3 Lines of Reason

3.1 New Lines (Smyth and Pagnan)

[T]he syllogism admits of a graphical representation which is as suggestive as a diagram of
geometry.
De Morgan

We saw above that, as Wesoly’s research suggests, Aristotle might well have used
some sort of diagrams using labelled line segments to illustrate the forms of per-
fect syllogisms. What is certain is that by the 17" century logicians had begun
projects designed to use diagrams not only to reveal the forms of syllogisms
but to provide illustrations of syllogistic reductions. It appears that Leibniz (fol-
lowed then by Lambert) was the first logician to attempt such a system of dia-
grams for syllogisms based on line segments rather than closed plane figures
such as circles. Yet, in the long run, systems of logical diagrams based on the
use of closed figures (such as those of Euler, Venn, and Peirce) won out. As
we have seen, there was a significant decline in interest in logic diagrams during
the first several decades of the 20™ century. Nonetheless, we have also seen that
there has been something of a “renaissance of diagrammatology” of late. Not
surprisingly, attempts to develop systems of logic diagrams based on the use
of line segments have been part of that renaissance. One might consider M. B.
Smyth’s “A Diagrammatic Treatment of Syllogistic” (Smyth 1971) as an early set-
ting of the stage for this part of the renaissance.

Smyth proposed a system of “directed graphs” that could effectively be used
to represent standard categorical propositions, with the restriction that they con-
tain no complex, negative, or empty terms (Smyth 1971, 483). The use of such a
system allows one to “read off” from a graph of an arbitrary finite set of such
propositions all logical consequences of that set. Soundness and completeness
proofs for the system are briefly sketched (Smyth 1971, 485). Smyth also explores
what he terms “the general structure of valid syllogisms” (Smyth 1971, 485 - 488).
So, what is a directed graph?

A directed graph is a diagram in which each premise of an argument is rep-
resented. Each term of a proposition is represented by a point (“vertex”) at one
end of a line segment that may or may not contain a directional arrow, an inter-
ruption, or another term. This is best understood by looking at how the standard
categoricals are represented.
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A (Every ais b): e 44— b
E(Noaisb): a._| |_.b

1 (Some ais b) a < X < b
0 (Same a is not b) a < X [ | b

Figure 3.1: Directed Graphs of A, E, I, and O

It’s obvious that Smyth’s notational and graphic system is hardly simple.
And there is more. In diagramming an argument, Smyth was intent on guaran-
teeing that the directed graph generally conforms to a shape that has a number
of distinct “branches.” This is achieved by representing terms that are positively
connected to one term (i.e. by line segment containing a directional arrow) but is
negatively connected to another term (i.e. by an interrupted line segment) as a
line segment that is bent from the horizontal at its midpoint. Such terms are la-
belled on a graph at their midpoints. An example of a directed graph from Smyth
(Smyth 1971, 484) illustrates this.

Everyaisb || c

Nodisc

Every bisd b

a

Figure 3.2: Directed Graph of an Argument

The conclusions that can logically be drawn here are those propositions that
can be read off. How? A vertex is a descendant of another vertex if there is a pro-
gression of directed line segments leading from the latter to the former. Every
vertex is a descendant of itself. Two terms that are on interrupted branches of
a graph are mutually excluded.

(i) If ais a descendant of b in a graph, then Aab can be inferred.
(ii) If a and b are mutually excluded in a graph, then Eab can be inferred.
(iii) If a and b have a common descendant, then Iab can be inferred.
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(iv) If a has a descendant that is excluded from b in a graph, then Oab can be
inferred.

So, the conclusions that can readily be seen to have already been diagramed
(thus read off) are those that just happen to be determined by the above
rules. In the case of the three premises diagrammed in Figure 3.2, one can initial-
ly draw the following conclusions:

Aad, by (i)

Eac, by (ii)

Ebd, by (ii)

and, trivially: Aaa, Abb, Acc, Add, Eca, Edb.

It will be useful later on in this chapter to make comparisons between Smyth’s

directed graphs and other similar linear diagram systems. To that end, consider
for now directed graphs for the four Aristotelian perfect syllogisms.

S

Figure 3.3: Directed Graph of Barbara

S

Figure 3.4: Directed Graph of Celarent
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S

Figure 3.5: Directed Graph of Darii

Figure 3.6: Directed Graph of Ferio

The following should be noted. The use of what Smyth calls “arcs” (line seg-
ments containing directional arrows) is never clear. Thus, the graphic represen-
tation of ‘Some a is b’ looks as if it could be read as ‘Every a is x and every x is b’
unless the role of the unknown singular term, x, is more fully specified. Also, in
considering directed graphs, the limits imposed on them should be kept in mind:
no negative terms, no empty terms, and no complex (thus no relational) terms.

In the period following Leibniz and Lambert, it would seem that Smyth was
a pioneer in the area of linear logical diagrams. His work appeared only in a brief
essay in 1971. It would be two more decades before another attempt at a system
of diagrams for logic based on the use of points and line segments (i.e. linear
diagrams). That system was first presented in 1992, and, like Smyth’s essay,
this one also appeared in the Notre Dame Journal of Formal Logic. The next sev-
eral sections of this chapter will focus on that system. But, first, for its value in
its own right and its value for comparisons, we will jump ahead to the 21* cen-
tury and look at the system of linear diagrams developed by Ruggero Pagnan.

In recent years, Pagnan has been engaged in a program that is rich in prom-
ise (Pagnan 2010, 2012, 2013a, 2013b). The heart of this program is a system of
linear logical diagrams that is meant to be at once algebraic and graphic. The
result is a heterogeneous formal system of logic. We offer below a brief summary
of Pagnan’s system, highlighting some of its main elements, and provide exam-
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ple diagrams to illustrate it. There is of course more to his program than this
summary of his system suggests. For example, he has shown (Pagnan 2013b)
how his account of syllogistic can be seen as a part of an intuitionistic version
of the sequent calculus of linear logic, and he extends the account, given in ear-
lier papers, of De Morgan’s syllogistic with “complemented” (negated) terms. In
each of his papers (especially Pagnan 2010), with due credit to Smyth, who had
done the same for his own system, Pagnan illustrates how his system can extend
to n-term syllogisms. However, it is his core system for diagramming syllogisms
(admitting negated terms) that requires our attention now.

Pagnan calls his system “SYLL” a system that is heterogeneous in that it
makes use of both graphic and linguistic syntactical objects. Terms are represent-
ed by letter labels (called “term-variables”) and their relations in a given state-
ment by a series of directed arrows (=,<) and “bullets” (dots: @). Its diagram-
matic representations are linear, making no use of any closed curves. In
effect, a well-formed SYLL diagram of a categorical statement is a pair of term
letters separated by a finite list of arrows, themselves separated by a bullet or
a term letter. The four standard categoricals are represented as follows:

A: S>> P,

E:S> @ <P,

:S<@®@->P

0:S<@®@-> 0P

According to De Morgan, “In the form of the proposition, the copula is made as
abstract as the terms: or is considered as obeying only those conditions which
are necessary to inference” (De Morgan 1966, ix). As Pagnan notes, the series
of arrows and bullets between such pairs of terms amounts to an abstract logical
copula, (Pagnan 2012, 35). One could read the categorical diagrams as, corre-
spondingly, ‘P belongs to every S’, ‘not-P belongs to every S’, ‘P belongs to
some thing that S belongs to’, and ‘not-P belongs to some thing that S belongs
to’. Pagnan also permits statements to be equivalently represented by the “rever-
sals” (mirror images) of their usual diagrams, making use of either kind of rep-
resentation throughout Pagnan 2012 and 2013b. Thus an A categorical could be
represented as: P < S, so that the arrow here could be read as ‘belongs to every’.
Note that, reversed or not, the bullets — and their positions relative to the direc-
tions of the adjacent arrows — carry substantial logical weight. For example, > @
X (or its reversal) can be taken (though Pagan doesn’t say so) as diagramming
‘not-X’; a bullet between the tails of two arrows could be taken as the represen-
tation of a particular (existential) quantifier; and X - ... (or its reversal) can be
taken as diagramming ‘... belongs to every’.
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In SYLL, syllogistic inference amounts to concatenation and reduction. “Two
or more syllogistic diagrams can be concatenated and reduced, if possible, by for-
mally composing two or more consecutive and accordingly oriented arrow symbols
separated by a single term-variable, thus deleting it” (Pagnan 2013a, 36). If such a
concatenation and reduction is possible, then the syllogism is valid; otherwise it is
invalid. Concatenation and reduction works, essentially as follows. The two prem-
ises are diagrammed and placed adjacent to each other in such a way that the
term common to each (viz., the middle term) is the right-most term of the premise
on the left and the left-most term of the premise on the right. Then the two tokens
of the middle term are amalgamated into a single token, resulting in a new, single
diagram. Finally, the middle term is deleted representing the conclusion and pairs
of commonly directed arrows are amalgamated. Often, in practice, the first step is
avoided by simply diagramming the premises together while amalgamating the
two middle term tokens. For illustration, here are the syllogistic diagrams of the
four perfect syllogisms.

Barbara Celarent Darii Ferio
S>M->P SOM>@<P SC@®@->M->P SCO->M>@CP
S>P S>O@<P S<@®->P S<0-> 0P

Figure 3.7: SYLL Diagrams of the Four Perfect Syllogisms

Imperfect syllogisms can be given similar graphic treatment, reducing each
of them to a perfect syllogism by applying rules of conversion, premise re-order-
ing, and term substitution. In each case, a necessary (but not sufficient) condi-
tion for the validity of any diagrammed syllogism is that the diagram of the con-
clusion contains as many bullets as the conclusion (Pagnan 2013a, 36).

So-called strengthened (sometimes weakened) syllogisms can be treated in
SYLL as well. According to Pagnan, existential import is not implicit in any cat-
egorical other than one of the form ‘Some X is X’ (‘Something is X’, ‘There is an
X’, ‘Some thing is X’, ‘There exists an X’, etc.). This is always the form of a con-
tingent statement, and the diagram for which is X < @ - X. Its contradictory, ‘No
X is X must be contingent as well. Moreover, since ‘Some X is not X’ is a contra-
diction, ‘Every X is X’ must be tautologous. Pagnan calls X-> X and X < @ > X
the “laws of identity” (Pagnan 2013a, 40). Strengthened syllogisms require an
implicit premise of this form. Consider the fourth figure syllogism Baramtip.
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The two universal premises must be supplemented by an implicit premise of the
form ‘Some S is S’. Diagrammed in SYLL, this yields:

SCO@>SIM>P

Sce>P

Figure 3.8: SYLL Diagram of Baramtip

Note the new rule applied here. Two tokens of a given term letter flanking <
@® - can be amalgamated. Thus ... X < @ - X.. simply reduces to ... X ... ..

Indirect reductions, as usual, assume the contradictory of the conclusion
and then derive an explicit contradiction. Such a contradiction will have the
form X < @ > @ < X. For example, here is a diagrammatic proof that an E state-
ment and the corresponding I statement are contradictory by deriving a contra-
diction from the pair of them:

SCO®>P P>@¢S

SCO0>0<S

Figure 3.9: SYLL Proof that E and | are Contradictory

Note that in this derivation that 1) the E premise is used in its equivalent re-
vered form and that 2) the conclusion has the form of a contradiction, viz. X < @
> @ < X.

One of the ways Pagnan wants to extend traditional syllogistic is by incorpo-
rating “complemented” (negated) terms (Pagnan 2013a, 49), which he introduces
in the context of his partial adoption of De Morgan’s spicular notation. De Mor-
gan used the lowercase form to represent a term’s negation (thus ‘a’ is the neg-
ation of ‘A’). This would allow a slight simplification in Pagnan’s formalism. An
E categorical could now be represented as S - p and an O categorical could be
represented as S < @ - p. De Morgan’s spicular notation uses left and right pa-
rentheses to symbolize quantity and dots to indicate affirmation or denial. In the
spicular system of logical notation, X) and (X are meant to formalize ‘every X’
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while X( and)X formalize ‘some X’; an even (or no) string of dots between paren-
theses (whatever the orientation of the parentheses) indicates affirmation and an
odd string of dots indicates denial. For example, an E categorical would be sym-
bolized as S)@(P and an O categorical would become S(@(P. Using De Morgan’s
notation for term negation, the four standard categoricals can be more simply
represented as follows;

A: S) )P
E: S) )p
I: S()P
0: S()p

Pagnan claims that his diagrammatic system supports De Morgan’s formal sys-
tem:

The possibility of making a distinction between a term being universally or particularly
quantified, as well as between affirmative and negative modes of predication is supported
by the diagrammatic formalism [SYLL] ... together with the possibility of handling comple-
ments of terms. Indeed, we can look at the symbols @, - and < as to fundamental ones. In
a diagram built as a combination of such fundamental symbols, a term-variable X is uni-
versally quantified if it enters in it as X - or < X, whereas it is particularly quantified if it
enters in it as X < or - X. The complement of X is represented as X > @ or @ < X, both of
which may be abbreviated as x. (Pagnan 2013a, 50)

For the most part, Pagnan is right here. We have already noted how the right
combination of arrows and bullets can represent term negation. But Pagnan
(and sometimes De Morgan) is wrong in thinking that a combination of an
arrow adjacent to a term always indicates quantity, for this would commit him
to the quantification of predicate-terms. For example, the universal affirmation,
X - 'Y, would have to be interpreted as ‘Every X is some Y’. What Pagnan’s arrows
(and De Morgan’s parentheses) actually indicate is the distribution value (distrib-
uted or undistributed) of the term to which they are attached. Put simply, terms
at the tails of arrows are distributed; terms at the heads of arrows are undistrib-
uted. In order to see this more fully one must get clear about both distribution
and the notion of a logical copula in a logic of terms (such as syllogistic).
These things will come under much closer scrutiny in subsequent sections of
this chapter. But, before going on to those sections, a few general comments
and observations about SYLL are in order now.

The SYLL system guarantees that all diagrams are unambiguous. It can ac-
commodate n-term syllogisms. It represents the symmetry of E and I form state-
ments in an explicit and obvious way. SYLL accurately takes a strengthened syl-
logism to be an enthymeme whose tacit premise has the form ‘Some X is X,
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‘There is an X’, ‘An X exists’, etc. (X < @ > X). SYLL dispenses with the tradi-
tional subject/predicate distinction. As well, SYLL is able to represent term com-
plementation (term negation). Finally, SYLL implicitly (but unadmitted by Pa-
gnan) is able to represent the distinction between distributed and
undistributed terms. These are all important characteristics that are wanted in
any viable formal account of syllogistic logic. Nonetheless, SYLL does have
some unwelcome characteristics. SYLL provides no means of symbolically or
graphically representing the contradictoriness of a pair of contradictory state-
ments — no way to represent sentential negation. It provides no way to represent
relational terms. Furthermore, it makes no provisions for the representation of
singular terms (e.g., proper names, definite descriptions, anaphoric pronouns,
etc.). Finally, there is a feature that is most disturbing about SYLL. As we have
seen, the difference between linguistic expression and graphic representation
is a matter of degree rather than kind. Pagnan’s diagrams seem to fall on the
scale much closer to the linguistic end than to the graphic end. They look
more like logical formulae than logical diagrams. S < @ - P looks closer to
Ax(Sx & Px) than to Euler’s two overlapping circles. Indeed, the string of symbols
< @ - looks to be simply a symbolic rendering of Aristotle’s ‘belongs to some’.
Pagnan’s diagrams are linear. But are they diagrams? SYLL “diagrams” certainly
don’t appear to be graphic in any significant sense. SYLL proofs don’t seem to
rely on visual inference. SYLL might easily be construed as nothing more than
an alternative symbolic system, on a par with the standard symbolic system of
first-order monadic predicate logic.

So what is wanted in a linear (and two-dimensional) diagrammatic system
for logic? In the remainder of this chapter we will present such a system of log-
ical diagrams, one that will go well beyond previous systems in its graphic ca-
pacities. It is the system referred to earlier, the one first presented in 1992a. It
is the system called Englebretsen Diagrams (Rauf 1996, 397-408).

3.2 In Logical Terms: Term Functor Logic

All our logics are now but a shadow of what I should wish and what I see from afar.
Leibniz

When Venn developed his system of logical diagrams, he did so with the inten-
tion of providing a graphic analogue to Boole’s algebra of logic. The system of
Englebretsen Diagrams (from now on (ED) (Englebretsen 1992a, 1996) was like-
wise meant to provide a graphic analogue to Fred Sommers’ term logic (Sommers
1967, 1969. 1970, 1973, 1975. 1976a, 1976b, 1976c, 1976d, 1981, 1982, 1983a, 1990,
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1993, 2000, 2005a, 2005b, and Sommers and Englebretsen 2000). Sommers’ ver-
sion of term logic, which he came to refer to as Term Functor Logic (TFL), was
explored, defended, emended, and exploited in many places by Englebretsen
(for example, Englebretsen 1981, 1996.2002, 2005, 2015, and especially 2016b;
also Englebretsen and Sayward 2011). The key to understanding any term logic
such as Aristotle’s syllogistic logic or Sommers’ TFL is its account of logical syn-
tax.

