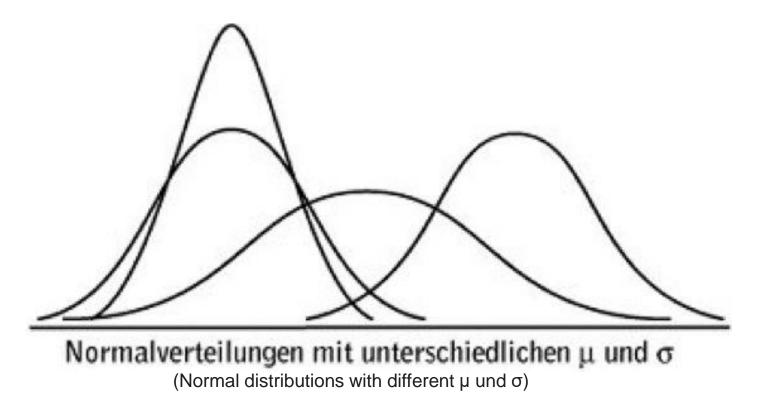
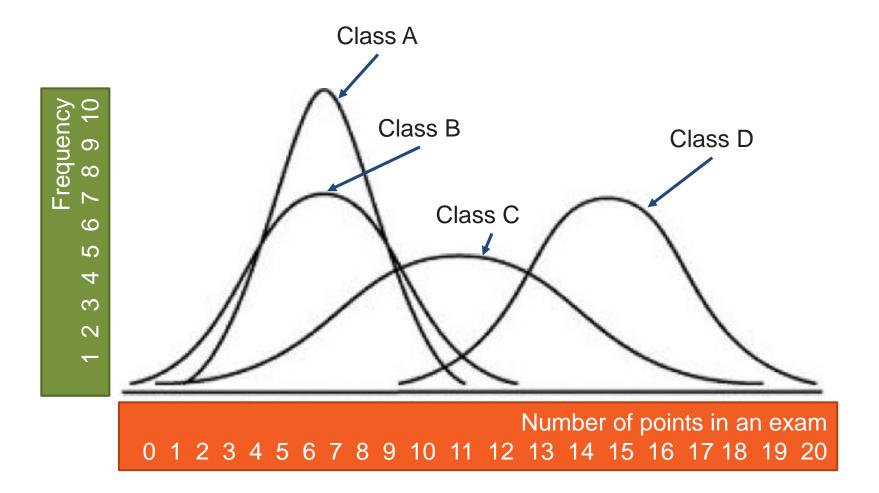
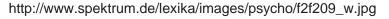
Descriptive statistics and diagrams

Lara Kataja


Room 1.13

l.kataja@edutech.uni-saarland.de




Mean and measures of dispersion

Why do you need measures of dispersion, e.g., standard deviation (σ), additionally to the mean (μ)?

