidson, 1969: 74).

The actual world is Mars-ish and red-ish (in this case, and many
others, we actually have the word ‘reddish’) and logician-ish and shy-ish
because it contains such things as Mars, firetrucks, Quine, and me as
constituents. It is un-ghost-ish and un-unicorn-ish because it does not
contain such things as ghosts and unicorns. The actual world is red-ish and
nonred-ish and un-ghost-ish because it contains firetrucks and lemons but
no ghosts. In general, to say that a domain, D, is P-ish is to say that some
(at least one) P-thing belongs to, constitutes (in part at least), D. To say that
D is un-P-ish is to say that no P-thing is a constituent of D. Note that for
any D and any P, D is P-ish or D is un-P-ish, but it need not be the case that
D is either P-ish or nonP-ish. The domain of natural numbers is either red-
ish or un-red-ish because either it has a red constituent or it has no red
constituent; but it is neither red-ish nor nonred-ish, since it has no red
constituent and also no nonred (blue or green or pink or . . .) constituent.

To make a truth claim is implicitly to characterize the relevant
domain constitutively. When I state, relative to the actual world, ‘Mars is
red’, Iimplicitly characterize the actual world as being in part constituted
by red Mars, as being red-Mars-ish, as being [red Mars]. When I state
‘Some logician is shy’ I characterize the domain, normally the actual world,
as shy-logician-ish [shy logician]. Notice that for ‘Mars is red’ to be true,
all that is required is that something that is both Mars and red be in the
world; there is no need for states or facts also to be in the world. Suppose
I state “Mars is male’. Whether my implicit claim here is true or false will
depend on the domain with respect to which I make my statement. If that
domain is the actual world, then the claim is not true. For the actual world
has no constituent that is both Mars and male. But if the domain is the
world of Greek mythology, my claim is true, since that domain is constituted
by, among other things, a male Mars.

To say of an object that it exists is, in effect, to say that it is a
constituent of the domain at hand. Existence, as Kant and so many others
have argued, is not a (real) property. What existence is is a constitutive
property—not of objects, not of concepts (as Frege thought), but of
domains, totalities of objects. Recognition of this leads to an interestir}g
thesis concerning the term ‘there’. Indeed, we can now say what ‘there’ is.
‘Our thesis can be stated in simple terms: the English word ‘there’, as used
In such statements as ‘There is an X’, ‘There are X’s’, ‘There is no X',
“There are no X’s’, is nothing more than the simple locative adverb,
eqpivalent to ‘in/at that place’. The received view among logicians anc}
phll.OSOphers has generally been that in addition to the locative use of ‘there
(as in “There is the book | was looking for’, ‘The lighthouse is there, on the
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other side of the cape’, “My car is not there, it’s been stolen’) there is an
existential use of ‘there’ . To use ‘there’ in this second way (e.g., ‘There is
a Kantian joke’, ‘There is no god’, ‘There are no unicorns’, ‘There are
honest politicians’) is to affirm or deny existence of some thing or things.
Thus, to say ‘There is a Kantian joke’ is just to say ‘A Kantian joke exists’,
the phrase ‘there is” being reduced to ‘exists’. In like manner, one can
generate “No god exists’, “No unicorn exists’, and ‘Honest politicians exist’.
There is no denying that this way with ‘there’ leads to the growth of Plato’s
Beard, taking, as it does, the use of ‘exists’ in these paraphrases as the
predication of a property (existence/nonexistence). But there have been
good arguments advanced against treating ‘exist’ as a predicate. Hume gave
one in the Treatise (1.ii.6 and 1.iii.7), and Kant gave an even more famous
version in the “Transcendental Dialectic” of the Critique (ILiii.5). Others
have argued this since.

Modern logicians are hardly prepared to deny the Hume-Kant
position. Existence is not a property that any thing has or lacks. Still, there
is an existential use of ‘there’. Their way with ‘there’ is to treat it as a
“higher” function—namely, a quantifier. To say ‘There is an X’ is to say
‘There is at least one thing such that it is X’. The phrase ‘there is at least
one thing such that’ is standardly treated as a Fregean “second-level
function”. To say ‘There is an X’ is just to say that something falls under
the concept referred to by ‘X’. Accordingly, existence may not be a
property of objects but it is surely a property of concepts.

My claim is that there is no existential use of ‘there’—all (normal?
uses are locative. Admittedly, such a thesis cannot stand alone. If ‘there
Isalways locative in statements such as ‘There is/are an/no X(s)', then the
Question immediately and naturally arises: Where? Using ‘there’ loc.atn{el)’,
fThere is an X" is convertible into ‘An X is there’. Thus: ‘A Kantian J_Oke
Isthere’, ‘A god is not there’, ‘Unicorns are not there’, ‘Honest politicians
are there’. So, where is the Kantian joke, the honest politician; from where
IS god missing; from where are unicorns missing? Here I need my second
thesis: In statements of the form ‘There is an X’, ‘There’ is always gsed “f
locate objects in the same place—the world. The locative sense of there
¢an always be expressed by the wordier ‘in/at that place’, where the

monstrative ‘that’ is interpreted differently according to the context of its
%Se. The same paraphrase applies to ‘there’ in ‘There is an ?(’, and so ond.
Thus: .‘In that place is an X’. But in such cases ‘that place’ is al,wz‘xys used
;0 designate the same locale, the world. Thus: ‘Ther,e ‘is no god l(“ll‘z_liois
Sin the.world’, ‘No god is a constituent of the world’, ‘The actua A
;?ég‘:g"lsﬁ’)é ‘There are honesF quiticians’ (‘Sor'ne honesft tli::h:‘z:l?is’, o
it ir d’, ‘Some hpnest politicians are constltu?qts Y bt

15 honest-politician-ish’). The use of ‘there’ is always lo ?
© existential” use of ‘there’ locates objects in the world.
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A New System of Diagrams'

To find a lucid geometric representation for your . . . problem could be an
important step toward the solution.

G. Polya

Be he a Triangle, Square, Pentagon, Hexagon, Circle, what you will—a
straight Line he looks and nothing else.