The grammatical form of any natural language statement is determined by
the grammatical conventions of the pertinent linguistic community. Such con-
ventions (grammar rules) exhibit a variety of features that are meant to help en-
code information. Different languages make do with featuring different kinds of
information. Thus some languages exhibit a variety of tenses, others systemati-
cally encode gender, and so forth. As well, natural languages often exhibit re-
dundancy of information (for example, English marks number (singular/plural)
on both subject expressions and main verbs). Much of this sort of information is
immaterial to the interests of logicians. The logician seeks those features of a
statement that are involved in determining the statement’s role in logical infer-
ence, etc. In short, the logician looks beneath the “surface” grammar of natural
language statements in hopes of finding their logical grammar, their logical
forms. When Aristotle sought logical form, he initially followed his teacher
Plato by taking his clues about what the logical form of a statement might be
from select features of his native Greek. Plato and the early Aristotle took the
basic logical form of any statement to be a noun connected to a verb (e.g., ‘The-
atetus walks’). A logically formed statement cannot be constructed from a pair of
nouns, nor can it be formed from a pair of verbs. One noun and one verb are re-
quired. The logical form is the grammatical form minus any accidental features
that are of no logical concern. How does a noun connect with a verb to form a
statement rather than just a pair of words? How is unity achieved? According to
Plato, the noun and the verb “mix” in the sense that they are simply fit for one
another. Think of the verb as a board with a round hole and the noun as a round
peg fitting that hole. As it happens, two-and-a-half millennia later, that turned
out to be just the idea Frege had when he came to the problem of determining
logical form and the so-called “problem of propositional unity.” Of course
Frege took his clues about logical form not from Greek grammar (or even the
grammar of his German). His clues came from the mathematical notion of func-
tions. A function applies to one or more “arguments” to yield a new expression
that has a value. For example, the square root function applied to the argument
4, yielding an expression (V4), has the value +2. For Frege, the logical form of a
simple statement was a function (essentially a predicate), which is “unsaturated”
or incomplete (having holes) along with an appropriate number of arguments,
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“names” (essentially singular denoting expressions) that are “saturated” or com-
plete and fitting into those holes. The result is a statement whose logical unity is
guaranteed by the pegs filling the holes so that the statement is complete. Thus a
statement is, in turn, itself a peg, an expression fit for filling the holes in “high-
er” predicates (e..g., sentential “truth functions” such as ‘if...then’ and ‘or’). As
well, a statement, being the result of a function applied to an appropriate num-
ber of arguments, has a value. For Frege the value of a statement is its truth-
value (what Frege called “the True” and “the False”). Theories of logical syntax
such as these require that statements be construed as unified strings of terms ...
but there must be two fundamentally distinct kinds of terms: nouns and verbs (or
names and predicates).The logician was thereby committed to a heterogeneous
logical vocabulary, lexicon. But Aristotle eventually abandoned any such a theo-
Iy.

By the time he composed Prior Analytics, Aristotle realized that mediate in-
ference must involve at least two premises that share a term in common. Conse-
quently, at least three terms are involved in such inferences. Moreover, and most
importantly, Aristotle saw that at least one of those terms had to play a different
logical role in at least two different statements. Since a noun can never play the
role of a verb, nor can a verb ever play the role of a noun (from a logical point of
view, they are fundamentally distinct kinds of terms), logical form cannot rest on
such a distinction (see Englebretsen 1982b, 1986b). Aristotle’s solution was to
adopt a logical lexicon that is homogenous; it simply consists of terms. Those
terms certainly have grammatical features and grammatical roles to play, but
these are beside the point of logic. Any term can play any logical role that any
other term can play. So, how is a statement more than just a sting of terms?
How is it a unit — logically? Here is an example of Aristotle’s genius. Pairs of
terms are bound together to form a statement, a unit fit for the role of premise
or conclusion, by a logical copula. A logical copula binds pairs of terms together.
It literally facilitates the copulation of pairs of terms. A logical copula is a spe-
cial-duty expression (a formative, a syncategorematic expression, a logical con-
stant) whose job in a statement is manifold: it unites the terms, it determines
the quality of the statement, and it determines the quantity of the statement.
And it does this all at once. This is Aristotle’s theory of logical syntax. It is
what makes syllogistic logic possible. On this theory of logical syntax, a state-
ment is not the result of nouns/names fitting verbs/predicates; it’s a product
of pairs of expressions (terms) being bound together: not pegs fitting holes
but blocks glued together.

For Aristotle there were four kinds of glue, English versions of which are:
‘belongs to some’, ‘belongs to every’, ‘belongs to no’, and ‘does not belong to
some’. Statements made by flanking any of these with a pair of terms are cate-
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gorical. Thus, for example: ‘Humour belongs to some speakers’, ‘Reason belongs
to every man’, ‘Reason belongs to no fish’, ‘Humour does not belong to some
speakers’. Syllogistic logic is the logic of categoricals. Notice that these English
paraphrases are understandable but awkward (that was also true for Aristotle’s
Greek paraphrases). Aristotle could have eased this awkwardness by not merely
paraphrasing but by fully symbolizing, rendering categoricals in an artificial lan-
guage meant to display the logical form free of any natural language expres-
sions. Aristotle did not go that far. However, he did take an important step in
that direction. He allowed letters to stand in the place of natural language
terms. In other words, he introduced symbolic variables, such as A, B, T, etc.
to stand for different terms in different logical contexts. To this degree, Aristotle’s
syllogistic logic was a symbolic logic. Term variables certainly relieve some of the
awkwardness of the categorical paraphrases (‘H belongs to some S’ is marginally
better than ‘Humour belongs to some speakers’), but not much. Late medieval
logicians helped here. They split the copula: one fragment went with one term
and another fragment went with the second term; Next, they rearranged these
terms and fragments so that they look more like natural language statements
(a kind of logicized Latin (for a brilliant account of such a language, which he
calls “Linguish,” see Parsons 2014). Thus, for example, ‘H belongs to some S’ be-
came ‘Some S is H’. This splitting of the copula reveals two of its functions in the
statement by assigning each to a different fragment. Here, ‘some’ indicates quan-
tity and ‘is’ indicates quality (but see Englebretsen 1990b and 1997). However, it
is important to remember that quantity and quality do not characterize the terms
to which the quantifier and qualifier are assigned. Quantity and quality are fea-
tures of the categorical statement as a whole. The copula is split into two frag-
ments — but they are just that, fragments of a single quantifier. Traditional logi-
cians countenanced both split and unsplit versions of the copulae. Consequently,
categoricals with their copulae unsplit could be rendered fully symbolic by al-
lowing the copula to be symbolized using lowercase letters corresponding to
the A, E, I, O that labeled categorical forms in general. Thus: SaP, SeP, SiP, SoP.

Term Functor Logic, TFL, rests on a theory of logical syntax that amounts to
the traditional theory ... up to a point. Traditional syllogistic logic could not easi-
ly accommodate three kinds of expressions: singular terms, complex (including
relational) terms, and compound (truth functional) statements. Aristotle was
well aware of all of this. He may have had reasons to think that singular state-
ments are rarely encountered in science, but in both Analytics one can find
many examples of them (Prior Analytics 43a34-35, 47b24-25, 47h32-33,
67a33 37, 68b41ff, 69a2, 69b12-15, and Posterior Analytics 78b4—10, 90a5— 25,
93a30 - 33, 93a36 —67) (see Englebretsen 1980b). Moreover, there is good reason
to believe that Aristotle understood that just as singular terms can be predicated
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in natural language, the same holds for the logical forms of such sentences (see
Topics 15234ff). One consequence of this is that syllogistic requires no special
account of “identity statements” (Sommers 1967, 1969, 1976c, 1976d, 1982, 1990,
2000b, Englebetsen 1982a, 1985f, 1996, 2015). Post-Fregean logic takes great
pride in the notion that it can easily account for the logic of statements involving
relational terms, marking its primary advantage over traditional logic. Yet Aristo-
tle, though unable to fully incorporate the logic of relationals into his syllogistic,
was at least aware that a way to do so was required. He made a start by provid-
ing examples of inferences involving relationals and attempted to formulate
rules governing them (Topics 114a18-19, 114b40 —115a1-2, 119b3 -4, and Prior
Analytics 48b11-24; see also Bochenski 1968, 68 —69). Yet, he was never able
to see how relational statements contain more than one referential term (viz.
subject- and object-terms) (see Thom 1977 and Englebretsen 1982d). Finally,
one should not be surprised to learn that Aristotle was confident that he
could account for the logic of so-called truth-functional statements. He promised
to carry out the task but apparently never did. Aristotle gave examples of infer-
ences involving such unanalyzed (into terms) statements (Prior Analytics
53b12-24, Posterior Analytics 57a36-37, 75a2—4; see also Bochenski 1968,
70-71). What was missing was the idea that entire sentences can be treated as
(complex) terms, which allows the logic of statements to be treated as merely
a special branch of a logic of terms (see Sommers 1993 and Englebretsen 1980c).

Medieval logicians made some progress with all three of these challenges
(Parsons 2015). But it wasn’t until Leibniz’s efforts along these lines that real
progress was made. Medieval logicians tended to construe singular statements
as implicitly universal in quantity, thus fit for roles as premises or conclusions
of syllogisms. However, Leibniz realized that the quantity of such statements
could be either universal or particular, depending on the logical environment
in which they were being used (Leibniz 1966, 115). As we will see, this was far
from a minor adjustment that strengthened syllogistic logic. Leibniz also saw
that a relational expression, a relational term along with its object term (e.g.,
‘loves a philosopher’) can be taken logically as a single complex term. This al-
lowed him to analyze inferences involving such relationals as straightforward
syllogisms. He actually provided a proof of the inference ‘Painting is an art;
therefore, he who learns painting learns an art’ (Leibniz 1966, 88 -89). Three
centuries later, De Morgan dealt with a now more famous version of an inference
of the same logical form. Finally, and most importantly, Leibniz offered valuable
insights into how the logic of compound statements (e. g., conjunctions, disjunc-
tions, conditionals), the so-called “hypothetical” statements, could be incorpo-
rated into the logic of terms (see especially Castafieda 1976). He saw that entire
statements can be construed as terms. “[T|he categorical proposition is the basis
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of the rest, and modal, hypothetical, disjunctive and all other propositions pre-
suppose it” (Leibniz 1966, 16). “[A]bsolute and hypothetical truths have one and
the same laws and are contained in the same general theorems, so all syllogisms
become categorical” (Leibniz 1966, 78).

If, as I hope, I can conceive all propositions as terms, and hypotheticals as categorical, and
if I can treat all propositions universally, this promises a wonderful ease in my symbolism
and analysis of concepts, and will be a discovery of the greatest importance. (Leibniz 1966,
66)

Unfortunately (as with his systems of logical diagrams), all these Leibnizian in-
sights were generally unknown for a very long time. Some of them were inde-
pendently acquired by others in the 19" and 20" centuries (e.g., the treatment
of relationals by De Morgan and Peirce). Eventually all of them were more clearly
articulated and strengthened in Sommers’ development of TFL (Sommers 1976a,
1976b, 1982, 1993, 2000, Englebretsen 1981, 1982c, 1985a, 1987a, 1988, 1996, 2015).
Before continuing, it should be noted that Sommers’ TFL was not the only system
of term logic developed in the 20" century. For it turns out, perhaps ironically for
some, that one of the most prominent champions of MPL, Quine, also formulated
a version of term logic, Predicate Functor Algebra (PFA) (see Quine 1936a, 1936h,
1937,1959, 1960a, 1971, 1976a, 1976b, 1981a, 1981b and Noah 1980, 1982, 1987, 1993,
2005; see also Bacon 1985). Of course, he did so only to highlight the crucial role
of individual variables and the quantifiers that bind them in MPL by eliminating
them. Once eliminated, their roles had to be assigned to new formal elements,
“predicate functors.” which recursively apply to predicates to form new predi-
cates. The result was a logical syntax admitting only predicates (which, since
they are now the only kind of non-formative expression, might just as well be
called terms) and functions on them. Once rules for the logical manipulation
of formulas in the new language are provided, the result is PFA.

Quine built his version of term logic in order to highlight certain fundamen-
tal features of standard predicate logic. Sommers, by contrast, built his version of
term logic (TFL) in order to reveal the logic of natural language. Consequently,
TFL’s system of symbolization is simple, natural, and perspicuous. It preserves
a number of old (but now often forgotten) logical insights. The system of symbol-
ization for TFL rests on Aristotle’s notion of logical syntax in terms of copulated
term pairs; it admits the medieval practice of splitting copulae; it borrows and
expands on Leibniz’s insight that singular terms, when in subject or object
roles, have arbitrarily universal or particular quantity (“wild” quantity in Somm-
ers 1969 and Englebretsen 1986a, 1988); it refines De Morgan’s idea that the log-
ical copula should be as abstract as possible (De Morgan 1850 and 1966, ix, 51).
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TFL also incorporates the Leibnizian view, noted above, that the logic of com-
pound statements (truth-functional logic) can be construed as a part of the
logic of terms (Leibniz 1966, 16, 66, 78). Finally, and crucially, TFL entrenches
the twin theses that terms, logically, come in oppositely charged pairs and
that logical formatives are signs of opposition. Thus:

To reason therefore is the same as to add or to subtract, ... Therefore, all reasoning reduces
to these two questions of the mind, addition and subtraction.(Hobbes 1981, 177)

So just as there are two primary signs of algebra and analytics, + and —, in the same way
there are as it were two copula, ‘is’ and ‘is not’... (Leibniz 1966, 3)

I think it reasonably probable that the advance of symbolic logic will lead to a calculus of
opposite relations, for mere inference, as general as that of + and — in algebra. (De Morgan
1966, 26)

We shall take this suggestion of Leibniz quite seriously, and see where it leads. (Sommers
1976a, 20)

Both terms and propositions come in opposed pairs. Opposed terms are called logical con-
traries. ... Opposed propositions are called contradictories. (Sommers 1982, 169)

It is a surprising but little known fact that familiar logical words we use in quotidian de-
ductive reasoning behave in a natural language like English in just the way that ‘+’ and
‘—’ signs behave in algebra and arithmetic. (Sommers 2005a, 59)

The formal symbolic language of TFL consists of countably many uppercase let-
ters that are variables for natural language terms, the two functors (syncategor-
emata) + and —, and parentheses pairs as needed for grouping. Terms always
come in oppositional pairs (e.g., ‘happy’/’unhappy’, ‘massive’/‘massless’, ‘col-
ored’/’colorless’, ‘in the car’/’not in the car’). Term letters, then, are always log-
ically charged positively or negatively (e.g., +H/—H, +M/—M). In such cases, the
signs of term charge are unary, applying to one term. But the same plus and
minus signs can be binary (applying to a pair of terms) as well. Such binary
signs are either unsplit logical copulae or the fragments generated by a split cop-
ula. For example, Aristotle’s standard I and O categoricals could be paraphrased
as ‘P belongs to some S’, and ‘nonP belongs to some S’, and symbolized as ‘P+S’
and ‘—P+S’. Note that in this symbolization for O the ‘- is unary and the ‘+’ in
each is binary (an unsplit copula). Since A and E are the contradictories of O and
I, these latter can be negated to yield ‘—(—P+S)’ and ‘—(P+S)’. Note that the re-
sult of copulating a pair of terms is a new (more complex) term, a term which
itself can be negated (as when the particular forms are negated to yield the
new universal forms. Also, notice that, just as in algebra and arithmetic (not
to mention natural language) unary pluses are normally left tacit unless explicit
use is needed. Moreover, again as in algebra and arithmetic, the plus and minus
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signs are systematically ambiguous between their unary and binary uses (com-
pare positive and negative numerical expressions, on the one hand, with addi-
tion and subtraction, on the other).

Our versions of the A and E categorical forms look unfamiliar. We could rec-
tify that by algebraically distributing the outside minuses into the complex ex-
pression inside the parentheses. The results would be: A: ‘P—-S’ and E: ‘—P
—S’. In these formulae, the first minus in E is unary and the other minuses
are binary; they could be read as ‘belongs to every’. We could make the universal
forms even more natural looking by splitting those negative copula, in effect for-
mulating ‘belongs to every’ as ‘every ... is ...". Here the ‘every’ is a (universal)
quantifier and the ‘is’ is a positive qualifier. So, now, we can apply the splitting
procedure to A above to yield ‘—S+P’ and to E above to yield ‘—S+ —P’ (‘Every S
is nonP’), which, in turn can be taken as ‘—S—P’ (‘No S is P’). In statements with
split copulae, the subject consists of a quantifier and a term (the “subject term”)
and the predicate consists of the qualifier and a term (the “predicate term”). No
term, by itself is either a subject or a predicate. Singular terms are terms under-
stood as denoting just one individual (e. g., proper names, definite descriptions,
anaphoric singular pronouns). When a singular term is a subject term it arbitra-
rily admits either a universal or a particular quantity. If, in such a case, the ap-
propriate quantity is either undetermined or logically unimportant, the quantity
is symbolized by “*’. Thus ‘Socrates is wise’ would be symbolized as “*S+W’.