Mean and measures of dispersion

Measures of central tendency

Data: 5, 4, 5, 2

Mean

 $\frac{5+4+5+2}{4} = \frac{16}{4} = 4$

Mode

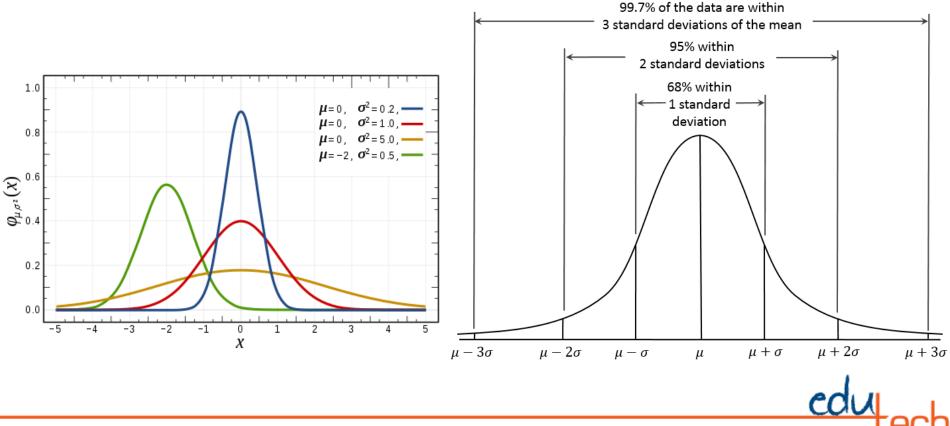
5, 4, 5, 2

→ most frequent: 5

Median

Order the values: 5, 4, 5, 2 \rightarrow 2 4 5 5

 \rightarrow median = 4.5


Measures of central tendency

Data: 5, 4, 5, 2, 20 \rightarrow Mean = $\frac{5+4+5+2+20}{5} = 7.4$ \rightarrow Mode: (5, 4, (5, 2, 20 \rightarrow 5) \rightarrow Median: 2 4 5 5 20 \rightarrow 5

Median and mode are less sensitive to extreme values (compared to the mean)

Normal distribution

- A probability distribution that underlies many variables in the population (e.g. intelligence)
- Symmetric, unimodal, around 68% of the values are within the first SD, around 95% within 2 SD, and around 99% within 3 SD
- Normality is a basic assumption for many statistical tests

(Normal distribution. In Wikipedia. Retrieved December 09, 2019, from https://en.wikipedia.org/wiki/Normal_distribution)

Variance and standard deviation (SD)

Variance (s²) = sum of the squared deviations of the mean, divided by n

Standard deviation (SD or s) = square root of the variance

Variance: Example

$$s^2 = \frac{\sum (X - \overline{X})^2}{N - 1}$$

Data: 5, 4, 5, 2

→ Mean =
$$\frac{5+4+5+2}{4}$$
 = 4

$$s^{2} = \frac{(5-4)^{2} + (4-4)^{2} + (5-4)^{2} + (2-4)^{2}}{4-1} = \frac{1+0+1+4}{3} = \frac{6}{3} = 2$$

edu

 \rightarrow Variance s² = 2

→ Standard deviation $s = \sqrt{2} = 1,4$

https://www.statisticshowto.datasciencecentral.com/probability-and-statistics/descriptive-statistics/sample-variance/

Example: Reporting Mean + SD

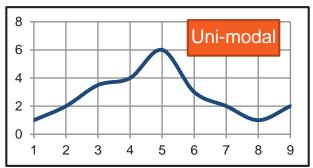
they posted. The control group (M = 36.6, SD = 9.91) and individual preparation-no script (M = 30.86, SD = 9.26) posted more, followed by argumentation scripts (M = 19.19, SD = 6.84) and the combination condition (M = 15.26, SD = 6.11). To take these differences

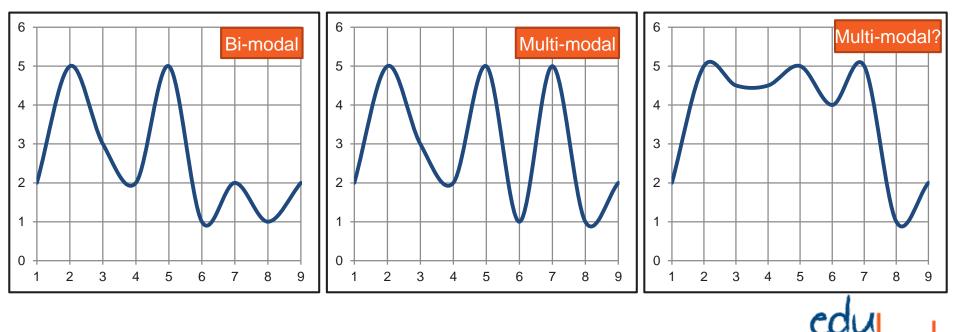
Tsovaltzi, D., Judele, R., Puhl, T., & Weinberger, A. (2017). Leveraging social networking sites for knowledge co-construction: Positive effects of argumentation structure, but premature knowledge consolidation after individual preparation. *Learning and Instruction*, *52*, 161-179.

Table 1. Formal argumentative dimension by experimental group: Mean percentages and sta	andard deviations of
grounds and counterarguments.	