E.A. Abbot

Novelty, by itself; is no drawback to a scheme; in some cases (as with
milk, eggs, and jokes) it is a positive advantage.
Lewis Carroll

Euler and Venn diagrams are simple and effective devices for illustrating
syllogistic validity. Their potential is limited, however, since they cannot
apply to arguments with more than four terms. Attempts at extending the
scope of plane figure diagrams (e.g., by Carroll, 1958, 1977) have been only
marginally successful.”> Aristotle probably used some sort of diagram
method in teaching the syllogistic, and many ancient commentaries made use
of linear diagrams, though our understanding of just how they worked is
sketchy.’ If the ancient syllogists used linear diagrams rather than planar
ones, and if they diagrammed not only simple syllogisms but sorites,
polysyllogisms, and compound syllogisms, then it is likely that there is a
satisfactory linear method of logical diagrams that can readily go beyond the
virtual four-term limit on plane diagrams. Leibniz tried to use line diagrams
in analysing syllogisms,* and a century later Lambert attempted linear
diagrams for syllogistic.’ In what follows I will describe such a linear
diagram method, illustrate some of its uses, and extend the method to
relationals and compounds statements.*

Rather than follow the nineteenth-century practice of representing
each term of an inference as a set of points constituting a closed plane
figure, let us follow the ancient suggestion of representing such terms as
points of a straight line segment. (Topologically, we might think of the line
as a covering space on a Venn circle.) We can think of the place in which
a given diagram lies as constituting the relevant domain of discourse. A
term such as ‘animal’ (symbolized by ‘A’) will be represented as a straig';ht
line segment, the extent of which is undetermined. More precisely, the line

represents the denotation of the term. Each such line segment will be
labelled at its right terminus.

A

Te‘fms ay be negated or unnegated (i.e., implicitly positive). In either case,
their diagrammatic representation is a straight line (segment). Thus nonA
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will be diagrammed as

*nonA

Since nothing could ever satisfy both a term and its negation, their linear
representations can have no point in common. In other words, the two lines
representing such terms must be parallel.

A

*nonA

This diagrams the logical truth that no A is nonA.

A limiting case of a line segment is a single point. Singular terms
will be represented quite naturally by such lines (point-lines). For example,
aterm such as ‘Fido’ will be diagrammed as a single point.

* Fido

IfFido is a dog, then we want the point-line representing Fido to be one of
the points constituting the line representing dogs. If

*D

represents the term ‘dog’, we will place the point representing ‘Fidq’ at.ﬂ;;
left terminus of this line (since we have agreed to label each line at 1ts T1g
terminus and a point-line has no other point to its left).

Fido » D

I will now show how categorical sentences in {%‘?“efal I?IZ
Tepresented by linear diagrams. But first a preliminary condition: @ m.s
Consisting of no points is no line, so no terms are empty. Evay oy
Tepresented as a line of one or more points. We have seen how to dlagrta?;
4 sentence such as ‘Fido is a dog’. Suppose, however, that We wa[llaim
diagram ‘Some petis a dog’. Here, what needs to be illustrated is the ¢ .
Ehat there is at least one thing common to both pets and dogs. The'lmes ct

Pet’ and ‘dog’ must have at least one common point—they must intersect
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* dog

* pet

Notice that we represent ‘pet’ and ‘dog’ as having a single common point.
Yet, for all we know, they may have many points in common. Nonetheless,
from a logical point of view, the truth claim made by ‘Some pet is a dog’ is
Just that at least one thing is both a pet and a dog. This is what we have

diagrammed. Generally, then, an I categorical (‘Some S is P’) will be
diagrammed as

I

P

If two lines do not intersect, then they must have no common point; they
must be parallel. The contradictory of an I categorical, therefore, must be

represented by parallel lines. An E categorical (‘No S is P*) will be
diagrammed as

S

P

Universal affirmations claim that whatever is denoted by the
subject-term is denoted by the predicate-term. So the subject-term line must
be represented as a (possibly proper) part of the predicate-term line. AnA
categorical (‘Every S is P*) will be represented, then, as

A S

P

Notice that if every S is P and every P is S, then the number of points
between the right terminus of S and the right terminus of P will be zero-
To be very clear, then, our diagrams for universal and particular
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affirmatives are stipulated to be understood in such a way that

*P

permits interpretation (or reading) wherein more than one S is P (more than
one point shared by line S and line P, and possibly all points on S are on P,
and even vice versa, and

permits interpretation wherein all the points on P are points on S as well.
So, one line crossing another at a single point is to be interpreted to mean
that at least one point is shared by the two lines. (This parallels exact!y a
single ‘X’ on a Venn diagram interpreted as ‘at least one’.) And one line,
say 8, partially coinciding with another, P, is to be interpreted to mean that
all points on S are points on P and possibly no points on P are left over.
The contradictory of an A categorical claims that at least one tt{mg
satisfies the subject-term but not the predicate-term. So, an O categopcal
(*Some S is not P*) must be diagrammed as an S-point outside the P-line.

S
0 P

Note that S is represented as a point-line here. But, for all we know, there

mMay be more than one S. and the line representing them may or may not be

Parallel to the P-line. Indeed. to say that some S is not P is to say that some
'SnonP, which can be diagrammed as

« nonP

S
P
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The simpler diagram for O consists just of the P-line and the point of
intersection of the S- and nonP-lines.

Line diagrams represent inferences in the usual way. First, the
premises are diagrammed. Then, either the conclusion has already been
diagrammed or it has not. If it has already been diagrammed, then the
inference is valid; if it has not, then the inference is invalid.

Equivalences are immediate inferences in which each of a pair of
propositions can be validly drawn from the other. For example, simple
conversion equates ‘Some S is P’ and ‘Some P is S’. Our diagram method

illustrates this by representing both sentences by a pair of intersecting S- and
P-lines.

S

Universal negatives are likewise simply convertible. Both ‘No S is
P’ and ‘No P is S’ are diagrammed by parallel S- and P-lines.

P

S

Subalternation is an example of an immediate inference between two
nonequivalent statements. Any universal statement will validly entail its
corresponding particular just because no term is empty. Diagrammatically,
whenever there is a line there must be at least one point in that line. For
example, we can derive ‘Some S is P’, from ‘Every S is P’, where the
premise is diagrammed as

P

Since every part of a line intersects (at least once) with that same line, it
follows that at least one point in S is in P. Also, from ‘No S is P’ we can

validly derive ‘Some S is not P, since if lines S and P are parallel (given the
premise)
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and since every term is nonempty (every line consists of at least one point),
there must be at least one point in line S outside of line P.

Obversion is an example of immediate inference relying on the fact
that a term and its negation satisfy nothing in common (so that their line
representations must be parallel). Consider, for example, ‘Every Sis P’. It
is diagrammed as

S
. P

But we also know that ‘nonP’ is logically contrary to ‘P’, so that a nonP-line
is parallel to the P-line. By adding this we have

S
" .P

*nonP

Since every point on P is outside of nonP, and since every point on S is on
P, it follows that every point on S is outside of nonP. In other words, lipes
S and nonP are parallel (i.e., “No S is nonP’, the obverse of our premise,
‘Every S is P*).