Any pair of terms can be conjoined to form a new complex term. Such con-
junction is affected by either the split or the unsplit positive copula. For exam-
ple, ‘rich and famous’ is symbolized with the unsplit + as ‘R+F’ and its equiva-
lent ‘both rich and famous’ is symbolized with the split copula as ‘+R+F’. Since
any term can be conjoined with any other term to form a complex term, singular
terms and compound terms can be conjoined with any other term to form a com-
plex term. Examples are ‘Tom and Jerry’, ‘rich and famous but unhappy’.

Relational terms are terms; in fact, they are compound terms with unsplit
copulae. Consider ‘Plato teaches some mathematicians’. It has three terms, but
every statement is, from our logical point of view, a pair of copulated terms
(i.e., a complex term). Here, ‘Plato’ is the subject term. So we can make a
start at symbolization with “*P teaches some mathematicians’. Now ‘teaches
some mathematicians’ is a relational expression, consisting of a relative term,
‘teaches’ and ‘some mathematicians’. The entire relational expression is a com-
plex term consisting of a pair of terms joined by an unsplit copula, which hap-
pens to be, in this case, ‘some’ (as in ‘belongs to some’). The full symbolization
would be “*P+(T+M)’. When a relational has another relational as one of its
terms, as in ‘Every candidate made some promises to every voter’, it can just
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as easily be symbolized. Thus, in this case: ‘—C+((M+P)—V), in which the rela-
tional term is itself a relational term.

Entire propositions are complex terms. They are the results of copulating
pairs of terms (which themselves might be general terms, singular terms, con-
joined terms, relational terms, or even propositions). Consider ‘Some philoso-
phers are logicians and every logician is rational’. Its two conjuncts can easily
be symbolized as ‘+P+L’ and ‘—L+R’. Moreover, we know we can take the
‘and’ here as an unsplit copula to form the conjunction: ‘(+P+L)+(—L+R)’. Sup-
pose our logical context does not require that propositions be analyzed into their
sub-sentential terms. Let us use lowercase letters (e.g., p, q, 1, ...) as letter vari-
ables for them. Thus ‘p+q’ for the above example. Since ‘p’ and ‘q’ stand for un-
analyzed propositional terms (compound terms) they have a charge. In this case
the charge for each is positive (so tacit). Such terms could have negative charge.
Thus ‘—p’ would be the negation (viz., contradictory) of ‘p’. Since we can refor-
mulate any complex of propositions (conditionals, disjunctions, etc.) entirely in
terms of negation and conjunction, we can symbolize all such truth-functionals
using only propositional variables along with appropriate complements of plus-
es and minuses. Thus, since ‘p+ —q’ is the contradictory negation of ‘~(p+ —q)’,
which is the form of ‘Not both p and not-q’, which in turn is equivalent to ‘If p
then ¢’, we might well symbolize the latter as ‘—(p+ —q)’. Better still would be to
drive in the external minus to give us ‘—p+q’, taking this to be the most appro-
priate symbolization for ‘If p then q’. We can deal with disjunctions (e.g., ‘p or q’)
in a similar manner to yield ‘—(—p + —q)’ or ‘— —p — —q.

Notice that the symbolization of ‘If p then ¢’ (—p+q) shares the same form as
the universal affirmation ‘Every S is P’ (—S+P). Indeed, the same holds for all of
the four standard categorical forms. ‘Some S is P’ (+S+P) and ‘Both p and q’ (+p
+q); ‘No S is P’ (=S—P) and ‘Neither p nor q’ (—p—q); ‘Some S are not P’ (+S—P)
and ‘p but not ¢’ (+p—q). In fact, as Leibniz, Kant, Boole, Peirce, and others have
noticed, the logic of terms and the logic of unanalyzed propositions are either
isomorphic, or identical, or the latter is a “special branch” of the former (Somm-
ers 1993). It is only the purely formal features (reflexivity, symmetry, transitivity)
of logical copulae (whether applied to pairs of terms or pairs of propositions)
that are of logical import. It seems De Morgan saw this when he wrote that
the copula should be construed as abstractly as possible.

One might object to the symbolic system of TFL by pointing to the ambiguity
of the plus (+) and minus (-) signs. They are allowed to play two different roles
in the syntax: they are marks of term charge (e.g., +A/—A) and they are frag-
ments of split copulae (in effect, marks of quantity and of quality). Now, while
ambiguity is often an obstacle to clear and efficient communication in natural
language, ambiguity can be a source of expressive power. This is clearly seen
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in the use of formal languages such as in mathematics. Consider Arabic numer-
ation (compared with Roman numeration). The expression 222’ makes use of
three instances of the numeral ‘2. But in each instance the position of the nu-
meral signals that it is to be understood differently from the other two tokens
of the numeral. The first is understood as ‘2x10? , the second as 2x10', and the
third as 2x10°% i.e., 200 + 20 + 2. And there is more. The simple plus and
minus signs are systematically ambiguous. They are allowed to play two different
roles: they are marks indicating whether a numerical expression is positive or
negative (e.g., +42/—42) and they indicate the operations of addition and sub-
traction. In other words, these pluses and minuses are sometimes unary opera-
tors (applied to single numerical expressions) and sometimes binary operators
(applied to pairs of such expressions). This kind of ambiguity is a very good
thing in mathematics. It is also a very good thing in the symbolic system of TFL.
Needless to say, it’s one thing to build a symbolic logic and quite another to
build a diagrammatic logic. A symbolic system adopts a number of conventions
for interpreting its expressions. Natural languages are symbolic systems. Artifi-
cial systems of fully symbolic formal logic are meant to facilitate the translation
(via appropriate intermediate paraphrases when required) of natural language
statements into well-formed (grammatically correct) formulas of the system’s ar-
tificial language. Such symbolization aims to reveal logical form, the “canonical”
form according to logicians like Quine. The advantage to be gained by symbol-
ization is the increased transparency of form and ease in the process of carrying
out various logical tasks. “If we were to devise a logic of ordinary language for
direct use on sentences as they come, we would have to complicate our rules of
inference in sundry unilluminating ways” (Quine 1960b, 158). A sufficiently well-
constructed diagrammatic system (in particular, one that is heterogeneous) en-
joys these same advantages. But, it also enjoys the added advantage of graphi-
cally showing logical forms. Thus, it allows for visual inference, the drawing of a
conclusion simply by looking at a diagram without further manipulation.

3.3 Term Lines

Some schemata are visibly verifiable ...
Quine

As a practical method of appraising syllogism, rules are less convenient than the method of
diagrams ... The diagram test is equally available for many arguments which do not fit any
of the arbitrarily delimited set of forms know as syllogisms.

Quine



76 —— 3 Lines of Reason

Since Descartes’ development of analytic geometry, mathematicians have
learned that the system of real numbers is isomorphic with the geometrical
line. In 1995, Hillary Putnam (Putnam 1995) showed how Peirce had eschewed
this lesson by holding a conception of line (and point) that shared much in com-
mon with that of ancient geometers as well as Aristotle (cf. Roeper 2006; Shapiro
and Hellman 2015; Linnebo, Shapiro and Hellman 2016). Here is how Putnam
summarizes Aristotle’s conceptions of lines and points:

[T]he Aristotelian view that points are simply conceptual divisions of the line ... the line is
an irreducible geometrical object, not a collection of more elementary objects. ... For [Aris-
totle], points do not belong to lines, although they lie on them; that is, they are divisions of
them (and also terminations of them, in the case of line segments and curves with end-
points). (Putnam 1995, 4-5)

He goes on to say that according to the ancient view, say Aristotle’s or Euclid’s
(as opposed to the modern view),

the endpoints [of a line segment] are to be regarded, not as members of the line segment ...
but as loci distinguished by the fact that an object we have constructed or considered ends
there. ... The endpoints ... are abstract properties of the line segment itself. (Putnam 1995, 5)

Accordingly, one can think of geometrical points as demarcated, delineated, lit-
erally, de-lined, conceptually abstracted, from line segments. To use Putnam’s
word, they are “distinguished” by us according to what “we have constructed
or considered.” Such conceptual abstraction simply sets them into relief for
our attention. Thus, geometrical objects are not constructed from more elemen-
tary geometrical objects (ultimately, points). Rather, such more elementary geo-
metrical objects are delineated from less elementary geometric objects. Such de-
lineation does not create, bring into being, geometrical objects; it is merely the
result of our focus, our conceptual attention to what was previously undelineat-
ed. Any point to the left of the right terminal point of a term line is delineatable
(though very few are actually delineated).

While geometrical objects are abstract, they can be represented graphically.
Such representations are just that — representations. They are physical, percep-
tible objects. Nonetheless, as representations, they show various properties of
abstract geometrical objects as well as certain relations that hold among those
geometrical objects. It is this feature of such representations, diagrams, that
makes them so instructive and useful in geometrical reasoning. Indeed, the
same can be said for diagrams used in logic. Russell wrote that a good notation
is like a live teacher. One could add that a good system of diagrams is just as
much like a live teacher.
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The ED system makes use of the following graphic elements: straight line
segments, points, vectors, a rectangular border. Straight line segments represent
individuals denoted by a given term. Uppercase term letters are used as straight
line segment labels, the charges of which are indicated by + or —. Positive charge
is often suppressed. Points represent specified individuals. Lowercase term let-
ters are used as labels for such points and may be labelled as wild in quantity
(*). Vectors (directed arrows) represent relations between or among individuals
or sets of individuals; they are labelled just like non-relational terms. Rectangles
demarcate pertinent domains of discourse (sometimes “worlds”). The following
conventions apply: the right-most endpoint of a straight line segment is labelled
and that label applies to every point on that line segment to its left; any proper
part of a straight line segment is a either a straight line segment or a point; any
point on a straight line segment can be indicated to represent a specified indi-
vidual; vectors are labelled by adjacent term letters; vectors share points with
at least two line segments. ‘Straight line segment’ will be abbreviated as ‘term
line or ‘line’. Vectors need not be straight. Demarcation of domains of discourse
by use of rectangles will often be suppressed and left as understood unless con-
text requires otherwise. Nonetheless, it must always be understood that any dia-
grammatic representation is relative to a specifiable domain. This is because the
statements we make are themselves always made relative to some specifiable do-
main. Normally, such domains of discourse consist of things in the actual world
or some salient spatially or temporally understood part of that world. But a do-
main can be a merely possible world or a fictitious world. This notion of domains
will be explored more closely when it comes to diagramming unanalyzed state-
ments (propositional logic). Finally, it should always be remembered that only in
the context of a diagram do lines, points, and vectors have meaning (i.e., repre-
sent anything).

Systems of logical diagrams exploit the fact that the relations that can hold
between pairs of sets (inclusion, intersection (overlap), and exclusion) are easily
represented by pairs of geometric plane figures that can themselves be arranged
into these same relations. Systems such as those devised by Euler and Venn, for
example, use closed figures such as circles, for this purpose. Leibniz and Lam-
bert made a start at using open figures — straight line segments. The ED system
exploits the use of line segments as well. Any pair of straight line segments can
be arranged into the relations of inclusion, overlap, and exclusion. Moreover,
given such an arrangement, the relations between what the lines represent
can readily be seen. What is true of any viable system of logical diagrams, wheth-
er using closed or open plain figures, is that it rests on the analogy between set
relations and geometric relations. Peirce expressed this view in many places
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(e.g., Peirce 1931-1958, 2.277) and perhaps more clearly than anyone when he
wrote:

[A]ll of deductive reasoning ... involves an element of observation; namely, deduction con-
sists in constructing an icon or diagram the relation of whose parts shall present a complete
analogy with those parts of the objects of reasoning, of experimenting upon this image in
the imagination, and of observing the results so as to discover unnoticed and hidden rela-
tions among the parts. (Peirce 1931-1958, 3.363)

Of course, before “observing the results” we need a diagram with “parts” that
can stand in relations.

Let T be a term variable. The number of individuals denoted by a given term
in any particular context, universe of discourse, is often undetermined. The indi-
viduals that constitute the denotation of T are represented by a term line, which,
correspondingly, is often undetermined. The term line representing T (viz., T’s
denotation) is labelled by T placed near its right terminus point:

T

Figure 3.10: A Term Line

If T is singular, denoting just one individual, it is diagrammed as a single
point:

T

Figure 3.11: A Singular Term Point

A term having no denotation, an empty term, can be diagrammed in two al-
ternative ways: it can be inscribed in the diagram attached to nothing else, or it
can simply not appear in the diagram.

Note that the tokens of T above are not accompanied by a sign of positive or
negative term charge. But we know that every term does have, from a logical
point of view, such a charge. We will assume that any term or term variable
not accompanied by such a sign will be understood as implicitly positive (thus
T is understood as +T). Needless to say, a negative term, nonT (—T), will be
graphically expressed by an appropriately labelled term line.

@ -T

Figure 3.12: A Negative Term Line
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Note as well that a term line represents the entire denotation of the corre-
sponding term. Consequently, one could read a term line such as that in Figure
3.10 as a graphic representation of ‘every T’. Likewise, the term line in Figure 3.12
represents ‘every nonT’ (it does not represent ‘no T’.

As noted above, the relations that hold between the lines and points of a di-
agram (inclusion, intersection, exclusion) are meant to mimic the relations that
hold between objects represented by those lines and points. This “relation-
based” approach contrasts with the “region-based” approach taken by closed
figure diagram system such as those based on Euler or Venn diagrams (for
more on this distinction see, for example, Mineshima, Okada, and Takemura
2009, 2010, 2012, and Sato, Mineshima, Takemura 2011). It’s time now to show
how this is done in ED.

The inclusion of (the extension of) one term in another is simply represented
by the line representing the first term being made a (proper) part of the line rep-
resenting the other. Thus a universal affirmation of the form ‘Every S is P’ is rep-
resented as the following (keeping in mind that the label on a term line is meant
to apply to the entirety of the line to its left):

S

e or

Figure 3.13: Universal Affirmative Line Diagram

Universal affirmations are diagrammed by making one line a proper part of a
second. Sometimes, however, two lines will each be (non-proper) parts of one
another. This will be so when they are meant to represent a pair of co-extensive
terms. For example, to use Quine’s well-known example, every creature with a
kidney is a creature with a heart and every creature with a heart is a creature
with a kidney. This could be diagrammed by giving both terms variable letters
that can both label a common line. Let K and H (obviously) be the two labels:

K

H

Figure 3.14: Line Diagram for Two Co-extensive Terms

A universal negative (‘No S is P’) is simply diagrammed with the two labelled
lines sharing no point:
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@S

@ P

Figure 3.15: Universal Negative Line Diagram

A particular affirmation requires that the two terms of the statement both de-
note at least one individual in common. The representation of such a statement
(‘Some S is P’) consists of the two lines representing the two terms sharing at
least one common point — i.e., intersect:

P

Figure 3.16: Particular Affirmative Line Diagram

As it turns out, there are two alternatives for diagramming particular nega-
tive statements (‘Some A is not B’). Such a statement may be construed as either
(i) claiming that some S is not (= isn’t) a P (predicate denial) or (ii) claiming that
some S is a nonP (predicate term negation). The first is entailed by the second
and is treated so in TFL, (which simply amounts to accepting the traditional
rule of obversion). The two versions are graphically represented as follows:

Some Sis not P Some Sis nonP

®S S

@ P )

Figure 3.17: Diagrams for Predicate Denial and Term Negation
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A E | (0]
— @S S -P eSS S
——0
— e-°p - e-r -p

Figure 3.18: Line Diagrams for Obverted Categoricals

Obversion takes term negation seriously. Thus, any categorical statement can
be diagrammed by line inclusion or line intersection since any universal negative
can be construed as a universal affirmative whose predicate term happens to be
negated and any particular negative can be construed as a particular affirmative
whose predicate term happens to be negated.

Singular affirmations, such as ‘Socrates is a philosopher’, have the form “*s +
P’, which can be represented by a line diagram having a delineated point label-
led s on a line labelled P. As well, a singular negative (‘Socrates is not a Roman’/
’Socrates is no Roman’/’Socrates is nonRoman’) would correspondingly be rep-
resented with the delineated point representing Socrates on a line labelled — R:

s@—OP s@—@®-R

Figure 3.19: Line Diagrams for Affirmative and Negative Singulars

Note that, given the convention that any label on any line applies to the en-
tire line to its left, the delineated point representing the singular cannot be
placed anywhere on the line other than the left terminus.

The rule of obversion is important. Yet it depends on an even more impor-
tant, more fundamental principle - the principle of noncontradiction. Consider
an individual such as Obama. He is American (and he’s proven it). He is nonCa-
nadian. Since he is nonCanadian, he is not a Canadian. Not everything that is
not a Canadian is nonCanadian. The moon is neither Canadian nor nonCanadi-
an; it is not a Canadian, however. The number of planets is not green, but it isn’t
nongreen either. Whatever is nongreen is either red or blue or white or yellow or
.... Colour terms simply do not sensibly apply to numbers. Terms of citizenship do
not sensibly apply to astronomical objects. Terms like ‘drinks procrastination’ (as
well as its contraries) do not sensibly apply to the quality of quadruplicity. In
general, if an individual, x, is nonP, then x is not P. But the converse doesn’t fol-
low. What does follow from all of this is that if a pair of contradictory statements
cannot hold at the same time and in the same respect, then the same is true for a
pair of contrary statements (statements such that one affirms a property and the
other affirms a contrary of that property of the same thing). Here is Aristotle in
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Metaphysica 1005b19 - 20: “[T]he same attribute cannot at the same time belong
and not belong to the same subject and in the same respect.” Then, at
1011b13-22:

[Clontradictory statements are not at the same time true ... it is impossible that contradic-
tories should at the same time be true of the same thing. For of contraries, one is a privation
not less that it is a contrary .. it is also impossible that contraries should belong to a subject
at the same time.