	Grounds		Counterarguments	
Experimental group	Μ	SD	M	SD
Control group	12.08 %	11.48	2.46 %	3.67
Script for the construction of single arguments	33.80 %	11.19	5.36 %	8.07
Script for the construction of argumentation sequences	16.36 %	17.78	5.99 %	3.95
Combined condition	30.64 %	6.10	13.00 %	6.59

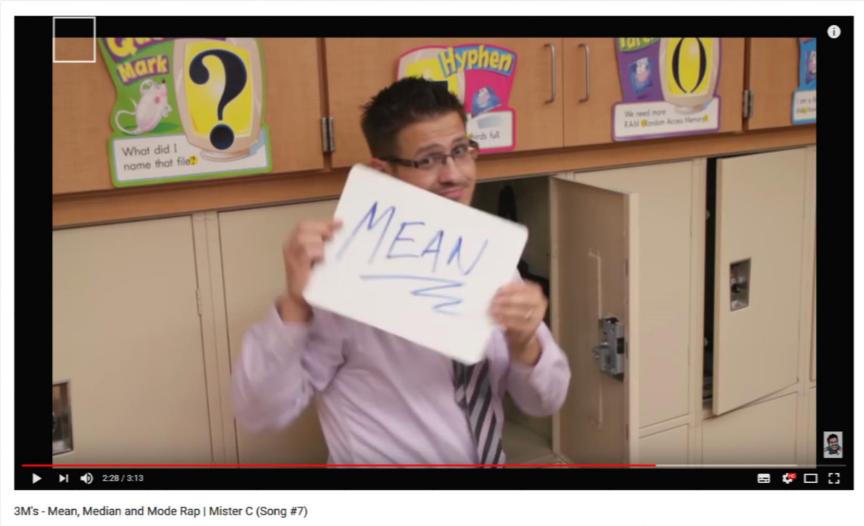
Weinberger, A., Stegmann, K., & Fischer, F. (2005). Computer-Supported Collaborative Learning in Higher Education : Scripts for Argumentative Knowledge Construction in Distributed Groups. In *The Next 10 Years! Proceedings of the 2005 Conference on Computer Support for Collaborative Learning, CSCL '05* (pp. 717–726).




Mode

What if there are several values with the same high frequency? Which one is the mode?

Two approaches:


- "bi-modal", "multi-modal" vs.
- "cannot be determined "

Mean, Median & Mode

https://www.youtube.com/watch?v=A7MxGyEaN64

502.856 Aufrufe

Exercises (SPSS)

Open Beispieldatensatz

- Calculate: Mean, median, and mode for "positiv"
 - Analyze > Descriptive Statistics > Frequencies

...

positiv		
Ν	Valid	150
	Missing	0
Mean		3,44
Mediar	ı	3,00
Mode		2

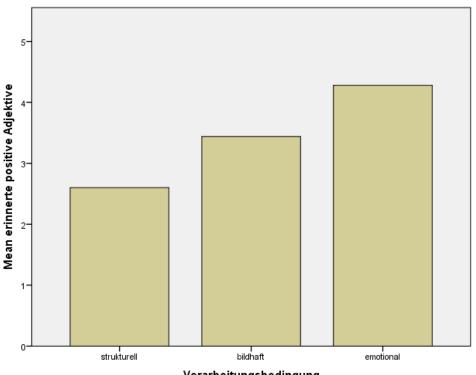
Statistics

Exercises (SPSS)

Open Beispieldatensatz

- Calculate: Mean and standard deviation for "positiv"
 - Analyze > Descriptive Statistics > Descriptives

Descriptive Statistics


	N	Minimum	Maximum	Mean	Std. Deviation
positiv	150	0	10	3,44	2,071
Valid N (listwise)	150				

Exercises (SPSS)

Open Beispieldatensatz

Build a bar chart with 'bed' as independent variable (x axis) and 'positive' as dependent variable (y axis)

→Graphs > Chart Builder

Verarbeitungsbedingung