However, the true importance of obversion is seen when applied to
Eand O forms. ‘No S is P’ has been diagrammed thus far as

S

P

By obversion, ‘No S is P* is equivalent to ‘Every S is nonP’, thus:

*nonP

Likewise, ‘Some s is not P’ is equivalent to ‘Some S is nonP’. Thus, both

S
*P

and
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can be used to diagram an O categorical.

Now, an obverted A statement can be converted. The resulting
statement can then be obverted to yield the contrapositive of the original.
The contrapositive of ‘Every S is P’ is ‘Every nonP is nonS’. Dia-
grammatically, then, the full representation of ‘Every S is P’ must be

A (full) S
. <P
o enonS
nonP

This represents such equivalent statements as ‘Every S is P’, ‘Every nonP
is nonS’, “No S is nonP’, “No nonP is S’, ‘No nonS is P’, ‘“No P is nonS’,
‘No S isnonS’, ‘NononS is S’, “No P is nonP’, and ‘No nonP is P’. These
last four are tautological and are instances of the law of noncontradiction.
A full representation of any statement will necessarily represent the law of
noncontradiction as well. Consider the I statement ‘Some S is P’
Conversion and obversion on I demand that a full representation must
exhibit such equivalent statements as ‘Some P is S’, ‘Some S is not nonP’,
and ‘Some P is not nonS’. Thus:

I (full)

enonP

*S *non$S

Universal and particular negations can also be given full representations in
order to exhibit logical equivalences.
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E (full)
S
. *nonP
o *nonS
P
O (full)
P
% *nonP
S *nonS

Note that the law of noncontradiction is also represented (twice) by each full
diagram.

The full representation of a categorical will always be a diagram
consisting of two pairs of parallel lines. However, for most purposes of
logical reckoning, the simple A, E, I, and O diagrams are sufficient. Thgse
are the results of “minimizing” (Gardner, 1982: 72) the full diagrams, which
will usually represent far more information than we need. ‘

Here are our minimized, simple diagrams for the four categoricals.

A
= P
E
kS oo OF 5 X et S enonP
= Al K
I
P
o) *S

o5 ><‘ nonP
.S
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The classical simple syllogisms are easily diagrammed by my linear
method—using just the simple (minimized) diagrams. The premise
diagrams for the first figure are as follows (in each case the conclusion can
be seen to be already diagrammed—the mark of validity):

Barbara: Every M is P
Every Sis M
Soevery Sis P

Here, the major is diagrammed first as

M
° *P

The minor is then added to get

S M

0
lav}

From this the conclusion can be read directly.
Darii: EveryMisP
Some S is M
So some S is P

We diagram the major as

M

° 'P
The minor is then added:

x P

S

The conclusion is already diagrammed, since the S- and P-lines intersect.

Celarent: No M is P
Every S is M

SonoSisP
The major is diagrammed as
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Adding the minor, we get

S h,'i *nonP

Ferio: NoMisP
Some S is M
So some S is not P

The major is
M
- *nonP
Adding the minor:
EA *nonP
S

Similar diagrams can easily be constructed for all 24 valid classical
syllogisms from AAA-1 to EIO-4. The method is complete. It is sound as
Well. An exhaustive (and exhausting) check of each of the 232 classical
Ivalid forms shows that none is valid by my method. g ive i

The diagram method (whether planar or linear) is most effectlye in
determining validity and in discovering missing premises Or,conduswns'
Consider the premise pair ‘No P is M’ and ‘Some M is §’. e
diagrammeq linearly simply as

S

. : s is i analld.

We can readily see that the inference of ‘Every P '5§ f1:om thlssl?s nonP’.

Ut we can also see what the missing conclusion 15— Someesolve d by
thymemes with missing premises are most easily T

e
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diagramming the explicit premise along with the contradictory of the
conclusion. What follows, then, will be the contradictory of the missing
premise. For example, let the explicit premise be ‘Every A is B’ and the
conclusion be ‘Some C is not A’. We first diagram the premise as

A
. B

Next, we add the contradictory of the conclusion (viz., ‘Every C is A”).

C A
. . B

From this we conclude ‘Every C is B’, which is the contradictory of the tacit
premise ‘Some C is not B’.

Thus far, we have seen that linear diagrams can do virtually what
planar diagrams can do. One minor advantage they may enjoy is that they
are faster to construct (since lines and points are easier to draw than circles,
squares, ellipses, etc.). But their major advantage is their ability to represent
inferences involving relatively large numbers of terms (viz., more than four)
without destroying the original simplicity of the diagrams. Here is an
example of a relatively elementary valid argument that Venn diagrams are
powerless to represent in a simple, perspicuous manner.

Every A is B
EveryBis C
NoCisD

Some D is E

So some E is not A

Diagramming the first premise gives us

A
. B
Adding the second:
g B &
Adding the third:
A B
e e ° C
D
198
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Finally, we add the fourth:

That's all—three lines, five labels. The conclusion is already 'diagxammed.
Sorites of any number of terms can be diagrammed using the linear method.
The geometric restrictions on closed plane figures, which pr_even? per-
spicuous representations involving more than four terms using simple
continuous figures, do not apply to the simpler linear figures. :

Identity statements are easily diagrammed by my method. A
statement of the form ‘A is (identical to) B’ claims that the A-pczm,t is on the
B-line. Since the B-line is a point-line, this means that ‘A’ and ‘B’ label the
same point:

A*B

An argument such as the following:
Tully is Cicero
Cicero is Roman

So Tully is Roman

would be diagrammed as

< R

T

Where, by the first premise, ‘C’ and ‘T’ label the sameé Pomt;jhtnel"e resent

The simple diagrams outlined above can be extende. OaSFt’o At
Telational propositions. I shall make some tentative suggestions terms.
this can be done. The key idea here is to see relational Fxpresm;)ﬁji 'l:he
Consider a simple relational proposition such as “Paris loves eS diz;gram
claim here is that Paris is among the things that love Helen. (0

these by a line labelled ‘loves Helen’.

« loves Helen
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Paris is one of them. So:

Parise —————————+loves Helen

‘Some person loves Helen’ would be diagrammed as an I categorical.

*loves Helen

*Person

(Notice that the converse here is ‘Something that loves Helen is a person’.)