All this is as close as Aristotle got to expressing in a clear, unambiguous manner,
the principle of noncontradiction. Keep in mind that for Aristotle the contradic-
tory of a statement is not what is today called its negation but rather a corre-
sponding statement having those same terms in the same order but a different
quantity and a different quality. Here is what seems clear enough. Contradicto-
ries cannot both hold at the same time. Statements of the two forms ‘Every S
is P/nonP’ and ‘Some is isn’t P/nonP (where ‘S’ is either singular or general)
are contradictories and cannot hold at the same time. But as well, pairs of state-
ments that are of the same logical form but such that the two predicate terms are
contraries cannot hold at the same time. For Aristotle, the privative of P is nonP.
As we have seen, whatever is nonP has some property contrary to P. If nonP is the
logical contrary of P, then that other property is one of the nonlogical contraries of
P. Red, blue, etc. are the nonlogical contraries of green; being nongreen amounts
to being one of these. So green has many contraries but only one logical contrary.
Some properties have just one nonlogical contrary (even/odd); others have an
infinite number of nonlogical contraries (1 meter long/1.1 meter long/...). In sum-
mary, then, contradictory pairs cannot both hold at the same time and, conse-
quently, pairs that attribute contrary properties of the same thing cannot hold
at the same time. For, a statement attributing a nonlogically contrary property
entails one that attributes its corresponding logical contrary, which, in turn, en-
tails the contradictory of the statement that attributes the original property. For
example, ‘Every X is red’ entails ‘Every X is nongreen’ and ‘Every X is nongreen’
entails ‘Every X is not green’ and ‘Every X is not green’ is the contradictory of
‘Some X is green’.

Linear diagrams adhere to the principle of noncontradiction in the following
way. Given a specifiable domain, for any term line, P, there will be a (possibly
tacit) term line, nonP, such that the two lines share no point in common. This
guarantees that, for example a universal affirmation and its corresponding par-
ticular negative are contradictory. In order to represent both statements in the
same diagram one would be required to do the impossible: make at least one
pair of lines that share no point in common (say, the P and nonP lines) intersect.
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According to TFL, a contradiction always has the form of a particular that is al-
gebraically equal to zero: +S—S; a tautology always has the form of a universal
that is algebraically equal to zero: —S+S. Consider, for example, an attempt to
diagram simultaneously a universal affirmation and its corresponding particular
negative:

s P
° °
-p

Figure 3.20: An Attempted Diagram for a Contradictory Pair

Note that one of the statements represented by this diagram is that some
nonP is P (+(—P)+P), a particular algebraically equal to zero. Moreover, the prin-
ciple of noncontradiction demands that no two lines representing a term and its
negation have any point in common. That means in the diagram above, the term
line for —P must be at once both intersecting and not intersecting the P term line.
Diagrams like this are similar to Escher drawings; they give only an illusion of
what is actually impossible. Such an impossible diagram would be, to use
Marc Champagne’s delightful neologism, a “contrapiction” (Champagne 2016).
Tautological forms are quite another matter.

EverySis S No Sis nonS

Figure 3.21: Diagrams for Tautologies
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Suppose we represent each term line along with its contradictory term line.
By virtue of the law of noncontradiction the two lines must not share any point.

Following this practice, the full diagrammatic representation for an A categorical
would be:

s P
° °
-p -s
] ®

Figure 3.22: Full Diagram of A

Such a diagram represents all of the following: ‘Every S is P’, ‘Every nonP is
nonS’, ‘No S is nonP’, ‘No nonP is S’, ‘No nonS is P’, ‘No P is nonS’, ‘No S is
nonS’, ‘No nonS is S’, ‘No P is nonP’, ‘No nonP is P’.

Any categorical can be given such a full representation.

s -p
® ®
P -s
° ®

Figure 3.23: Full Diagram of E



3.3 Term Lines —— 85

S\

Figure 3.24: Full Diagram of |

S\

Figure 3.25: Full Diagram of O

Notice that a full diagram always consists of two pairs of non-intersecting
lines. As well, just as we saw in the case of a full representation of A, full dia-
grams in general always represent a number of propositions, many of which
are tautological or redundant. In practice, when engaged in logical reckoning di-
agrammatically, simple rather than full diagrams are adequate. In effect, a sim-
ple diagram for a categorical merely ignores the representations of the law of
noncontradiction. Gardner called this simplifying process “minimizing” (Gardner
1982, 72). Examples of simple, minimized diagrams for A, E, I, and O categoricals
are seen in Figures 3.12, 3.14, 3.15, and 3.16 above.

The traditional logical relations among categoricals, usually represented on
a square of opposition (Englebretsen 2015, ch. 5, and 2016a) are preserved and
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graphically exhibited by ED. We have seen how contradictories (e.g., A/O and E/
I) are treated. The contrariety of A and E is demonstrated by the impossibility of
simultaneously diagramming both (a contrapiction).

S p S -p
*— —0 ® ®
s s P
o o 0

Figure 3.26: Contrapictions of A/E Contrariety

The relation of subcontrariety requires that I and O be logically compatible.
This is graphically shown by a diagram expressing both categoricals simulta-
neously:

S

Figure 3.27: Diagram of Subcontrariety

An understanding of the logical relation of subalternation depends on how
one is to understand the notion of existential commitment. The controversy
stems from the question of whether Aristotle limited the syllogistic to inferences
whose statements involved only nonempty terms. If the answer is positive, then
all of the traditional relations illustrated on the square of opposition — in partic-
ular, subalternation — hold. If the answer is negative, then all bets are off. Mod-
ern predicate logic seems to follow the Boolean line that only existentially quan-
tified statements express ontological commitment (in the sense that they are



3.3 Term Lines —— 87

false whenever nothing in the universe of discourse satisfies the functions/pred-
icates applied to the variables so quantified). From this point of view, it follows
that under such circumstances of emptiness the corresponding universal state-
ment is true. So, the modern view, generally, is that subalternation fails to
hold in some cases (viz, the so-called vacuous cases). However, even if the tradi-
tional positive answer is accepted, there are still questions. Most importantly:
How is the nonempty character of a term expressed? One answer is that the
very use of a term ensures this. Such a view is most often attributed to Aristotle;
Aristotle simply assumed that terms of a syllogism are never empty. Eukasiewicz
even expanded the list of outlawed terms to include not only empty terms but
singular and negative terms as well (Eukasiewicz 1957, 72). The idea that Aristo-
tle’s syllogistic eschews empty terms is then attributed to his medieval followers
(Kneale and Kneale 1962, 59 — 60). Nonetheless, whether Aristotle did in fact hold
such a view of empty terms, there is some reason to believe that at least some
late-medieval logicians believed that the nonempty character of syllogistic
term cannot simply be assumed but must be expressly asserted. Parsons has ar-
gued that this is best done by asserting of a term, T, that some thing is T, which
he equates with asserting that some T is T (Parsons 2014, 65— 66). According to
this view, while ‘Every S is S’ may be a tautology, ‘Some S is S’ (= ‘Some thing is
S’ = ‘An S exists’ = ‘There is at least one S’) is contingent. We saw that Pagnan
adopted this position for his SYLL and it is a central part of TFL, where it is for-
mulated as +S+S, which is neither universal nor algebraically equal to zero, thus
contingent.

It seems that our choice is either to simply assume that no empty terms can
be used in our inferences or to require that the nonempty character of a term
being used be explicitly expressed. However, a compromise is possible. One
can take terms to be nonempty but only explicitly express this when demanded
by inferential circumstances. This means that subalternation can be taken to be a
matter of immediate inference even though, in some circumstances, it can be
taken as mediate, an enthymeme whose missing premise states that its subject
term is nonempty. It can be argued that Aristotle too allowed that subalternation
can be mediate.

Now, in order to avoid the existential-import problem, one should assume that the term
whose existence is not explicit does exist. Thus, if the problem relates to the term, x,
one should assume that the premise ‘There exists an x’ is true. This has been called the “Ar-
istotelian proviso” (Alvarez and Correia 2012, 304).

TFL recognizes Aristotle’s Proviso. Subalternation is generally expressed as
‘Every S is P, therefore some S is P’ (—S+P - +S+P) and, when appropriate, as
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‘Every S is P, (some S is S), therefore some S is P (—S+P, +S+S - +S+P). This dis-
tinction between implicit and explicit expression of existential import (thus sub-
alternation) can be readily exhibited in the graphic system of ED.

Implicit Explicit

o
o

o
[ J
o
[ ]

Figure 3.28: Two Versions of Subalternation

One can say that by the lights of the graphic system ED a term is to be taken
as nonempty when it is represented as a term point or a term line with a speci-
fied, delineated point. To be is to be delineated. When existential import is taken
implicitly, the very fact that a term is used (and can be diagrammed by a term
line or term point) is sufficient. The labelled right terminal point of the S line
shows that S and P lines share at least one point. In the case where existence
is made explicit for the S term, the intersection of the two S lines explicitly
shows a point (other than the right terminal point of S) that is shared by both
the S and P lines. Later we will see the usefulness of having a way to make ex-
istence diagrammatically explicit.

Thus far we have seen how the graphic system ED can be used to diagram
categorical statements (including singulars), exhibit existence (nonempty terms),
and display the logical relations illustrated by the square of opposition. The real
raison d’etre of any system of formal logic, whether diagrammatic or linguistic, is
to provide a method to assess arguments for validity or invalidity (a decision pro-
cedure) and to provide a way to prove the former (a proof procedure). So, our
next step now is to offer a decision procedure for ED. Traditional term logic
worked out a fairly simple way to determine the validity/invalidity of any syllo-
gism. The idea was that all, and only, valid syllogisms obey the “rules of syllo-
gism”:

Rules of Syllogisms

1. At least one premise must be universal.

2. At least one premise must be affirmative.
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3. No term may be distributed in the conclusion if it is not distributed in
the premise in which it occurs.

4, The middle term must be distributed at least once.

5. Any term distributed/undistributed in the premises must be distributed/
undistributed if it occurs in the conclusion.

Notice how much the notion of term distribution is involved here. Now, as it hap-
pens, the theory of term distribution is contentious, though the various versions
of the theory seem to have originated by Aristotle’s remarks in Chapter 7 of De
Interpretatione. This is partly because so many different definitions of distributed
have been offered and partly because the notion of term distribution has so often
been grounded in semantic rather than syntactic features determined by the
term’s role in a given sentence. It was sometimes said that a term used in a
given sentence is distributed just in case it makes reference to its entire denota-
tion. At other times it was held that the distribution of a term in a given sentence
was a matter of its supposition. At still other times the claim was that a term
used in a given statement is distributed in that statement just in case that state-
ment entailed a universal statement in which that term was the subject term. De-
notation, reference, supposition, even entailment in this case are semantic no-
tions, matters of sense or meaning or interpretation, and are themselves often
unclear and invite controversy (the idea of distribution aside). Still, there is gen-
eral agreement that for categorical statements subject terms of universals, but
not particulars, are distributed and predicate terms of negatives, but not affirma-
tives, are distributed. Peter Geach was no friend of any notion of term distribu-
tion. He famously wrote, “Now we need only look at the doctrine of distribution
with a little care to see how incoherent it is” (Geach 1962, 4). Geach has, of
course, not gone unchallenged (see especially Parsons 2006). In fact, over the
years since 1962, a fairly steady stream of friends of the doctrine of distribution
have come to its defense (Makinson 1969, Williamson 1971, Sommers 1971, Katz
and Martinich 1976, Friedman 1978 Sommers 1982, Rearden 1984, Englebretsen
1985 g, Wilson 1987, Hodges 1998, Sommers and Englebretsen 2000, Parsons
2006, Hodges 2009, Alvarez and Correia 2012, Martin 2013).

A decision procedure does depend, in part at least, on determining whether
a given term is distributed or undistributed (its distribution value) in a given
statement (viz., in a premise or conclusion of an argument). As it happens, it
is possible to determine the distribution value of a term in a statement without
the involvement of any semantic notions. There is a purely syntactic, indeed sim-
ply mechanical, method for doing so (for more on the contrast between semantic
and syntactic accounts of distribution see Martin 2013, 135-139). Sommers indi-
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cated how this mechanical procedure could be done, at least in TFL’s algebraic
formal language (Sommers 1982, 181):

[I]n TFL the question whether a given term is distributed or undistributed in a proposition is
the question of whether its algebraic value in that proposition is negative or not. ... In de-
termining the distribution value (or valence) of the elements of an expression we simplify
its algebraic representation by driving the minus signs in as far as possible. The result will
be an algebraic expression in which each element is either negative or positive. Negative
elements are distributed, positive elements are undistributed.

Much more recently a similar idea was proposed by Wilfrid Hodges (Hodges
2009, 603), who wrote, “Briefly, a term in a sentence is distributed if it occurs
only negatively, and undistributed if it occurs only positively.” Keeping in
mind that by the lights of TFL universal quantity is formulated as a minus
sign, the mechanical determination of a term’s distribution value in a statement
is easily summarized as follows:

Distribution Value
A term is undistributed in a statement just in case the total number of universal quantifiers
and negations in whose range it occurs is even (including zero), otherwise it is distributed.

How are the distribution values of terms represented in the linear diagrams of
ED? Such distribution values are readily observable in such diagrams. Quite gen-
erally, these values are exhibited by the following diagrammatic features:

A term, T, is distributed in a diagram if and only if its term line contains no labelled de-
lineated point to the left of its right terminus, otherwise it is undistributed. If a term,
nonT (—T), is distributed/undistributed in a diagram, then T is undistributed/distributed
in that diagram.

One can verify this for the four standard categorical forms by looking at Figures
3.12, 3.14, 3.15, and 3.16 above. We will eventually see how this is the case for any
kind of statement formulated in TFL and diagrammed by ED.

Now, as it happens, the determination of the distribution value of a term is
essential when it comes to deductions in a term logic, whether Aristotle’s syllo-
gistic, traditional syllogistic, or TFL. But the latter can make use of a second me-
chanical device, other than the one for determining distribution values, in decid-
ing argument validity. While traditional logic made use of the five Rules of
Syllogisms, TFL get by with just two:

Rules of Syllogisms (for TFL)

1. The algebraic sum of the premises (including tacit premises) must equal

the conclusion.
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2. The number of particular conclusions must equal the number of partic-
ular premises.

That’s it. Deciding validity or invalidity is even easier once arguments are dia-
gramed.
Rule of Syllogisms (for ED)
Diagramming only the premises (including tacit premises) together must ex-
hibit the conclusion.

That means that if either the conclusion has not been revealed simply by dia-
gramming the premises together or more than a single diagram is required for
the premises (i.e., they cannot all be diagrammed together), then the argument
is invalid.

So, the time has come to turn from argument validity/invalidity decision to
(valid) argument deduction, proof, the incremental stepwise construction of jus-
tified inferences that begins with an argument’s premises and culminate with its
conclusion. A deductive argument consists of a collection of a finite number of
premises and a conclusion. There may be statements that are taken to be among
such a collection but which need play no role in the deduction; they are redun-
dant. There may be premises that do play a role in the deduction but are not ex-
plicitly stated among the collection of explicit premises; they are tacit (sup-
pressed, understood) premises, premises that are either tautological or else
generally accepted on other grounds; these premises are hidden. The conclusion
is a statement explicitly made or one that is missing and must be found via the
process of deduction. A deductive argument is made with the accepted, but usu-
ally unexpressed, claim that if all of the premises are accepted as true the con-
clusion must thereby be accepted as true. The claim is not that the premises are
all true or that the conclusion is true. The process of deduction can be used to
establish the understood claim. It can also be used, when necessary, to discover
a tacit premise (particularly one that might not be generally accepted), so-called
lost premises. Once a decision has been made that an argument is valid, one can
prove that it is valid. This is done in formal, but non-diagrammatic, systems by
constructing a finite list of statements (called lines). The list consists initially of
the premises followed by additional statements, each of which is justified by a
deduction rule applied to one or more of the preceding lines. The final statement
of the list is the conclusion, which is also justified. Since every new line in a
proof must be justified, having an acceptable set of rules is essential.