So far, ‘loves Helen’ is treated just like any other term. It is
represented by a single line segment representing things that love Helen.
Often in inferences, however, it is necessary to analyse such relational terms,
abstracting from them one or more of their constituents for independent
treatment. Consider the argument ‘Someone loves Helen, but Helen is a
vamp. So someone loves a vamp’. The first premise can be diagrammed as

sloves Helen

*Person

But now, in order to diagram the second premise, we need a way to
represent the relative term, ‘loves’, and the object term, ‘Helen’, separately.
Let us represent relative terms by arrows (indicating the “direction” of the
relation) connecting their relata. Then ‘loves’, in this case, would be
represented by an arrow from lovers of Helen to Helen.

*loves Helen

*Person ¢loves

*Helen

3 9 .
Helen’ is now extracted from the relational ‘loves Helen’ and we are free

200
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to diagram our second premise, ‘Helen is a vamp’.

*loves Helen

\
*Person $loven

He.len

*Vamp

Given that from this we can see that every lover of Helen loves Helen, the
conclusion, ‘Someone loves a vamp’, can be read directly.
Look once more at our diagram for ‘Paris loves Helen".
Paris + ——— *loves Helen
We know that whatever loves Helen loves Helen. In fact, we can say,
generally:
Whatever is r to some/every X is r to some/every X, 1.€-
°r to some X ——rtoevery X
r r
X P SIS ) &
Itis this tautology that permits the tautological

]loves Helen

¢ loves

Helen

S s
0 that ‘Paris loves Helen’ can be rendered as

Parise «loves Helen

¢ loves

He.len

201
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This full representation, however, diagrams more information than we often ‘Every A is r to some B’ is diagrammed as
need in computing logical inferences. But it can be simplified (by sup-
pressing tautological information, as with categoricals in general) to the

—_—— A
more natural looking |
r
Parise B
loves
Helene | ‘Every A isr to every B’ is diagrammed as
or simply A
Pe
r
¢1
He i
: Al . And ‘Some A i * is diagrammed as:
If we agree to read arrows in reverse direction as representing the Is rto every B’ is diag
converses of the relations they represent when read in their indicated

direction, we can take the preceding diagram to represent both ‘Paris loves
Helen’ and ‘Helen is loved by Paris’. This same process can be used to if

simplify diagrams for statements such as ‘Some man loves some woman’.
Its full representation is

In spite of these simplifications, it is important to remember that in
the context of a given logical inference it may be necessary to restore some
or all of the full relational expressions. This is especially so when those
W relational expressions occur as logical subjects in subsequent premises or
conclusions. For example, a proposition such as ‘Some senator gives away

Simplifying, by suppressing tautological information, we get Some money’ could be diagrammed in one of three ways:

‘M
1 ) S
W — Y e ‘g M
Notice that the locations of the end points of a relational arrow indicate the (if)
quantities of the relata. The quantity is universal when the relational arrow -g some M
meets the term-line at the line’s right terminus; otherwise the term is i
particular in quantity. For example, ‘Some A is r to some B’ is diagrammed ‘ (iii)
| 2 g some M
I
i S g

M
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We can use (i) if the relative term ‘gives away’ occurs elsewhere without the
logical object ‘money’. Thus, suppose the second premise is ‘All money is
tainted’. Our premises are diagrammed, then, as

*S
g
o

(1)

M

from which we might conclude ‘Some senator gives away something
tainted’. We can use (ii), however, whenever the analysis of the relational
expression ‘gives away some money’ is not demanded by any subsequent
premise or conclusion. Suppose our second premise is ‘Whoever gives
away some money is generous’. Then we can diagram our premises as

(ii.1)

And from this we could read the conclusion ‘Some senator is generous’.
Finally, we are in need of the full representation, (iii), when the relational
expression occurs subsequently both analysed and unanalysed. For example,
suppose our second premise is ‘All money is tainted’, our third premise is
‘Whoever gives away some money is generous’, and our fourth premise is
‘Whoever is generous loses some money’. The conclusion, ‘Some senator
loses something tainted’, is diagrammed by diagramming the premises thus:

C
(1ii.1) C e
g some M
] .G
S g 1
2 T
M

e T
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Consider next the famous inference ‘Every circle is a figure. So
whoever draws a circle draws a figure’. The premise is easy enough:

C
. « F

We also know that whoever draws a circle draws a circle. So:

*d some C

d

Together, these give us

*dsomeC
d

.
.
"3

And here we can see ‘Whoever draws a circle draws a figure’. l

. Wecan develop a useful general rule out of the preceding examp'c,
callit Rule R, based on four kinds of cases. These cases are argument forms
that each have the premise ‘Every X is Y. Then, two kinds of conclusions
occur with four variations in the remaining premise, as follows:
Case 1 Every X is Y
Some S is R to some X / So some S is R to some Y
Case 2: Every X is v
Some S is R to every X / So some S is R to someé N
Case 3. Every X is Y
Every S is R to some X / So every S is R to some ¥
Cose4: Every X is v
Every SisR to every X / So every S is R to some Y

i : icate,
«So’ " general, the conclusion has one and the same gr ammatical gre;iel;ise
"SR 10 some Y’, even when the same predicate In the second P!
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has an ‘every’ in it. All of these cases seem valid intuitively. Each is
confirmed to be valid when placed on linear diagrams:
Case 1:

:%_ °r to some X
S ir

) -Y
X
Case 2:
% __ertoevery X
S r
. Y
X
Case 3:
b er to some X
lr
e .Y
Case 4: X
S
. ertoevery X
T
) .Y
X

It is important to note that as obviously valid as cases 2 and 4 appear in our
diagrams, they are not valid in the predicate calculus. To prove them valid
in the predicate calculus would require adding a premise tantamount to the
existential import embedded in our diagram method (viz., every line has at
least one point). The premises required for 2 and 4 are ‘There are X’s’ of

“There are Y’s’. Now, Rule R is simply the generalization from these
cases—to wit:

Rule R: If every X is Y, then whatever is R to some/every X is R
to some Y.

Diagrammatically, we state it as follows:
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Rule R:

r to some/every X rtosome Y

5

’ ‘. #
X

Thus, Rule R permits extending the line for ‘is R to some/every X’ so that
it is a sub-portion of ‘is r to some Y’, so that the top line above can be read
‘Everything that is R to some/every X is R to some Y’.

Now let us diagram the proposition ‘Paris gave a rose to Helen’ as

pe *gsomeRto H
£
‘R
to
*H

Thave arrived at this representation in the following way. First, diagram e
Proposition simply as

Pe «gsomeR to H

’ tive
]:eXt’ analyse the relational expression ‘gave a rose to Helen’ as arela
M, ‘gave a rose to’, and its logical object, ‘Helen':

Pe «g some R to H

g some R to
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Now, the relative term ‘gave arose to’ is itself a relational expression. We | And this diagrams as well all the equivalent converse relationals, passive
analyse it as a relative term, ‘gave . . . to’, and its logical object, ‘a rose’. | transforms, such as ‘Helen was given a rose by Paris’, ‘A rose was given to
Thus: ‘ Helen by Paris’, ‘Helen was given by Paris a rose’, and ‘A rose was given
|
|
\
\

by Paris to Helen’.

. *gsomeR to H In diagramming relational expressions, it must be kept in mind that
& ultimately the entire arrow represents the relation. This is especially

o M important for relations that are not usually expressed in natural language by

‘R multi-word terms. Consider, for example, ‘Paris is between a rock and a

hard place’. This can be simply diagrammed as

Here, the arrow labelled ‘gave a rose to’ has been replaced by +

But there is no way to label independently the arrow segments. The e
g...to arow represents the ‘between’ relation. Perhaps the most perspicuous

- diagram would thus be one that labels all such arrow segments by ‘between’:

Since the vertical line is now only a part of the arrow from ‘gave a rose to

5 ¢ 5 . R
Helen’ to ‘Helen’, we can re-label the arrow segments to give us: |
|b
Pe g some R to H V H
o or
g Our analysis of relationals with more than one object IS useful f

dlagrammng such inferences as

to
Some boy gave a rose to a girl.

Every rose is a flower.
‘H Every girl is a child.
So some boy gave a child a flower.

As before, we can often, unless the context demands otherwise, simplify this

as: The first premise is diagrammed (simply) as

0 B

e g
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Adding the next two premises gives us

B

®
o]

to

Y i c

The conclusion is read directly.

Of course, when entire relational expressions occur more than once
in an argument, we are often required to make use of their unanalysed
representations. Consider:

Every boy loves some girl.

Every girl adores every cat.
Whoever adores every cat is a fool.
So every boy loves a fool.

Here ‘loves some girl’ requires analysis, while ‘adores every cat’ does not.
So we diagram the first premise as

. caevery C

(We could add the analysis of ‘adores every cat’, viz.:
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but it is unnecessary in this context.) Finally, we add the last premise:

*B

1
G aevery C

°F

Let us consider one last example:

Every boy loves some girl.

Every girl adores every cat.

Every cat is mangy.

Whoever adores something mangy is a fool.
So every boy loves some fool.

In this case, unlike the preceding one, both relational expressions must be

analysed. But, as we will see, ‘adores every cat’ must have an unanalysed
Tepresentation as well. The first premise is diagrammed as

*B

1

G
Adding the second premise, we have
‘B
1
? «a every C
a
&

The thirg Premise gives us

B
1
E____’_-a every C
B
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Now, the fourth premise is diagrammed as

asome M
L]

sE

Clearly what is missing to connect the two diagrams is a representation of
‘Whatever adores a cat adores something mangy’. And, in fact, this does

hold, given the third premise and our Rule R, for Rule R explicitly sanctions
changing a diagram like

*a every C
a
] .M
C
into
aevery C

. *a some M
a

. ‘M

C

SO’_ instead of trying to add an F-line to the M-line (a mistake, since ‘Every
Mis an F” is not a premise), we change the last diagram for this argument

into the following (which does not add more information and is merely 2
rearrangement):

el
1
aevery C
L o °a some M
a
Y .M
C

For then we can add a representation of ‘Every adorer of some M (mangy-
thing) is an F (fool)’ correctly and, thereby, show how the conclusion,
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‘Every B (boy) loves some F (fool)’ is already represented:

‘B

1
G aeveryC asome M

oF

‘M

¢

And notice that this final diagram also contains a very clear reprgsentatlon
of the intermediate conclusion that many might think is the most 1mp03'tant
one for the argument—namely, ‘Every girl adores something mangy .

We have adopted the convention that any arrow that touches the
right terminus of a line touches every point on that line; an arrow that
touches a line only at a point left of the right terminus touches that l‘mf’,'at no
other point. Yet the presence of repeated references raises the possibility of
counter-examples to the second part of our convention. Con51‘der .the
statement ‘Some barber shaves some barber’. If we diagram this using
‘Some boy loves some girl’ as a model—that is,

‘B
1
G
We get this:
‘B,
8
.Bz
. But
Wlhere B, represents shaving barbers and B, represents shaVe_d barrt:‘?l;lsst ole
+<&ly, B, and B, must denote the same objects. After all t Zv}eB Jrnust be
idar °r shaves himself then the statement is true. In fact, 5 (aszwe have
entical lines. Let us represent barbers, then, by 2 single lin®

alw . wing an arrow
o;ys done). Then our statement can be diagrammed by drawing
One nonterminal point to another. Thus:
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Here the distance between the base and the head of the arrow may be equal
to or greater than zero; equal to zero if some barber shaves himself. This last
suggests that we have a preliminary way of diagramming the statement
‘Some barber shaves himself’:

A

and the statement ‘Every barber shaves himself’:

¥

B

But how, given our right terminus convention, do we diagram ‘Every barber
shaves every barber’?

What is required for us to distinguish diagrammatically between
statements of the form ‘Every X is R to every X’ and ‘Every X is R to itself’
is an additional convention. Our new convention will involve the repre-
sentation of pronominal expressions. Consider the inference ‘Some girl is
loved by every boy. She is lucky. So some boy loves something that is
lucky’. Here, specific reference has been made to some girl (i.e., to a certain
girl rather than to some girl or other). Then a pronoun is used to make
subsequent reference to that very girl. We don’t know her name, but we can
give her an arbitrary, variable one (‘she’). Let us agree to label every
unnamed individual to which specific reference is made with a small roman
numeral. That label can then represent the pronoun in subsequent,

anaphoric pronominal references. For our sample inference, we can diagram
the first premise initially as

G

But, since the reference to some girl is specific, we will label it:

214
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Q

The second premise says that she (I, the girl loved by every boy) is lucky.
Adding this yields

Consider next the argument ‘Some boy loves a girl. She hates him.
So he loves a hater of him’. We diagram the first premise, adding the
pronoun labels for subsequent use:

Adding the second premise, we get

G

.
ii
. ‘
T.h ® conclusion is diagrammed here once we recognize that ‘hates

Im’—that js, 4
1

RN
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is a simplification of ‘is a hater of him’—that is,

o

h

*hi

This same simplification allows us to diagram ‘Some boy loves every girl.
They hate him. So some boy loves a hater of him’:

ol

Next, consider the statement ‘Every owner of a donkey beats it’.”
Analytically, every owner of a donkey owns a donkey:

*0 some D

o

yoto

It, the donkey so owned, is beaten by its owner. So

=

i

We are adopting the convention of labelling individuals to which
specific reference is made by small roman numerals, which are then used to
represent subsequent pronominal references. This convention permits us t0
diagram, now, ‘Every barber shaves every barber’ and ‘Every barber shaves
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himself” as follows:

Every barber shaves every barber:

‘B

Every barber shaves himself:

w

Now, since ‘Every barber shaves every barber’ entails ‘Every
barber shaves himself’, we might justify this by a rule (called “i-insertion”
by an anonymous reader) analogous to existential instantiation in the
standard predicate calculus. Such a rule allows us to pronominalize at will
by marking any point on a given diagram line with a roman numeral. It must
be noted that once a pronoun is so marked it cannot subsequently be ignored
(otherwise one might derive, e.g., ‘Every barber shaves every barber’ from
‘Every barber shaves himself’). We would diagram the valid argument
‘Some barber shaves every man. Every barber is a man. So some barber
shaves himself” as follows. Second premise:

B
o M

Adding the first premise:

minal convention

(ie., ‘Some b " Gi no
7 arber shaves every man’). Given our pro 1
- ad the conclusion

IInsertion) and our right terminus convention, we can e
directly from
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In particular, the latter convention permits movement at the arrowhead to the
left (with the i-point as its left limit). In other words,

Next, consider the statement ‘Iago is a hater of a lover of Desdemona’.
Leaving ‘hater of a lover of Desdemona’ unanalysed, we have

I *h some 1D

Here Iago (I) is an individual member of the set of things that hate (h) some
lover of (I) Desdemona (D). We could analyse the relation here first as

I *h some 1 D
h
1D
where
h
‘1D

represents ‘hates a lover of Desdemona’. Further analysis yields
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I-b somelD

lh
*1D

1

I

*D

By suppressing some of the analytic content here, we could simplify this as

I.

Finally, consider the argument ‘Every lover of an adorer of 2 cetl)t 1s
afool. Every boy loves some girl. Every girl adores some cat. So every boy
isa fool’. We diagram the second premise simply as

*B
1

. ; d the
There is no need to analyse ‘adores some cat’, sO W€ can ad

Tepresentation of the third premise to give us

*B
1

o -3 SO C

G

Now, by Rule R, we can add
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B
. ] some a some C
1
C °a some C
G

Finally, we add the first premise to get

B 1some a some C 5

. *a some C

G

from which we can read the conclusion directly.

Let us note (under the prompting of our anonymous but friendly
reader) that negative relationals can be diagrammed by our method. First,
we must recognize that, as with nonrelational terms, relational terms have
corresponding negatives. Consider ‘Some boy does not like every
vegetable’. Given no contextual clues, the sentence is ambiguous (in at least
two ways), between (1) ‘Some boy dislikes every vegetable’ and (2) ‘Some
boy fails to like every vegetable’. The difference here is due to the scope of
the negation. In (1) only the relational term ‘likes’ is negated (i.e., ‘Some
boy does not-like every vegetable’). In (2) the entire relational predicate
‘like every vegetable’ is negated (i.e., ‘Some boy does not-(like every
vegetable)’), an O form. We can think of ‘dislike’ as the logical contrary of
‘like’. Such relationals are diagrammed just as nonnegative relationals are
diagrammed. Thus, (1) can be diagrammed as

‘B
nonl

Vv

(2) can be diagrammed as a simple O categorical:

B
slevery V
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The real value of recognizing negative relationals is seen when we approach
inferences in which such expressions play logically effective roles. Consi.der
the argument ‘Paris loves Helen. Every Greek fails to love every Trojan.
Helen is a Trojan. So Paris is not a Greek’. The third premise is dia-

grammed as

()
He 0 I T
Now (without accounting for the relations between contrary and con-

tradictory negative relations) we can diagram the second premise (along
with the third) as

(i1)

G
nonl
He ;
Adding the first premise, we have
(iii)
G
|
P nonl
1
- T

ng how we know th_at th.e

then our conclusion 1§
e are (indeed, must
the G-line without

Atthis point, the question naturally arises concerni
-Point is nor on the G-line. For if it is not,
ﬁ'é;g“"‘;“ed. First, note that the I-line and the nonl-lin
Parallel. Now, we could not diagram the P-point on
contradicting the first premise. Sgo. the only way to .dlagrax.n alalmth(rﬁe;
Premises consistently is to keep the P-point off the G-line. .Dlag; e
cresents the simplest and most perspicuous way of doing this, an
the conclusion is easily read.

ompound
Letus tum now to the diagramming of compound statements. Comp

P
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statements of forms ‘p and q’, ‘p and not q’, ‘if p then q’ and ‘neither p nor
q’ could be exhibited using Venn-type diagrams, where the circles are
labelled ‘p’ and ‘q’ and each is taken to represent all states of the world for
which the labelling statement is true. Truth tables and truth trees have
generally supplanted the use of diagrams for analysing inferences involving
compound statements. Nonetheless, my linear diagram system can extend
to compounds, permitting an easy geometric representation for inferences
involving such statements. Besides, the initial idea that there ought to be
a single diagram system for all sorts of inferences is a sound one and mirrors
my Sommersian claim that a single logic of terms suffices for both analysed
and unanalysed statements.