When, in his Prior Analytics, Aristotle set out to form a system of syllogistic
proof, he took the first figure syllogisms to be “perfect” in the sense that they are
“complete” and therefore require nothing further to exhibit their validity imme-
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diately. In particular, this means that no additional premises are required and
that no additional middle terms need to be introduced; they need no proof.
He took syllogisms in the other figures to be incomplete (Prior Analytics
24h23-27). This means that such syllogisms require proof. Proof of an imperfect
syllogism can be provided by “reducing” it to a perfect syllogism by applying
certain rules to the premises in order to change them in such a way that the re-
sult is a first figure syllogism. These rules are called rules of immediate inference.
They simply amount to the principles of conversion, obversion, subalternation,
and mutation (i.e., altering the order of the premises). As it turns out, all the im-
perfect syllogisms are reducible to the first figure perfect syllogisms. There is a
feature that is common to the perfect syllogism and is consequently shared by
all syllogisms.

Traditional logicians usually cited Prior Analytics 24b26 —30 or 25b31-35 in
formulating what was called dictum de omni et nullo (the principle of all and
none), or simply the dictum. The claim is that the dictum is the underlying prin-
ciple governing all syllogistic inference, “the foundation of the whole of syllogis-
tic theory” (Leibniz 1966, 116). A typical version of the dictum is ‘What is predi-
cated (affirmed/denied) of all/some of X is likewise predicated of what X is
predicated of’. Sometimes it is formulated in terms of parts and wholes: ‘What
is predicated of any whole is predicated of any part of that whole’ (see Kneale
and Kneale 1962, 79). Leibniz formulated the dictum as a rule of substitution:
“To be a predicate in a universal affirmative proposition is the same as to be ca-
pable of being substituted without loss of truth for the subject in every other af-
firmative proposition where that subject plays the part of predicate” (Leibniz
1966, 88). Even Boole, it seems, took his basic rule of deduction (‘Equals can
be substituted for equals’) as a version of the dictum, qua rule of substitution
(Corcoran and Wood 1980, 615 - 616; also Green 2009). TFL also takes the dictum
to be a rule of substitution (see Sommers and Englebretsen 2000, 133-135). In
this case, it says that the predicate term, say P, of a universal premise can be sub-
stituted for the subject term, say M, of that premise for any instance or occur-
rence of that term, M, in another premise whenever the two occurrences of the
term, M, have different distribution values (Englebretsen 2010, 54-55 and
2012, 74-75). In effect, this simply means that the occurrences of a pair of middle
terms algebraically cancel out, in which case, the sum of the premises algebrai-
cally equals the conclusion (whenever the number of particular conclusions
equals the number of particular premises). The dictum, as Leibniz rightly saw,
is the foundational rule that governs mediate inference. It governs not only clas-
sical syllogisms but, as will be seen, all kinds of inferences, including those in-
volving singular terms and relational terms. It governs, as well, the inferences of
propositional logic.
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It is possible to illustrate the dictum for the classical syllogisms by using the
system of linear diagrams, ED. Consider Barbara, Celarent, Darii, and Ferio (the
four perfect first figure syllogistic forms).

Barbara Celarent
S M P S M -P
L L L J @ @ L J
Darii Ferio
M P M -pP
@ @ L 4 @
S S

Figure 3.29: Line Diagrams for the Perfect Syllogisms

Notice that the charge (positive or negative) on the major term is immaterial.
Each of the negative forms is simply a version of their positive counterparts.

Universal Particular

S M +/-P M +/-P

@ @ L J @ @
S

Figure 3.30: Line Diagrams for Universal and Particular Syllogisms

Consider how the diagram for Barbara would have been constructed. Step 1:
the major premise is depicted.

M
\ 4

[ I

Figure 3.31: ‘Every M is P’
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Then the minor premise is diagrammed by incorporating it into this diagram
and making use of the already represented M. The result is the full diagram for
Barbara:

o=
@

S
®

Figure 3.32: Barbara

Cancellation of the middle term per the dictum simply amounts to ignoring
M, reading the conclusion directly, immediately from the diagram. Here are some
examples of diagrammed imperfect syllogisms.

owv
o=

Figure 3.33: Cesare 1

S M -P
@ L @

Figure 3.34: Cesare 2

o=
[ ]

Figure 3.35: Datisi
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ow

Figure 3.36: Bocardo

o=
[ ]

Figure 3.37: Ferison

[ ]

o=

Figure 3.38: Fresison

Note that in a syllogism such as this the ED diagram indicates nothing about
whether the S line extends all the way to the P line, thus indicating our lack of
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information. We know that at least one S is not P but we have no knowledge
about any S that is P. A Venn diagram would represent the same with an x in
the SM—P cell but nothing in the SMP cell.

Such line diagrams are easily constructed for every one of the twenty-four
classic categorical syllogisms. Classical categorical syllogistic is thus complete.
It is also sound. An exhaustive (and exhausting) check of each of the 232 classic
invalid syllogistic forms shows that all are revealed to be invalid by means of this
diagram system. The system is just as effective when it comes to the weakened
syllogisms, valid syllogisms with a particular conclusion but no explicit particu-
lar premise. As with TFL, ED takes such syllogism to have a hidden premise that,
when diagrammed makes the existence of the minor term explicit (as in Figure
3.27 above). For example, consider Barbarip, which has two universal premises
that are the same as those of Barbara but has a particular conclusion. The pre-
sent system makes the existential import of the minor term, say S, explicit by de-
picting the hidden premise that some S is S:

[ V)
[ J
[

Figure 3.39: Barbarip

This system of line diagrams can be applied to arguments well beyond just
classic syllogisms. One of the most crucial limitations on plane figure diagrams
for logic is that they become less perspicuous and soon quite impractical as a
usable tool for logic once the number of terms in an argument get much beyond
four or five. No such limit applies to ED diagrams. Consider the following five-
term sorites argument: Every A is B, every B is C, no C is D, some D is E; so
some E is not A. Diagramming the universal premises together (in any order)
and then adding the particular premise immediately reveals the conclusion:
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A B C
@ @ @
D
L

Figure 3.40: A Five-term Diagram

One task given to the logician is to determine whether or not a given set of
statements is logically consistent, whether or not they can all be true together.
Once such a decision is made, the next task is to deduce an explicit contradic-
tion, usually some simple contradiction from the set. For example, any set of
statements of the form: Every A is B, some A is not C, every B is C, is inconsis-
tent. This can be shown by diagramming the statements together:

>
w
(@]

Figure 3.41: An Inconsistent Set

Note that this diagram reveals the contradictory statement that some C is
nonC; it is a contrapiction. Now, since any valid argument can be proved indirect-
ly by proving that the set of statements consisting of its premises plus the con-
tradictory, or even the contrary, of its conclusion. Here is Baroco diagrammed in-
directly:
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o
® v
o=

-M

Figure 3.42: A Contrapiction of Baroco

In the next section a closer look at singular terms and how arguments in
which they play a role are diagrammed.

3.4 The Point of Names

Point exists only in line, which is in surface, which is in body, which is in matter.
Avicenna

Aristotle held that the terms that were of interest to him in the building of syllo-
gistic were, for the most part, terms of medium generality (Prior Analytics
43a41-42). According to some (Ross 1949, Lukasiewicz 1957, Bird 1964, Patzig
1968), for a variety of different reasons, Aristotle intended to exclude from syllo-
gistic not only terms of highest generality (e.g., ‘exists’, ‘substance’, etc.) but
also terms of lowest generality — singular terms (for counter arguments to
each of their claims see Englebretsen 1980b). Prior Analytics is hardly bereft of
examples of statements and entire syllogisms using singulars (e.g. 43a34-35,
47b24-25, 47h32-33, 67a33-37, 68b41-69al12, 70al6-29, 78b4—10). There is
no prohibition of singulars from any term logic, Aristotle’s syllogistic, traditional
syllogistic, TFL. We have already seen how singular terms are represented (by la-
belled points) in ED. Moreover, one must keep in mind Leibniz’s insight (Leibniz
1966, 115) that singular terms when used as subject terms accept arbitrarily either
universal or particular quantity, wild quantity. It is because singular subject
terms are wild in quantity (their quantity is arbitrary) that any sign of quantity
(e.g., ‘every’, ‘some’) is ignored, suppressed in ordinary uses of a natural lan-
guage. Nonetheless, from a strictly logical point of view, such singular terms
do have a quantity. This suppression of quantity for singular subjects can be ren-
dered explicit in ED. Consider the singular statement ‘Socrates is a philosopher’,
which can be construed as either ‘(Every) Socrates is a philosopher’ or ‘(Some)
Socrates is a philosopher’. Diagrammatically:
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Universal Particular

Q
@ ©
o

Figure 3.43: Wild Quantity

Since singular subject terms are wild in quantity, the two s-line segments in
these diagrams are each reducible to the single s-point (as in Figure 3.18). Note
that the distribution value of a singular subject term is likewise wild.

TFL takes all terms to be syntactically on a logical par, fit for any logical role
in a statement. One consequence of this is that the semantic distinction between
singular terms and general terms can be ignored (Englebretsen 1986b). Thus, sin-
gular terms, just like general terms, come in logically charged (positive/negative)
pairs. Just like, for example, ‘massive’/’massless’, ‘Kripke’ has both a logically
positive and a logically negative form. And, like ‘married’/’unmarried’, the pos-
itive charge on such terms tend to be suppressed: ‘Kripke’/nonKripke’. The obvi-
ous objection at this point is that ‘nonKripke’ is not at name, even a negative
name, of anyone or anything. More on this soon. A second consequence of
this full integration of singular terms with general terms by TFL is that, just as
general terms can be predicate terms, singular terms can be predicate terms as
well.

We know that Frege took the ontological distinction between objects and
concepts to be absolute and inviolable. But that distinction ultimately rests on
a semantic distinction, the one between singular terms (especially names) and
general terms (Sommers 1982, 37-40). While a general term is understood as de-
noting any number of individual things, a singular term is understood as denot-
ing a single (exactly one) thing. It is just a matter of what is taken to be the size of
sets of denotata, a matter of semantics. Most logicians following in Frege’s foot-
steps presume that this semantic distinction is equally absolute and inviolable.
The distinction between singular terms and general terms is also absolute and
inviolable — the so-called Asymmetry Thesis. The thesis is often, oddly, formulat-
ed as claim that ‘subjects’ and ‘predicates’ are logically asymmetric; yet, even
then, the target expressions are singular and general terms. Speaking of both tra-
ditional logic and modern logic, Frank Ramsey wrote:
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Both the disputed theories make an important assumption which to my mind, has only to
be questioned to be doubted. They assume a fundamental antithesis between subject and
predicate, that if a proposition consists of two terms copulated, these two terms must be
functioning in different ways, one as subject, the other as predicate. (Ramsey 1925, 404)

Among the many who came to the defense of the asymmetry thesis, P.F. Straw-
son was one of the most careful and persistent. In defending the thesis, Strawson
argued against both the possibility of negating singular terms and the possibility
of predicating singular terms. In the former case, he argued that while a sentence
could be negated simply by negating its predicate, the attempt to negate the sub-
ject does not yield the negation of the sentence. Indeed, the result of doing so
just yields nonsense. This is so because general terms “come in incompatibility
groups” but singular terms do not (Strawson 1970, 102-103; 1974, 19). For exam-
ple, ‘red’, ‘blue’, green’, etc. are mutually incompatible (contrary), but what is
incompatible with ‘Kripke’? Who or what is nonKripke? Kripke has a very
large number of properties such as being from Omaha, being the author of Nam-
ing and Necessity, being a male, being American born, wearing a beard. He also
lacks many properties such as being Canadian born, being Belgian born, being
more than six feet tall. For Strawson, whatever nonKripke would be, he, she, it
lacks all the properties Kripke has and has all the properties Kripke lacks. Con-
sequently nonKripke would, per impossible, be both Canadian born and Belgian
born (Strawson 1970, 111n). No individual can have incompatible properties at
the same time; any such purported individual (like nonKripke) is impossible.

And Strawson was right. There can be no such individual as nonKripke. But
that is because the negation of a singular term is not a singular term (Englebretsen
1985c¢, 1985d, and 2015, 19 —20). The negation of a singular term is a general term.
In ordinary discourse we often form the negation of a singular term. In English
we do this with expressions such as ‘other’, ‘besides’, ‘else’, ‘except’, ‘but’, etc.
Given a suitable determinable universe of discourse, the denotation of a negative
singular term such as nonX would be everything in the domain other than X. For
example, in the sentence ‘Ed but not Tom came to the party’ the ‘but not Tom’
does not denote an impossible individual (as Strawson thought). It denotes
each of the party invitees with the exception of Tom. In the sentence ‘No solar
planets other than Earth are inhabited’ the expression ‘other than Earth’ (formal-
ly ‘nonEarth’) denotes Mercury, Venus, Mars, Jupiter, Neptune, Uranus, and Sat-
urn. Compare the diagrams for ‘Earth is inhabited’ and ‘No solar planets other
than earth are inhabited’:
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Figure 3.44: Diagrams for Singular and Negative Singular Subjects

Note that the unmarked singular term in the first diagram is nonetheless im-
plicitly charged positively (and the quantity of the subject is implicitly wild).
Note as well that in the second diagram the negative version of the singular
term is not singular; it functions logically as a general term (and is universally
quantified here). (For more on negated singular terms see Clark 1983 and Zemach
1981 and 1985.)

Strawson’s dismissal of the second result of the asymmetry thesis, the claim
that singular terms cannot be predicated, cannot be predicate terms, was brief —
even blunt. He wrote that this asymmetry “seem([s] to be obvious and (nearly) as
fundamental as anything in philosophy can be” (Strawson 1957, 446). Prime
facie, the sentiment seems sound. And it seems to have a very long history. In
Categories, Aristotle distinguished, among “things that are said,” between
those that are “said of” (predicated of) a subject and those that are “in” a sub-
ject. There are also those that are both and those that are neither. These latter are
the subjects that the others are either said of or in or both. They are individual,
numerically one. They are ontologically and logically basic. They are primary
substances. “So if the primary substances did not exist it would be impossible
for any of the other things to exist” (Categories 2b5-6). So individuals are not
said of a subject, not predicated. In the most basic sense, they are the “things
there are” (Categories 1a20). Aristotle was less than perfectly clear about the dis-
tinction between things that are and things that are said. He included primary
substance in his survey of “things that are said” even though they are things
that (fundamentally) are. So how is this to be treated in a term logic?

TFL treats all terms, singular or general, count or mass, concrete or abstract,
the same. Thus, singular terms are just terms, and they can be subject terms or
predicate terms. We often predicate singular terms. ‘The only inhabited solar
planet is Earth’, ‘The forty-fourth U.S. president was Obama’, ‘That woman is
Eve’, ‘The creator of Harry Potter is J.K. Rowling’, ‘Twain is Clemens’ (remember
in this case that TFL requires no special treatment of identity). ‘No solar planets
other than Earth can be logically paraphrased as ‘No nonEarth is an inhabited
solar planet’, which is logically equivalent to ‘Every inhabited solar planet is
Earth’, another sentence with a singular predicate term.

As has been shown, TFL has no need of a special “theory of identity.” There
is no necessity for a so-called “is of identity.” Sentences taken to be expressions
of identity are logically construed as predications like any other. To say that x is
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identical to y is simply to say that x is y and y is x. This is due in part to the wild
quantity thesis that derives from Leibniz. He also formulated the principle that
two terms that denote the same thing can be substituted for one another any-
where without loss of truth (Leibniz 1966, 34, 43, 52-53, 122, 131). Consider,
now the example of a syllogism offered by Leibniz (Leibniz 1966, 115):

Should we say that a singular proposition is equivalent to a particular and to a universal
proposition? Yes, we should. So also when it is objected that a singular proposition is equiv-
alent to a particular proposition, since the conclusion in the third figure must be particular,
and can nevertheless be singular; ‘Every writer is a man, some writer is the Apostle Peter,
therefore the Apostle Peter is a man’. I reply that here also the conclusion is really partic-
ular, and it is as if we had drawn the conclusion ‘Some Apostle Peter is a man’. For ‘some
Apostle Peter’ and ‘every Apostle Peter’ coincide, since the term is singular.

Note the form of this syllogism: ‘Every W is M, Some W is A.P, so (some) A.P is
M’. Here, the singular term occurs as a predicate term in the minor premise. It
also appears as a subject term in the conclusion. The syllogism is easily diagram-
med:

A.P w M
[ @ @

Figure 3.45: Leibniz’s Syllogism with a Singular Predicate Term

Consider next a syllogism that requires a singular predicate term (twice) and
a singular subject term that occurs once universally quantified and once partic-
ularly quantified: Some writer is Twain, Clemens is Twain, so Clemens is a writer’
(formally, adopting the TFL convention of using lowercase letters to label indi-
viduals: Some W is t, c is t, so ¢ is W). In this case, the particular quantity of
the major premise demand the particular quantity of the conclusion as well as
the universal quantity of the minor premise. Diagrammatically:

Figure 3.46: Diagrammed Syllogism with Two Singular Terms
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An advantage claimed for the use of ‘=’ as a special binary relational term is
that it shares the formal features of being reflexive, symmetric, and transitive,
which are definitive of the mathematicians’ equal sign (also ‘=’). Yet these fea-
tures are not lost when the ‘is’ of identity is abandoned. Let x, y and z be singu-
lars (thus being fit at a subject term or as a predicate term and having wild quan-
tity when used as a subject term). Thus ‘x is X’ has the tautological logical form
‘every x is x’. Also, the inference from ‘x is y’ to y is x’ has the valid logical form
‘some X is y, therefore some y is x’. Finally, the inference from ‘x is y’ and ‘y is 2’
to ‘x is z” has either of these two valid logical forms: ‘every x is y and every y is z,
therefore every x is z’ or ‘some x is y and every y is z, therefore some x is z’. In
other words, all three formal features of identity are preserved without requiring
identity to be a special binary relation with special rules of inference and a spe-
cial symbolization. They can be diagrammed very simply as long as the theory of
wild quantity is observed:

Reflexivity Symmetry Transitivity
X X X
[ [ ] z @
y y

Figure 3.47: Reflexivity, Symmetry, and Transitivity in TFL

(For more on identity in TFL as well as the predication of singular terms see,
for example, Sommers 1969 and 1982, Noah 1973, Lockwood 1975, Englebretsen
1985 1., Frederick 2013; also Moktefi 2015, 608 for the diagrammatic distinction
between is identical to and is.)