We begin with some preliminaries. Noncompound statements
(symbolized by appropriate lower-case letters) will be diagrammed by line
segments labelled at their right termini by statement symbols. Thus, for
example, a statement symbolized by ‘p’ will be diagrammed as

*P

Each point on the line could be taken as a p-state. Again, to assert or state
‘p’ is to claim that the state(s) that make it true (the p-states) are among the
states that obtain—that is, characterize the domain of discourse—the world.
Thus, to assert both ‘p’ and ‘q’—that is, to assert ‘p&q’—is to assert that at
least one of the states that obtains is both a p-state and a g-state. In other
words, ‘p&q’ is true whenever the p- and g-lines intersect:

Lo ol

.What‘ is wanted, of course, is a way to represent states that obtain. Let us
imagine that all line segments are in a single plane. For practical purposes,
Wwe can assume that the plane is finite in area so that it has a central point (it
is easiest to think of the plane as having a circular perimeter). Assume as
well that the plane is bisected along its vertical axis, resulting in a positive
(right) sub-plane and a negative (left) sub-plane. Let us label the central
point ‘T’., and think of lines extending from T to the right at any angle
except ninety degrees vertically. We will call the right sub-plane of our
plane the ‘T-field’. Let ‘F’ also label the central point. Lines from F
extend to the left in just the way that lines extend to the right from T. We
i call the left sub-plane the ‘F-field’. T will represent those states that
obtain. To make a truth claim by the use of a statement is to claim that the
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state of affairs expressed (signified) by lhat_ stgtement obtains (i.e., .that the.
statement is true, that the line representing it hes. in the. T-field). Tis truth,
F. naturally, is falsehood. In the left, or F-ﬁeld.‘ lines will be labelled at thex;
]ejft rather than right terminus. A very rough picture of our plane would loo

like this:

(Fr

e T-field and the right

i ical li ' imit of th
The important vertical line here is the left limi b as sbigle lme i

limit of the F-field. We can, for convenience, think 0
is the T-line or the F-line.

o : ‘v . Thus:
To make a statement using ‘p 1510 claim that ‘p’ 1s true

o assert that

: -point.) T
(Here we take the mid-point of the vertical to be the T-point.) d that both

: . 4 'ne, an
Pand q is to claim that ‘p&q’ is true, that T is on i
lines intersect at T

i -state,
laim that no p-state 15 8 g-stal

Todeny 2 conjunction (e.g., ~(p&q)) is t0 € hat they are parallel:

that the p-line and g-line do not intersect, t

——
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‘P
°q

Since no statement and its negation are ever both true together, the law of
noncontradiction guarantees that for any ‘p’

‘P

"

Excluded Middle is guaranteed by the bifurcation of our plane, so that any
line segment must lie in either the T-field or the F-field, either to the left or
to the right of the vertical.

To say that two line segments are parallel is not to suggest that they
lie in the same field. Since every line segment in the T-field must have T as
its left terminus (and F as its right terminus if in the left field), no two line
segments in a given field are ever parallel. Any two parallel line segments
must, in fact, be colinear but not coplanar; they must lie in opposite fields.
Nonetheless, we will adopt the convenient convention of representing
parallel lines in the usual way unless their truth-values are known. Thus, in

general we know that

P

S

But, knowing that ‘p’ is true—that is,

‘ :

we likewise know that ‘~p’ is false—that is,

IT ALL ADDS UP

This suggests that we can represent the negation of a statement, say ‘p’, in
two equivalent ways:

The law of double negation can be diagrammed in three steps:

() | L

(2)

3)

: , . ossible truth-
With negation and conjunction, we could define all other pn its own. To

fun.ctional connectives. But let us introduce the condit'lontzl ?all + states e
claim that q on the condition that p, or ‘p> q’, is b0 claim 4
Grstates. So we can diagram such a conditional as

 GURMNREEE

junctive
(Notice how the common diagrams for I categoric (s, reinforce

: =gt tatemen )
| Statements, and for A categoricals and conditional s of a logic of

| Sommers’s claim that the logic of compound statements 15 part

—
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terms.)

I now introduce some other important principles of equivalence,
which will apply to our diagrammatic analysis of inferences to come. We
saw above that

and

are equivalent. If we take T and F to be contradictions of one another, then
we have, in effect, allowed a pair of points on a line segment to exchange
places while reversing their signs of polarity (negated/unnegated). Indeed,
this is just the principle of contraposition:

—2 oq - ~lq i p

which holds for any pair of points on a given line segment.

Another principle governing my diagrams holds that any pair of
intersecting line segments can each rotate by any degree around the point of
intersection so that they exchange relative positions. So, in general,

‘P °q
oq -p

and specifically,

IT ALL ADDS UP

This “principle of rotation” guarantees commutability for conjunction.
Finally, a third “principle of composition/decomposition” holds
that

= *(p&q)

°q

This principle guarantees laws of conjunctive addition and si.mpliﬁcatlon.
It also guarantees conjunctive association, since the following three are
equivalent:

|

o ¢

‘P

°q
T

<.p

*(q&r)

We will now examine some examples of inferences l: o;;erﬁtlz
illustrate how they are analysed by the use of linear dla.gramsih f’es u{ting
diagramming of all premises is followed by an inspection i ed already.
‘Iiéagram to see whether or not the conclusion has ll?zen diagramme

50, the inference is valid; otherwise, it is invall Xy e d to

A simple modus ponens argument f0@ is easily dllagrz‘ig:maes

show its validity. First, we diagram the unconditional premiseé B>

i
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The conditional premise demands that all p-states be g-states, so that the
p-line must be a (possibly proper) part of the g-line. Adding this gives us

.
°
0

Since the T-point extends at virtually any angle to the right, ‘q’ is on a line
intersecting T. So the conclusion, ‘q’, has already been diagrammed.

While the diagram for a modus ponens argument form falls in the
T-field, one for a modus tollens argument form will fall in the F-field. The
premise ‘~q’ can be diagrammed in two equivalent ways:

@ --q (i) qe

We choose the second way in this case, since it allows us to add the diagram
for the conditional premise in an easy and obvious way:

e |

|

(Using (i) and contraposition would not have meant much more difficulty.)
. Consider next an example of affirming the consequent. Dia-
gramming our unconditional, ‘q’, we have
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According to the conditional premise every p-state is a g-state, so that the
p-line must be a part of the g-line. So, either

But, as we cannot know which, we cannot have already diagrammed the
conclusion.

A second way to illustrate the invalidity of affirming the con-
sequent would be to diagram the unconditional and then the contrapositive
of the conditional—that is,

°q

. ‘P
~q

S.ince the ‘q’ and ‘~q’ lines must be parallel, the conclusion cannot be
diagrammed.

Hypothetical syllogisms are diagrammed in an especially simple
and obvious way. Let ‘p>q’ be our first premise.

4 °q

Adding our second conditional premise, ‘q> I’ 8IVeS US

ol . diagrammed.
And we see at once that our conclusion, ‘p>r’, 1S already diag

Let us look now at an argument of the form
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First, we paraphrase the disjunction as a conditional (‘~p> q’). Our
diagram, then, is a familiar one:

=D

illustrating validity.
Let us consider next a (slightly) more complex example:

p&(rvq)
o 00 Al €
~q

First, we diagram the conjunctive premise as

b

*(rvaq)

Next, the second premise is paraphrased as a conditional, ‘p> ~r’, and
diagrammed:

‘tvyq)

Paraphrasing ‘r v q’ as ‘~r>q’ now requires

IT ALL ADDS UP
P g
. . oq

which shows that the argument is invalid, since the conclusion is not
—indeed, cannot be—diagrammed.
Finally, one last example:

(p&q)>r
~s

RLERoy
~q

The third premise is diagrammed as

‘ op

|

The second premise is diagrammed as

|
|

Which, added to the first premise, yields
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The first premise can be added to give us

‘P

o1

.%

o g

which we know is equivalent by contraposition to
P

o1

\-~(p&q)

From this we know, by modus ponens, that

*~(p&q)

Thus the p- and g-lines must be parallel. So:

The argument is valid since the conclusion has been diagrammed.

Unlike the case for syllogistic, there have actually been a number
of attempts to use linear diagrams of one sort or another to display and
analyse inferences involving compound statements. A truth tree, for
example, could be viewed as a kind of linear diagram. Frege’s well-known
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but rarely used ideography introduced in the Begriffschrift (cf. Murawski,
1988-89), while not meant to serve as a method for diagramming, could,
however, be taken as another example. As we have seen, the system of
symbolization for logic invented by Frege was never, in fact, accepted by
anyone else. Peano’s scheme became the dominant system of notation for
the majority of mathematical logicians; Russell’s popularity and the
influence of Principia Mathematica, which made use of Peano’s notation,
were mainly responsible for this. But Frege’s attitude toward his critics and
his excessive pride in his system also contributed to the general refusal by
others to use it. Most of those who considered Frege’s symbolization
claimed to reject it because of its great complexity and because, they often
said, it was too difficult to print. Peano’s system, in contrast, was simple
and was easily printed. Nonetheless, Frege’s system owed much of its
apparent complexity to the fact that, unlike alternatives, it was not only a
system of logical notation but, simultaneously, a system of illustration of the
content of every statement using horizontal and vertical lines. Suffice it to
say, when seeking clarity (and support) it is probably best to keep the tasks
of symbolization and diagrammatic analysis separate.

Let us review very briefly Frege's way of symbolizing (ie.,
diagramming in the sense mentioned above) statements and their
compounds. First, he makes use of negation and conditionalization as his
only primitives. Each statement is represented as a horizontal line (as in my
system), and the sign of negation is a small vertical line orthogonal Fo and
below the statement line. The sign of assertion is a vertical line to whlch‘the
statement line is perpendicular at its left terminus. It resemble_s my T-line.
Subordinate sentences (antecedents) are subtended to main sentences

(consequents). Here is a comparison of some of Frege’s diagrams with my
own.

Formula Frege’s Mine

;.

R
b

p
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P

p&q °p
q
(-(p>-9) P
°‘q

aundi

p=

q
(~((pvq):~(q=p)))1p

(Note that in these diagrams Frege has need only for unnegated sentences.
This is because he takes the positive as neutral and negation as an operation
on the neutral.)

One of the advantages of my system of linear diagrams is that it
allows a simple and uniform diagrammatic method for all kinds of
inferences (i.e., those involving categoricals, singulars, relationals, or
compounds). I conclude by showing how the two kinds of linear diagrams
(those used for analysed statements and those used for unanalysed,
compound statements) can be integrated. To do this I will offer an inference
that, when appropriately analysed, involves a simple categorical, singulars,
relationals, and a compound statement. The inference is

Every logician is wise.

Ed is a logician.

Some mathematician admires whatever is wise.

If Ed is admired by any mathematician, then some
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mathematician is a fool.
Therefore, some mathematician is a fool.

The first three premises are diagrammed together as

(1) M

For now, let us diagram the last premise, the conditional, as

(ii)

*q

Using the rules and conventions established for diagramming analysed
statements (especially: if an arrow terminus touches a line it touches every
point on that line to the left, and a converse of a relational results from
reading its terms in an order other than tail-to-head), we can conclude from

():

M

(i.e., ‘Ed is adiired by some mathematician’). Indeed, sin;e alh'zl;)e
Premises in (i) are asserted (claimed as true), we can add the T g m; tis ’
and therefore to (iii) as well. Since (i) is the antecedent ot

(iii.1)
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Notes for Chapter 4

by modus ponens from (iii.1) and (ii) we get

I A substantial portion of this section comprises Englebretsen (1992). It
appears here by permission of the editors of the Notre Dame

Journal of Formal Logic and the University of Notre Dame.
\ 2 See especially Abeles (1991), Armstrong and Howe (1990), De Morgan
q (1966, esp. “On the Syllogism 1I”), Edwards (1989), Gardner and
Haray (1988), Hubbeling (1965), Karnaugh (1953), Keynes
» (1906), Marquand (1883), Peirce (1931-35, “Existential Graphs”
in vol. 4), Shin (1995), Smyth (1971), and, of course, Venn (1971).
o ofc ST \ A thorough survey of diagram systems for logic is found in
Gardner (1982). A system of diagrams motivated by purely \

(iv)

ontological rather than logical considerations is found in Smith |
(1992). |

3 Discussions of possible Aristotelian diagrams are found in Ross (1965: i
301-2) and in Kneale and Kneale (1962: 71-72). Seealso Flannery ‘\
(1987). “‘;

4 See Leibniz (1966b: 292-324). \

S Lambert (1965: 111-50). Critiques of Lambert’s system are found in Venn I
(1971: 504-27), Peirce (“Existential Graphs” in 1931-35, and i
Keynes (1906: 243-47).

‘ $ Rybak and Rybak (1976, 1984a, 1984b) use a version of Kamaug}'l Maps
to analyse inferences involving more than four terms, smgular
terms, compounds, and relationals. However, their system is far
from simple and perspicuous, requiring arguments with .many terms
to be “split” (1976: 473), large maps t0 contain discf)ntu'luous f:?lls
(1976: 472), and arguments with relationals to require, i addmion
to a series of supplementary rules, 2 complex ‘“streaming
procedure” (1984b: 269-71). Asan example of how my §ystem
compares favourably to the Rybaks’, consider. their diagram
(1984b: 272, fig.1) for the argument: ‘Some botanists aré eccentric
women. Some botanists do not like any eccentric p’erSOH~
Therefore, some botanists are not liked by all botanists. TI:;
linear diagram is simpler, faster to construct, and far easier to reac:

E and w nonl
E

" Geach (1962: 116ff) has an important discussion of such sentences:

s E
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