Unquestionably, some singular terms are compound terms, so-called phrasal
conjunctions and phrasal disjunctions. Advocates of the Asymmetry Thesis (es-
pecially Strawson) not only denied the possibility of negated singular terms and
predicated singular terms but the possibility of conjoined or disjoined singular
terms as well. Consider these two sentences: ‘Every Beatle sings’ and ‘Every logi-
cian sings’. In ordinary discourse contexts, the denotation of ‘Beatle’ consists of
just four things but the denotation of ‘logician’ is much, much larger. In ‘Every
prime number greater than 2 is odd’, the denotation of ‘prime number greater
than 2’ is infinite. Now, when the denotation of a term is known to be relatively
small, it is possible to dispense with the use of that term and use in its place an-
other term that explicitly indicates each of the things in its denotation. In place
of ‘Beatle’, for example, one could substitute ‘John, Paul, George, Ringo’. Call
‘John, Paul, George, Ringo,’ a term of explicit denotation since it wears its deno-
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tation on its face. In fact, this is true of any term. In principle (though rarely
practical) any term, T, whose denotation consists of a, b, c,...,, is replaceable
by ia, b, ¢, ....Thus, ‘Every Beatle sings’ can be replaced by ‘Every John, Paul,
George, Ringo, sings’. This is clearly not an ordinary English sentence. Its ordi-
nary version would be ‘John, Paul, George, and Ringo sing’. In this case the log-
ical quantifier ‘every’ is now indicated by the word ‘and’. By contrast, the famil-
iar sentence ‘John, Paul, George, or Ringo plays drums’ uses ‘or’ to indicate
particular quantity. Its more formal version would be ‘Some John, Paul, George,
Ringo, plays drums’. The use of such phrasal conjunctions and phrasal disjunc-
tions is rare in ordinary discourse because the vast majority of terms have deno-
tations that are too large or too indeterminate to be expressed by the use of cor-
responding terms of explicit denotation.

Consider, once more, ‘Every Beatle sings’. It is a simple universal affirma-
tion. It could be symbolized in TFL as: —B+S and, substituting for B its explicit
denotation: — J, P, G, R, +.S. But now consider ‘The Beatles won the top quartet
prize’. In this case, the expression ‘the Beatles’ could not reasonably be replaced
by the explicit denotation version of ‘Beatle’. In ‘Every Beatle sings’ the quanti-
fier applied distributively, so that ‘sings’ can be predicated of each Beatle. That is
why phrasal conjunctions are routinely replaced by sentential conjunctions in
MPL (‘Every (A and B) is C’ becomes ‘Every A is C and every B is C’). However,
the expression ‘the Beatles’ is not a phrasal conjunction, not logically equivalent
to ‘John, Paul, George, and Ringo’. John didn’t win the top quartet prize, nor did
Paul, nor did George, nor did Ringo. Who won that prize? The quartet, consisting
of John, Paul, George, and Ringo. A quartet always has four members, four indi-
viduals, but is itself an individual. Compare that with the sentence ‘Russell and
Whitehead wrote Principia Mathematica. Russell didn’t write it. Whitehead
didn’t write it. The duo, the writing team whose members were Russell and
Whitehead wrote it. Call terms like ‘the Beatles’, ‘Bourbaki’, ‘the New York Yan-
kees’, ‘the Vienna Philharmonic’ team terms. On some occasions, ‘Russell and
Whitehead’, ‘Venus and Serena’, ‘John, Paul, George, and Ringo’ are team
terms (on other occasions they are simply phrasal conjunctions. The term
‘Peter, Paul, and Mary’ is the name of the trio, so it is simultaneously a team
term and a term of explicit denotation. Team terms are singular terms. They de-
note one individual — a team (which happens to consist of individuals). Teams,
being individuals, could themselves be members of teams of teams, and so forth.
When a team term is quantified (plays the logical role of subject term or object
term) its quantity is, of course, wild. Let a, b, and c constitute a team. The team
may or may not have a name. In either case, let 'a, b, ¢’ denote the team, call it
an explicit team name. For example, ‘the Beatles’ is a team name and 'John,
Paul, George, Ringo’ is its explicit name. (For much more on terms of explicit de-
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notation, team terms, etc., see Englebretsen 1996, 183 — 185, but especially Engle-
bretsen 2015, 121-131).

Terms of explicit denotation can be treated just like any general term in TFL.
In ED, they would be represented graphically just like any general term. For ex-
ample, ‘John, Paul, George, and Ringo sing’ would be treated as ‘Every John,
Paul, George, Ringo, sings (— J, P, G, R, +S) and diagrammed as a normal A cat-
egorical. ‘John, Paul, George, or Ringo plays drums would be treated as ‘Some
John, Paul, George, Ringo, plays drums’ ( + J, P, G, R, +P) and diagrammed
as a normal I categorical.

J,P, G, Ry S J,P, G, Ry

Figure 3.48: Diagrams With Terms of Explicit Denotation

A sentence such as ‘The Beatles won the top quartet prize’ could be con-
strued as using a simple team name (‘the Beatles’) or an explicit team name
("John, Paul, George, Ringo"). In either case, they are treated as singulars (*B
+W and *"J, P, G, R'+W) and diagrammed accordingly:

B w ,P,G,R w

o—0 [ @

Figure 3.49: Diagrams With a Team Name and With an Explicit Team Name

3.5 Vectors of Relations

It is well known that relations are more difficult to represent in a graphical system than are
properties.
S.-J. Shin

Modern logicians pride themselves in having at hand a system of formal logic
that is adequate for the demands unmet by ancient and traditional logicians.
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Prominent among such demands is that any adequate system of formal logic
should be able to account for relational expressions, statements making use of
such expressions, and deductions involving such statements. It is known that Ar-
istotle, though unable to provide an adequate account of relationals, was fully
aware of the importance of such a requirement, used and discussed examples
of relational statements and syllogisms using such statements, and formulated
rules for such deductions (see Bocheniski 1951 and 1968, Sommers 1982, ch 7,
Englebretsen 1982d). Traditional logicians also were mindful of the importance
of accounting for relationals, with treatises on so-called oblique term cases.
And, of course, Leibniz made an attempt to incorporate the logic of relationals
into syllogistic. The problem with such efforts, according to the moderns, is
that a categorical statement can have only one subject term, one quantified
term, while relationals require two or more reference-making terms (terms that
are either singular or quantified). Term Functor Logic illustrates just how a for-
mal term logic can be adequate for the demand to account for the logic of rela-
tionals. Relational expressions are terms on par with all other terms. In fact, they
are complex terms. Complex terms are always pairs of less complex terms that
are logically copulated (by split or unsplit copulae). Moreover, the graphic sys-
tem ED is able to provide a perspicuous representation of relational terms.

Consider this simple example, ‘Romeo loves Juliet’, symbolically: *R+(L*]).
A relational term often has a “direction” (determining whether it is to be under-
stood actively or passively). TFL indicates this by means of a system of subscri-
bed numerals, which will be ignored for now. ED makes use of vector lines, ar-
rows, to represent relational terms like ‘loves’. Such vectors quite literally
indicate direction. Thus:

]

Figure 3.50: Romeo loves Juliet

Not only does Romeo love Juliet, Juliet loves Romeo. So:
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b4
([ ]
r

Figure 3.51: Juliet loves Romeo

Note that the use of vectors allows one to deduce from these two diagrams
that Juliet is loved by Romeo and that Romeo is loved by Juliet. It all depends
upon reading the vector from tail to head (active voice) or from head to tail (pas-
sive voice).

Consider now ‘Some officer is giving a ticket to every speeder’. Its overall
form is categorical. Its subject is the quantified simple general term ‘some officer’
and its predicate is the qualified complex term ‘is giving a ticket to every speed-
er’. Those two terms, then, are copulated by the split copula ‘some...is’. The pred-
icate term, being complex, is itself the copulation of two less complex terms,
‘giving a ticket to’ and ‘speeder’, the copula of which is the unsplit ‘every’. As
well, the complex term ‘giving a ticket to’ is the copulation of two less complex
terms, ‘giving... to’ and ‘ticket’ with the copula here being the unsplit ‘a’ (i.e.,
‘some’). It can be rendered symbolically as: +O+((G+T)—S). This could be dia-
grammed as an I categorical whose predicate term happens to be complex. In
some logical context that would be enough. However, in most logical contexts,
ones in which one of the constituents of the complex predicate term occurs with-
out the rest, it is necessary to analyze such complex terms. One could analyze the
complex predicate either partly or completely. In the former case, ‘giving a ticket
to’ is left unanalyzed; in the latter case it is analyzed. Here is how our example is
diagrammed with no such analysis:
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(G+T)-S

Figure 3.52: Unanalyzed Complex Relational

In other contexts, it could be necessary to at least partially analyze this com-
plex relational:

(G+7)

v
®S

Figure 3.53: Partially Analyzed Complex Relational
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0
4 @
G
® T
to
)4
oS

Figure 3.54: Fully Analyzed Complex Relational

It is important to notice that the locations of any points through which such
vectors pass, including arrow tail points and arrow head points, indicate the
quantities of the relata. The quantity is universal whenever the vector intersects
the right terminus of a line and particular whenever it intersects a point to the
left of the terminal point.

Of course, one could diagram such an example with the complex relational
both unanalyzed and analyzed. This would be a representation of a fundamental
principle: Whatever is related (R) to some/every A is related (R) to some/every A.
Thus these two tautologies:

R+A R-A

@ ® A —0@ A

Figure 3.55: The Principle of Relational Analysis

So the corollary:
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R*x

X

Figure 3.56: A Corollary

Consider ‘Some A is R to some B’. It could be diagrammed as:

R+B

®B

Figure 3.57: Unsimplified Relational

Since some of the information exhibited here is tautological and redundant
(the inclusion of the unanalyzed relational term), the diagrammed can be simpli-
fied:

A
@

R
* — )

Figure 3.58: Simplified Relational

There are, however, cases requiring the inclusion of such tautological infor-
mation. Consider the following argument: ‘Some senator received a bribe, all
bribes are illegal, whoever receives something illegal is a crook, therefore,
some senator is a crook’. In this case the relational term ‘received a bribe’
must be represented diagrammatically as both analyzed and unanalyzed:
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(R+B) C
L
S R
L L L
B |

Figure 3.59: Valid Relational Inference

Such a strategy will always be required whenever a relational expression is
used, as in this case, as a subject term in one occurrence and as a predicate term
in another occurrence. The conclusion can be seen as already diagrammed just
by diagramming the premises. But the diagram reveals much more. For example,
it could also be concluded on the basis of the diagram that a bribe was received,
that a bribe was received by a senator, that a bribe was received from a crook,
something illegal was received, that something illegal was received from a sen-
ator, and that something illegal was received from a crook.

De Morgan’s famous example of a relational inference (‘Every horse is an an-
imal, therefore, every head of a horse is a head of an animal’) can provide some
valuable insight into the logic of relationals. Letting C stand for ‘head of’, this is
formalized in TFL as: —H+A - —(C+H)+(H+A). TFL treats this as an enthymeme
whose tacit premise is the tautological ‘Every head of a horse is a head of a
horse’. The full ED diagram for the inference is:

C+H

C

==y ]
>0

Figure 3.60: De Morgan’s Inference

This example provides motivation for formulating a further fundamental
principle governing the logic of relationals. Consider these four argument
forms (followed by the appropriate diagrams):

1. Every X is Y, some S is R to some X, therefore, some S is R to some Y
2. Every X is Y, some S is R to every X, therefore, some S is R to some Y
3. Every X is Y, every S is R to some X, therefore, every S is R to some Y
4. Every X is Y, every S is R to every X, therefore, every S is R to some Y
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1 2.
R+X R-X
D D
S R S R
v \4
— & — & — @ ®
X Y X Y
3 4.
S R+X S R-X
L
R R
) 4
@ *—O ®
X Y X Y

Figure 3.61: Four Special Inferences

As it happens, the conclusion of 2 and the conclusion of 4 can only be deduced
by introducing a hidden premise of the form ‘Some X is X’, which is contingent.
As the diagrams show, the only additional premise required here is a tautology
found above in Figure 3.52. It is the Principle of Relational Analysis: whatever is
R to some/every A is R to some/every A. Based on the four cases above, the fol-
lowing generalization can be formulated as an additional fundamental principle,
the Principle of Relational Extension, governing the logic of relationals: If every
X is Y, then whatever is R to some/every X is R to some Y. The diagrammatic ver-
sion is:

R+/-X R+X
@
R
@ @ ®
X Y

Figure 3.62: The Principle of Relational Extension
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It is by virtue of the principle that a line segment representing a relational
term (‘R to some X’ or ‘R to every X’) can be extended to the right so that it is
a part of the line representing ‘R to some Y’ whenever every X is Y.

Binary relational predicates such as ‘loves’, ‘picks up’, ‘next to’ and the like
are composed of a relational term and an object. An object is a quantified term.
Syntactically, it is no different from any subject. A ternary (or more) relational
predicate requires two (or more) objects. One such object will be a direct object
while the other objects are indirect objects. In the example ‘Some officer gave a
ticket to every speeder’, the relational predicate consists of the relational term
(‘gave...t0’), an indirect object (‘a ticket’), and a direct object (‘every speeder’).
Sometimes, where a particularly quantified term, whether a subject or an object,
is used in a statement can determine how it is to be understood. A common il-
lustration of this is provided by the (well-worn) example, ‘Every boy loves some
girl’. Here, the object (‘some girl’) is ambiguous. The sentence can be understood
as saying of every boy (i) that he loves some girl or other, or (ii) that he loves
some specific, certain girl. The two alternatives are given distinct logical formu-
lations: (i) ‘Every boy loves some girl (or other)’, (ii) ‘Some specific girl is loved
by every boy’. The ‘some girl’ is taken to be non-specific in (i) but specific in (ii).
Modern predicate logic resolves this by the order of quantifiers: (i) is a universal-
ly quantified existential, (ii) is an existentially quantified universal. TFL achieves
the same resolution in terms of the order of positive and negative terms (see
Sommers 1976b, 23 and Sommers 1982, 141-142 for brief but clear accounts).
The two sentences would be diagrammed differently:

(0] B (i) B

@ ® o——©
G G

Figure 3.63: Specific vs Non-Specific Reference

The object in (ii) is specific; it refers to a specific girl, an individual. We might
not know her name, but we can still refer to her. We might make use of a pronoun
(‘she’), so that we could paraphrase (ii) as ‘Some girl is such that she is loved by
every boy’, and ‘she’ here is a singular term. Thus, when used as either a subject
or an object it has wild quantity (*G+(L—B). That’s why the diagram for (ii) rep-
resents her as merely a left endpoint of a line. More about pronouns later, but
first, one more fundamental principle of the logic of relationals.
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If Romeo loves Juliet, then Romeo loves (and as well, Juliet is loved). In nat-
ural language, relational terms have one or more objects. If Morgan offered a ride
to Russell, then it follows that Morgan offered a ride. If he offered a ride to a
friend, then he still offered a ride. In our ordinary use of our natural native lan-
guage, we take relational terms and their non-relational partners on a par. Thus,
for example, the ‘loves’ in ‘Romeo loves Juliet’ is the same ‘loves’ in ‘Romeo
loves’ (likewise for ‘lover of’ in ‘Romeo is a lover of Juliet’ and ‘Romeo is a
lover’). We readily take a relational statement to entail the same statement with-
out one or more of its direct or indirect objects. Thus, from ‘Morgan offered a ride
to a friend’ one could deduce each of the following: ‘Morgan offered a ride’ and
‘Morgan offered’. TFL takes this at face value, formulating the premise as: *M
+((0+R)+F) and the conclusions as: *M+(0+R) and *M+0O. Here, the term ‘offered’
can have any adicity (triadic, dyadic, monadic) depending on its sentential con-
text. And that’s natural. By contrast, MPL takes the adicity of any term as fixed,
invariable, so that, for example, ‘Romeo loves Juliet’ and ‘Romeo loves’ are for-
mulated as ‘Lyj’ and ‘Lr’, but the ‘L’ is ambiguous. It is a 2-place, binary relation-
al term in the first, but it is a 1-place, monadic, non-relational predicate in the
second. The inference from ‘Romeo loves Juliet’ to ‘Romeo loves’ (‘Romeo is a
lover’, ‘Romeo does love’, etc.) is immediate for TFL and it is naturally so. By re-
quiring that ‘loves’ be permanently binary, MPL can only deduce ‘Romeo loves
something’ (‘Romeo is a lover of something’, ‘Romeo does love something’,
etc.). At any rate, there is a general principle here that allows for the dropping
of one or more objects from a relational: Whatever is related R to every/some
A, ..A, is R to every/some A, Diagrammatically then (using dotted line exten-
sions to indicate quantity options):

I

|

I

|

I
—0.......... An
Figure 3.64: The Principle of Relational Reduction
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Needless to say, other principles could be formulated to account for how
converses of relationals are formed to allow for rearranging the order in which
direct and indirect objects occur. For example, in English there are passive/active
voice pairs such as ‘loves’/’loved by’ and ‘gives ... to’/’gives to ...’/’given ...by’".
Nevertheless, we turn now to the task of incorporating into ED diagrams strat-
egies for representing statements involving reflexive pronouns.

In English, reflexive pronouns are usually words such as ‘itself’, ‘herself’,
‘himself’, ‘themselves’, etc. They are always object terms. Compare ‘Trump
loves power’ and ‘Trump loves himself’. In each case, ‘Trump’ is the subject
term. In the first case, the object of the relational is ‘power’, but in the second
case, the reflexive pronoun ‘himself’ has ‘Trump’ as its referential antecedent.
This allows the pronoun to be replaced by its antecedent, which yields ‘Trump
loves Trump’. We know how to diagram ‘Trump loves power’, but what of
‘Trump loves Trump’? A first attempt might produce:

—0¢+——0 -
—

Figure 3.65: Attempted Singular Reflexive Diagram

The problem with this attempt is that it treats ‘Trump’ (T) as two individuals,
one the subject of the relation and the other the object of the relation. ‘Trump’
denotes a single individual, and that individual is both the subject and object
of the relation. So the diagram must represent that:

Figure 3.66: Singular Reflexive Diagram
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Consider a sentence in which the subject/object of the relation is a general
term: ‘Some senator nominated some senator’. One might attempt to diagram a
sentence such as this in the same way the diagram for ‘Trump loves himself/
Trump’ was first attempted:

)4
L  J
Figure 3.67: Attempted General Diagram

However, as in the first attempt, the denotations of the subject and the object
are not distinct. There can only be one S line; otherwise a contradiction is depict-
ed. The sentence can be diagrammed properly once this is recognized. Thus:

N

N .

Figure 3.68: Proper Diagram

Here is an example of a valid argument involving a reflexive pronoun: ‘Some
senator nominated herself. Every self-nominator is a fool. All fools deserve rid-
icule. Therefore, some senator deserves ridicule.” It can be diagrammed as fol-
lows:
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®R
S

Figure 3.69: Argument With a Reflexive

As it happens, reflexive pronouns pose little challenge to the project of line
diagrams. What now of (non-reflexive) personal pronouns in general? Again, we
look to TFL for insight.

It is after all a matter of historical fact that [traditional term logic] had no systematic treat-
ment of pronouns and indeed that such a treatment is a justly celebrated accomplishment
of MPL (wherein pronouns are represented as bound variables) ... one may well wonder
how this false charge has received such widespread and enduring acceptance by responsi-
ble logicians. That they were anxious to persuade students that the older logic was super-
seded is not by itself a sufficient explanation. A minimal attention to the methods of proof
available to pre-Fregean logic would have given them pause. One doubts it could happen
that two generations of modern geometers could falsely claim that Euclidean geometry
could not prove certain theorems that are easily provable in some non-Euclidean systems.
But then mathematicians who do modern geometry are not as tendentious as philosophers
who do modern logic. (Sommers 1982, 146 —147)

A brief note regarding some semantic matters is in order before continuing. A
used term, one used relative to a given universe of discourse (a domain), denotes
every thing in the domain of which it is true. If a speaker says, relative to the
neighborhood in which he or she lives, ‘Every dog is barking’, then’ dog’ denotes,
in this case, every dog in the neighborhood. A quantified term, used relative to a
given domain, refers to either every or at least one thing in the domain that the
term per se denotes. So, a quantified term (a logical subject or object) has a ref-
erence determined in part by the denotation of its term and its quantifier. Thus,
the term ‘dog’ denotes every dog in the domain relative to which it is used; ‘every
dog’ refers to every dog in the domain; ‘some dog’ refers to at least one dog in
the domain. The late medieval logicians seem to have been relatively clear about
this distinction. Whenever a used quantified term refers to just what it denotes it
is said to be distributed; otherwise it is undistributed. Briefly: terms denote;
quantified terms refer.

We have seen above examples of terms that are relational (‘loves some girl’
(L+G)). Relational terms are complex terms. However, some complex terms are
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not relational. For example, compound terms such as ‘rich and famous’ (R+F)
are complex. Consider now the following pair: ‘Some dog is barking’ (+D+B)
and ‘It is annoying’ (?+A). What is annoying? Clearly, the dog. Which dog? The
dog that is barking. And that is just what the pronoun ‘it’ denotes. The pronoun’s
antecedent is ‘some dog’ in the first sentence. While it might be thought that ‘it’
refers to just what its antecedent refers to, the fact is that the pronoun denotes
everything to which its antecedent refers (not just some dog, but rather, the spe-
cific dog under consideration — the one that is barking). Such pronouns are al-
ways implicitly quantified; they are logical subjects or objects. As such, they
have a denotation and also refer. Again, reference is determined by both deno-
tation and the relevant quantifier. In effect, such a pronoun has universal quan-
tity in addition to the quantity of the antecedent subject. In effect, the pronoun
for a definite subject ‘some x’ will always be an expression with ‘wild’ quantity.
Pronouns that cross-refer to ‘every x’ are another matter” (Sommers 1976b, 26).
TFL represents this tie that connects such pronouns to their antecedents by at-
taching to the antecedent term a superscripted letter that is then used as the pro-
noun. A pronoun inherits the quantity applied to its antecedent and also has im-
plicitly its own universal quantity (since it is meant to denote all of what its
antecedent refers to). In this case, that means it has wild quantity. Thus: (+D'
+B) and (*i+A). Of course, the first sentence alone, or in a different context,
need not have any subsequent pronoun. It would then be treated as a simple par-
ticular affirmation whose subject is understood to be non-specific. But, once pro-
nominalized, such a subject must be understood as making specific reference. In
that case, the first sentence above could be diagrammed in two equivalent ways:

i o i@————————@ (D+B)

Figure 3.70: A Simple Pronominalization

Given the pronominal ties between the two original statements, they can
now be diagrammed together as:
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i (D+B)

A

Figure 3.71: A Full Pronominalization

In MPL, pronouns, in the guise of bound variables, are ubiquitous. In natu-
ral languages, they seem to be used more sparingly. The antecedents of bound
variable pronouns are always the quantifier expressions that bind them. Natural
language personal pronouns usually follow their antecedents and are called
‘anaphoric pronouns’. Sometimes, however, they precede their “antecedents”
and are then called ‘cataphoric pronouns’. Consider next an example that in-
volves an interlocking pair of such pronominalizations: ‘A boy who loved her
kissed a girl who slapped him’ (+(B"+(L*S))+(K*(G*+(S+H))). Note the relations
that hold between that boy and that girl. Among the boys and girls (in the do-
main), at least one of the boys kissed one of the girls, that boy (he, ‘h’) loved
that girl, that girl (she, ‘s’) slapped that boy. Thus, the boy who loved the girl
kissed the girl who slapped him. This might be diagrammed in three stages:
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Step 1 (Some boy loves some girl)

h
® B
L
® G
s
Step 2 (He kissed her)
h
@ B
K L
® G
s
Step 3 (She slapped him)
h
@B
K S
® G

S

Figure 3.72: An Example of Interlocking Pronominalizations

Finally, here is an example of a diagrammed inference involving a pair of
pronouns: ‘A cat is screeching; I own it; it annoys me; but all cats are lovable;
so, something lovable annoys me’ (+C+S), (*i+(0*f)), (*f+(A*i),(—C+L) - +L
+(A*1).
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Figure 3.73: A Diagrammed Inference with Pronouns

We have claimed that all terms are positively or negatively charged. Conse-
quently, the same is true of relational terms. In the absence of any contextual
clues, the sentence ‘Some critics don’t like every Shakespeare play’ is ambiguous
between something like (i) ‘Some critics fail to like every Shakespeare play’; per-
haps they like the comedies but not the tragedies, or they like all of them except
for Othello, and (ii) ‘Some critics dislike every Shakespeare play’. This is shown
in their TFL formulations: +C—(L—S) and +C+(—L—S). Note that the relational
term (‘likes’) is positively charged in the first version (though it is part of the neg-
ative complex predicate term (‘fails to like every Shakespeare play’). By contrast,
the relational term in the second version is itself negative (‘dislikes’), (while the
complex predicate term of which it is a part is positive). Diagramming the two
alternatives graphically represents their logical differences:
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@

-L-P)

(iD)

(-L-P)

-L

P

Figure 3.74: Negative Relationals

Note that the relational predicate term in the diagram of (ii) has then been
analyzed. Note as well that, given the innocent tacit premise that there are
Shakespeare plays, (ii) entails (i).

The real import of negative relationals is seen in cases of inferences in which
they play a logically effective role. An example of such an inference is the follow-
ing: Some critics dislike every Shakespeare play. Othello is a play by Shake-
speare. All actors like Othello. So, no actor is a critic. It can be diagrammed thus:
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Figure 3.75: Inference with Negative and Positive Relationals

Note that in this case the A line cannot be raised to the level of the C line
(which is why no A is C) since the L and -L arrows could never meet. Were
the A line to be raised the result would express the contradictory proposition
that all actors both like and dislike Othello — a contrapiction.

3.6 World Lines

Between the [calculus of classes and the calculus of propositions] there is ... a certain par-
allelism, which arises as follows: In any symbolic expression, the letters may be interpreted
as classes or as propositions, and the relation of inclusion in the one case may be replaced
by that of formal implication in the other.

Russell

It was Sommers’ insight that propositional logic can be developed within syllogistic.
John Bacon

Whether expressing it symbolically or representing it graphically, determining
the logical form of a statement is always a matter of choosing the appropriate
level of analysis (see, for example, Corcoran 1999a and 2008). To see this, con-
sider an inference that involves a syntactically complex term (the relational term
‘admires some logicians’) requiring no further analysis of it into its non-complex
constituents: ‘Every philosopher admires some logicians, whoever admires any
logician is misguided; so, every philosopher is misguided’. One could, of course,
diagram this with the usual analysis of the relational, using an arrow for ‘ad-
mires’ with a tail on the right terminus of the line for ‘philosopher’ and a
head on a non-terminal point on the line for ‘logician’. The ‘philosopher’ line
would then be extended to the right to accommodate the second premise. How-
ever, since the constituent terms of the relational term do not play any logical
role in the argument, analysis of the relational term is unnecessary. It is simply
the middle term of a simple Barbara syllogism and can be diagrammed as such.
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Needless to say, there can be cases of inferences in which more than one com-
plex term might be left unanalyzed. As well, there are many cases in which no
such terms can be safely unanalyzed. Entire sentences are terms (sentential
terms). Even with these kinds of terms, analysis into their constituent unanalyz-
able terms is not always required. After all, any sentence, of any complexity, can
be treated as completely unanalyzed. Consider this argument: ‘If every actor is a
thespian then some actors are not comics, all actors are thespians; so, some
actor is not a comics’. One could formalize this recognizing the categorical
forms of its constituents but such an analysis is unnecessary. It is in fact just
a simple modus ponens argument.

Peirce’s Alpha graphs precede Beta graphs. Nonetheless, Dipert (Dipert 1981)
showed that Peirce took the logic of propositions and the logic of terms to be iso-
morphic, equally primary, neither more basic than the other. Kant had claimed
that there is an absolute difference between categoricals and compound state-
ments, thus, between a logic of terms and a logic of propositions. Leibniz took
the logic of terms to be primary. Boole’s view on the matter of primacy foreshad-
owed Peirce’s. He saw his “secondary” logic of propositions and his “primary”
logic of terms to be nothing more than two of the interpretations of his algebra.
Post-Fregean logicians rejected (mostly ignored) all of these views (isomorphism,
exclusivity, and term priority).

Frege, and then Wittgenstein, famously claimed that a word has a meaning
only in the context of a sentence (the “Context Principle”). Were this so, then the
logician would be required, in the first instance, to provide a logic of sentences
before going on to a logic of terms. So-called propositional logic, or sentential
logic, or statement logic is a formal system for accounting for logical reckoning
involving only unanalyzed sentences. In MPL, such a system is universally pre-
sumed to be primary logic. Nevertheless, it can be, and has been, argued that a
logic of terms is prior to a logic of sentences, that a logic of terms is primary
logic. In fact, the logic of unanalyzed sentences (sentential terms) is only a
part of the logic of terms. The fullest expression of these claims was made by
Sommers in his “The World, the Facts, and Primary Logic,” where he argued
that “propositional logic is a special branch of term logic” (Sommers 1993,
181). “The doctrine that term logic is primary logic has ancient roots. Historically,
term logic came first, having been discovered and developed by Aristotle; prop-
ositional logic, primarily a Stoic innovation, came later” (Sommers 1993, 172).
Much of this argument for the primacy of term logic was foreshadowed by
some of Leibniz’s insights. The most important of these was his recognition
that propositions (viz., unanalyzed sentences) could be treated as terms. He
said this many times and in many ways:
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However, the categorical proposition is the basis of the rest, and modal, hypothetical, dis-
junctive and all other propositions presuppose it. (Leibniz 1966, 17)

... any proposition can be conceived as a term. (Leibniz 1966, 71)

The proposition itself can be conceived as a term. (Leibniz 1966, 86).

He also argued that the notion of containment, which plays a key role in logic,
applies to the relations among propositions in just the same way as it applies
to relations among terms:

... whatever is said of a term which contains a term can also be said of a proposition from
which another proposition follows. (Leibniz 1966, 85)

... that a proposition follows from a proposition is simply that a consequent is contained in
an antecedent, as a term in a term. By this method we reduce inferences to propositions,
and propositions to terms. (Leibniz 1966, 87).

Leibniz’s aim in doing this was to produce a unified system of logic, one that did
not treat the logic of terms and the logic of sentences differently. Once more, he
wrote:

If, as I hope, I can conceive all propositions as terms, and hypotheticals as categoricals,
and if I can treat all propositions universally, this promises a wonderful ease in my symbol-
ism and analysis of concepts, and will be a discovery of the greatest importance. (Leibniz
1966, 66).

And, as well, there is Leibniz’s insight that singular subjects are arbitrarily uni-
versal or particular in quantity, the “wild” quantity thesis (Leibniz 1966, 115).

Sommers incorporated these Leibnizian insights, and much more, into his
argument for construing the logic of propositions as a special branch of the
logic of terms. In doing so, he went much farther than Leibniz. Leibniz had mere-
ly expressed a hope that he could achieve this kind of logical unity by treating
sentences as terms, but he could not provide an adequate strategy for doing so.
Sommers could. As we have seen, TFL treats sentences as nothing more than
complex terms (pairs of logically copulated less complex terms). This idea re-
flects the obvious fact that conjunctive sentences and particular affirmations
share the same formal features of being symmetric and associative (but not tran-
sitive), while conditional sentences and universal affirmations share the same
formal features of being reflexive and transitive (but not symmetric and associa-
tive). So, if sentences are just complex terms, then the semantic relations that
characterize terms must, per force, characterize sentences. As discussed earlier
in this chapter (section 2), terms used relative to some specifiable domain of dis-
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course, generally, stand in the three semantic relations of expressing concepts
(senses), signifying properties, and denoting objects, Thus, for example, with re-
spect to the actual world today, ‘foolish’ expresses the concept of foolishness,
signifies the property of being foolish, and denotes whatever has that property.
If nothing has that property, then the term is vacuous (has neither denotation
nor signification). When a statement is made, it is made by means of a sentence
used relative to a specifiable domain of discourse. The concept that a statement
expresses (its sense) is construed as a proposition (in a strict sense of that word).
What of the signification and denotation of such a sentence?

Just as used non-vacuous terms signify properties, used non-vacuous state-
ments signify properties. In this case, the properties signified are properties of
what are denoted. While terms denote objects (in the domain), statements denote
the domain itself (Sommers calls a domain denoted by a statement a world. In-
deed, worlds, domains, universes of discourse “constitute the ultimate subject-
matter of the discussion” (Corcoran 1999b, 941, see also Corcoran 2004, 495 ff
and Hodges 2009, 599). They are what a statement maker claims truth for. Con-
sider the statement, ‘Some politicians are foolish’ asserted with respect to the
world today. The condition for its truth is that there be at least one foolish pol-
itician. Suppose (suspend any contrary belief for now) that Trump is a foolish
politician. On such a supposition, Trump has the properties of being a politician
and being foolish. But as Hume and Kant have taught, existing is not an addition-
al property of Trump. Frege (Frege 1950, section 53) had argued that existence
was not a property of objects but rather a (secondary) property of concepts.
For example, on such a view, to say that there are horses is to say that the con-
cept of horse is not empty (applies to some object); to say that there are no uni-
corns is to say that the concept of unicorn is empty (applies to no object). Varia-
tions of the view were then offered by Russell (Russell 1918, Lecture V) and then
Quine (Quine 1953, 13). In spite of such credentials, the view is rejected by
Sommers in favour of the idea that to say of any object that it exists (does not
exist) is just to say that it is (is not) a constituent of the domain of discourse
at hand. “To be in a domain is to exist” (Sommers 1993, 175). To say that
Trump exists (with respect to the world today) is to say that the world has
Trump as one of its constituents. To say that there are horses is to say that horses
are constituents of, present in, the world; to say that there are no unicorns is to
say that unicorns are not constituents of, are absent from, the world. Thus exis-
tence and non-existence are always matters of such presence or absence (Somm-
ers 1993, 174). The statement above about Trump says something about him (that
he is a foolish politician); but it also claims something about the world (that it is
characterized by the presence of Trump who is a foolish politician) (Sommers
1993, 179). While properties like being foolish or a politician are characteristics
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of objects, properties like having or lacking, presence or absence, are character-
istics of domains/worlds. They are constitutive characteristics. Given a domain
and a constitutive characteristic, the domain either does or does not have it. A
constitutive characteristic (whether positive or negative) of a domain is a fact.
A true statement expresses a proposition, signifies a fact (a constitutive charac-
teristic), and denotes what has that fact. And, of course, what has that fact is the
domain. A false statement fails to signify a fact and thus fails to denote the do-
main. It must be noted that a fact is not a constituent in the domain; it is a prop-
erty, a constitutive characteristic of the domain. (For more on this account of
truth see Englebretsen 2006).

Unanalyzed sentences can be construed as categoricals by taking them,
then, as denoting worlds. If ‘p and q’ is construed as having the form ‘some p
is ¢’, then the sentential variables here can be read as abbreviations for ‘p-
world’ and ‘gq-world’ (thus, ‘some p-world is a gq-world’). In the same way, ‘if p
then q’ can be read as ‘every p-world is a gq-world’). Their symbolic expressions
in TFL are “+p+q’ and ‘—p+q’. A so-called atomic sentence, ‘p’ is simply read as
‘some world is p’ (+p); its contradictory negation would be ‘some world is non-p’
(—p). However, at this point, the doctrine that the logic of sentences is merely a
special branch of the logic of terms (resulting in the unified system of formal
logic envisaged by Leibniz and Sommers) faces what appears to be a serious
challenge. Treating the conjunctions and conditionals of propositional logic as
logically categoricals (I and A, respectively) reveals a pair of disanalogies
(Sommers 1993, 172-173 and 179):

1" Disanalogy: ‘p and ¢’ (“+p+q’) entails ‘if p then q’ (‘—p+q’), but ‘Some A is B’ does not
entail ‘every A is B’ (‘+A+B’ does not entail ‘—A+B’).

2" Disanalogy: ‘p and q’ (+p+q’) is incompatible with ‘p and not q’ (“+p—q’), but ‘Some A is
B’ (‘+A+B’) is compatible with ‘Every A is B’ (‘—A+B’).

It turns out that the resolution of these apparent challenges is due to the recog-
nition of two important features of the Leibniz-Sommers logical program (Somm-
ers 1993, 179-180). First, sentences used relative to a specifiable domain are
such that, if they denote at all, they denote that domain. A domain, or world,
is a totality of its constituents. While the sub-sentential terms that make up
the sentence might denote things in that world, the sentence itself denotes
just one thing, the world (not a thing in the world). Consequently, sentential
terms like ‘p’, ‘q’, ‘p-world’, ‘q-world’, etc., are singular terms whose denotation
is unique. This means that ‘p and q’ can just as well be read as ‘the world is both
p and ¢, ‘if p then q’ can be read as ‘the world is not both p and not ¢’, ‘p’ can be
read as ‘the world is p’ and ‘not p’ can be read as ‘the world is not p’. Singular
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statements (those having singular subject terms) can be taken to have wild quan-
tity. Thus, conjunctions, conditionals (and any other truth-functional forms of
statement) can be taken to have wild quantity. It is the wild quantity thesis
that accounts for the two disanalogies, for it is the same thesis that resolves
these two other disanalogies (let A denote artists, D denote Dutch residents,
and V denote Vermeer:

3" Disanalogy: ‘Some A is D’ (“+A+D’) does not entail ‘Every A is D’ (‘—A+D’), but ‘Some V
is D’ (“+V+D’) does entail ‘Every V is D’ (‘—V+D’). Both of which are then formulated simply
as “*V+D’.

4™ Disanalogy: ‘Some A is D’ (“+A+D’) is compatible with ‘Some A is not D’ (‘+A—D’), but

‘Some V is D’ (‘+V+D’) is incompatible with ‘Some V is not D’ (‘+V—D’), since “**V+D’ and
“*V—D’ are incompatible.

In other words, the first disanalogy is simply an instance of the third and the sec-
ond is an instance of the fourth, and the third and fourth are innocuous in light
of the singularity (unique denotation) of sentential terms and the wild quantity
thesis.

It is because sentential terms are singular that they are given wild quantity
whenever they are quantified. “[A]ll propositional terms are uniquely denoting
terms and all propositional statements are singular statements” (Sommers
1993, 179). Any sentence used to make a statement denotes the domain relative
to which it is used. When an analyzed sentence (one whose constituent non-sen-
tential elements are explicit) is used to make a statement, the sentence is simul-
taneously used (1) to say something about things in the domain (world) relative
to which it is used and (2) to claim that what is being said (the proposition ex-
pressed) is true. When an unanalyzed sentence is used to make a statement, what
it is used to say (assert, state) just is what it is used to claim. In other words, what
such a statement states is not something about what is or is not in the domain —
it is about the domain itself.

The distinction between saying and claiming is idle in propositional logic since the state-
ments we are there concerned with are represented by statement letters that give no clue as
to the internal contents of the statements represented (nor is any needed for the purpose at
hand). All statements of statement logic are understood as being about the world. Given ‘p’
we interpret it as asserting its truth claim, viz., that the world is a p-world. Given ‘p&q’ we
interpret it to say that the world is both a p-world and a g-world and so on for other com-
pound forms. (Sommers 1993, 179)

Consider ‘p&(q’; in its categorical form ‘some p-world is a gq-world’. That this makes a claim
about the one world is evident from its equivalence to ‘The world is both a p-world and a g-
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world’. ... All statements of statement logic are understood as being about the world. ... all
sentential terms denote the same world. (Sommers 1993, 179 —180)

The doctrine that all true statements denote one and the same domain (though signifying
different facts) is the key to understanding why all of the ‘general categorical’ statements
of terminized propositional logic are semantically singular” (Sommers 1993, 181),

So, how can this account of statement logic as a special branch of term logic be
incorporated into the visual logic of ED? How can “terminized propositional
logic” be given a graphic treatment consonant with our system for diagramming
term logic in general? There are three important features of TFL (and ED) to keep
in mind. The first is that the unanalyzed statements of statement or propositional
logic are understood as being singular terms. Consider a sentence such as ‘Aris-
totle is a logician’, which can be diagrammed as an I categorical with the line
denoting Aristotle and the line denoting logicians intersecting. But, since ‘Aris-
totle’ is a singular, uniquely denoting subject term here, it can be treated arbitra-
rily as having either universal or particular quantity, i.e., wild quantity. So it
could equally well be diagrammed as an A categorical with the line denoting
logicians properly including the line denoting Aristotle. We have seen that this
means that we can simply represent a singular subject, where quantity plays
no important logical role, like this using just a point. This can be graphically il-
lustrated as follows:

Step 1: L Step 2: A L Step3: A@—@L
A

Figure 3.76: How to Diagram a Singular

Secondly, we saw that the existential import of a statement might be either
implicit or explicit. In the latter case, the statement’s diagram contains a speci-
fied, delineated point that is not the right terminus of any term line. Thus, the
intersect points of particular categoricals (as well as conjunctions) are delineated
points that are not right termini; no point of universal categoricals (as well as
conditionals) is a delineated point that is not a right terminus. Explicit existence
for universals results from the added assumption that subject term is not vacu-
ous; and that is represented generally by diagramming that term as both the sub-
ject and predicate term of an added particular (these differences are illustrated
in Figure 3.27).
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Finally, as we have seen, there is a crucial distinction to be made between
particularly quantified terms (logical subjects or logical objects) when their ref-
erence is taken to be specific or taken to be non-specific. Both MPL and TFL de-
termine the difference on the bases of the order of quantifiers: a particularly
quantified term is understood as having specific reference just when it precedes
but does not follow a universally quantified term. The difference is graphically
illustrated by the two diagrams shown in Figure 3.62. where it must be noted
that the non-terminal (i. e., left-most) point on the G line represents a specific in-
dividual (a certain girl) in the second diagram (ii) but the leftmost point on the G
line in the first diagram (i) represents a non-specific individual (some girl or
other). That is because this point is actually the right terminus of a line represent-
ing the complex relational term ‘every boy loves ..." (—B+L), which appears ana-
lyzed (by the B line and the L arrow) in the diagram.

These three features of TFL and ED help shed light on just how propositional
logic can be imbedded in (and thus seen as a special branch of) term logic. It can
then be shown how ED preserves both the classical inference patterns of term
logic in general but also those of propositional logic (such as modus ponens,
modus tollens, conjunctive addition, hypothetical syllogism, etc.). In the end, it
will be possible to account for the two apparent disanalogies that challenge
such an incorporation. Given a statement that can be left completely unanalyzed,
p, let @ denote the domain (world) “at hand” (the domain relative to which the
statement is made. @ is of course singular since a statement is made relative to a
single, specifiable, domain. While the intersection points for conjunctions are ex-
istentially explicit, conditionals have no such delineated points. Explicit “exis-
tential” import must be made explicit. Singular subjects always have such ex-
plicit import. Here are some simple diagrams for basic unanalyzed statement
forms:
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—p: oe——e-p

+p+q: p
@
q
—p+q: p q
@ L ]

Figure 3.77: Diagrams for Sentential Logic

Note that a conditional is stated relative to a domain of domains (call it D),
saying that every domain (or world) that is a p domain (a domain in which p is
true) is a q domain (a domain in which q is true). We could just as well diagram it
as:

p q
D@ ® ®

Figure 3.78: The Domain of Domains for Conditionals

Note also that a conjunction (+p+q) can equally well be understood as an
attribution of a conjunctive sentential term to the domain (*@+(+p+q)). Thus
the two alternative diagrams for a conjunctive statement:

+p+q: @ *@+(+p+q): @ &—@ (+p+q)

Figure 3.79: Alternative Diagrams for a Conjunctive Statement
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Another important equivalence worth noting now is contraposition:

p q -q -p
—-p+q: ® ® —-q+(-p): o — ®

Figure 3.80: Diagrams for Contraposition

Recall that Frege had presented his system for logical notation (Begriffss-
chrift, concept-script) as a two-dimensional array of labelled lines. Moreover,
he seems to have inaugurated at the same time the now-standard view that
the logic of propositions is primary logic. His account of propositional logic
took the functors of negation and conditionalization to be primitive. Importantly,
he distinguished between the content of a proposition and the judgment (truth-
claim) of it, and he distinguished them graphically with a horizontal line for the
former and a small vertical line orthogonal to, and attached to, the left terminus
of the horizontal line. While much of the logical theory advanced here is the re-
sult of rejecting a number of these Fregean views, it might be argued that his dis-
tinction between content and judgment can be seen in the ED representations,
which indicate judgment by domain points at left termini while their absence in-
dicates mere content. (For an insightful examination of Frege’s notation for
propositional logic see Schlimm, to appear.)

Since the TFL theory of logical syntax that accounts for the symbolic formu-
lations of term logic applies as well to the logic of propositions, it is hardly sur-
prising to see that the ED theory of graphic representation that applies to term
logic applies as well to statement logic. Diagrams for some classical elementary
valid argument forms (rules of inference) for propositional logic can now be con-
structed.
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p q
modus ponens:
Q0—0—0
-q -p
modus tollens:
@®——O0—©
p
conjunctive addition: @
q
p q r
hypothetical syllogism:
L L L

Figure 3.81: Some Elementary Rules of Propositional Logic

One can note as well that tautologies and contradictions can be diagrammed
for propositional logic in just the ways they are diagrammed (Figures 3.19 and
3.20) in general (but taking the terms now to be sentential).

Just as any complex term either can be left unanalyzed or can be analyzed
(both symbolically and diagrammatically, the same holds for complex sentential
terms. For example, the proposition that if p then q can be left unanalyzed or it
can be analyzed. The following figure represents the two results:

(-p+q)
® ) ®

=]
o

Figure 3.82: Unanalyzed and Analyzed Complex Terms

A few examples of deductions using this system are now in order. Consider
the following argument: If p then if q then 1, p, q; therefore r. We might diagram
each of the three premises (step 1), then apply modus ponens to the first two
premises (step 2), next analyze the complex term (step 3), finally, apply modus
ponens to that result and the second premise (step 4):
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Step 1: p (-q+1)
@ L
p
@—O
q
@®0——©0
Step 2: (-q+n)
(@) —
Step 3: q r
@@ ® ®
Step 4: r
@.—.

Figure 3.83: A Diagrammed Deduction

If a set of statements is consistent, its members can all be diagrammed to-
gether (i.e., no contrapiction is encountered). For example, statements of the fol-
lowing forms can be so diagrammed: if not r then s, if p then not 1, p:
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wn

p -r
@® L @ @

Figure 3.84: Diagram of a Consistent Set of Statements

Here is a proof that the set of four statements (if p then if not g then s, p and
s, not q, not r) is not consistent by deducing a contrapiction:
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Premises:
p (~(-q)+n
@ L ]
s
@
p
-q
@@ — 0
-r
Q®——©@
From the second premise:
P
Q@®O—O
From this and the first premise:
—q r
@® ® O
From this and the third premise:
r
Q®——O

This and the fourth premise yields a contrapiction:

Figure 3.85: Proof of an Inconsistent Set of Statements

Note that in the first step a diagrammatic analogue of conjunctive simplifi-

cation was used, viz., from an asserted conjunction any line branching from the
domain point can be eliminated.
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Earlier in this chapter (section 3), we have seen what the medieval logicians,
Leibniz, the Port Royal logicians, the 19" century algebraic logicians, and many
others have seen - the centrality of the dictum de omni et nullo for a logic of
terms, both traditional syllogistic and TFL. It was shown there that the dictum
amounts to a rule of substitution. In effect, the dictum permits the replacement
of a distributed term in a sentence by the term constituting the remainder of that
sentence in any other sentence in which that distributed term is now undistrib-
uted. For example, we saw that De Morgan’s famous ‘head of a horse’ inference
relies on the dictum in the following way. The stated premise (‘Every horse is an
animal’) has the term ‘horse’ distributed. So the remaining term ‘animal’ can be
substituted for ‘horse’ in another sentence which has ‘horse’ undistributed. The
tacit, and logically innocent, premise, ‘Every head of a horse is the head of a
horse’, has two tokens of ‘horse’ but only the second is undistributed. Substitu-
tion of ‘animal’ for ‘horse’ here yields the conclusion. A look at Figure 3.59
shows that H (‘horse’) can be ignored allowing A (‘animal’) to take over. The
ED system of diagramming represents the application of the dictum whenever
a middle term is ignored (see Figures 3.28—3.31). We see the dictum governing
modus ponens, for example, when the consequent of the conditional is substitut-
ed for the antecedent (which must be a distributed sentential term) when that
antecedent occurs in another sentence undistributed. And this is so even if the
antecedent is a negative sentential term (e.g. ‘if not p then g, not p; therefore,
q’, where the “middle” term, ‘not p’ is distributed in the first premise by the uni-
versal quantifier). In terms of ED, the dictum amounts to saying that a line seg-
ment that includes another line segment can replace that other line whenever it
is not included as a proper part of another line. The fact that the dictum, which
Leibniz called the foundational rule of mediate inference, is central to both the
logic of terms and the logic of propositions, lends further weight to the convic-
tion that the latter is a special branch of the former.

Earlier we encountered what appeared to be two disanalogies between the
logic of terms and the logic of propositions. It was shown that by virtue of the
fact that a sentential term denotes the unique domain of discourse relative to
which it is used, the fact that this means that such terms are always singular (de-
noting just one thing), and the fact that when any singular term occurs quanti-
fied its quantity is wild (arbitrarily universal or particular), the disanalogies are
disarmed. We will close this chapter with diagrammatic depictions of these res-
olutions.
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‘p and g’ entails ‘if p then g’

but ‘some A is B’ does not entail ‘every Ais B’
q B
p A
Since p is singular, the p line can be A similar entailment will only hold here
reduced to a p point: when ‘A’ is singular.
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Figure 3.86: Diagrammatic Resolutions of the Two Disanalogies

In this case, since the terms are singular, the p line reduces to a p point, but

there are two such points (on incompatible lines), so the diagram is a contrapic-
tion.



