ANOVA between groups

Lara Kataja

Room 1.13

l.kataja@edutech.uni-saarland.de

F distribution

edu

http://www.statisticshowto.com/wp-content/uploads/2013/09/f-table.jpg

t-test vs. ANOVA

With two groups: both are applicable, but t-test is more common

Independent Samples Test

Tests of Between-Subjects Effects

Dependent Variable: alter

Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Corrected Model	35,920 ^a	1	35,920	3,751	,055
Intercept	65917,947	1	65917,947	6882,861	,000,
sex	35,920	1	35,920	3,751	,055
Error	1417,413	148	9,577		
Total	73176,000	150			
Corrected Total	1453,333	149			

a. R Squared = ,025 (Adjusted R Squared = ,018)

t-test vs. ANOVA

With more than two groups:

- Alpha inflation: The probability of making an alpha error is increasing when you calculate many t-tests
- △ → ANOVA: efficient procedure to compare several groups, avoids alpha inflation
- With more than one factor:
 - $\square \rightarrow$ ANOVA: ability to test multi-factorial designs
 - Main effects
 - Interaction effects

Multi-factorial design

ANOVA calculates:

- Main effect for coffee
- Main effect for milk
- Interaction between coffee and milk

ed

ANOVA = "Omnibus" test

- Significant" means:
 - There is a difference, somewhere. At least two groups differ significantly from each other.
- What remains unclear:
 - Where exactly is the difference? Which groups differ significantly from each other?

... after the ANOVA

- A priori / planned contrasts
 - If you have specific hypotheses, you can check them with contrasts
- Post-Hoc
 - You find something interesting in your data and want to analyze it in more detail afterwards

(You don't need to select and apply a priori or post-hoc test in the exam, but you need to be aware that they exist and when you would need one.)

Reporting ANOVA

"Comparing post-test means, we found a small negative significant main effect of individual preparation on knowledge outcomes, $F(1;124) = 5.121; p = .025; \eta_p^2 = .04$."

- $F = 5.121 \rightarrow$ F-value, result from the ANOVA
- (1;124) → df (n of groups minus 1; n of observations minus n of groups)
- $p = .025 \rightarrow$ result from the significance test
- $\eta_{p^2} = .04 \rightarrow$ Effect size (next week)

Tsovaltzi, D., Judele, R., Puhl, T., Weinberger, A. (2015). Individual preparation and argumentation scripts in social networking sites. In O. Lindwall, P. Häkkinen, T. Koschman, P. Tchounikine & S. Ludvigsen (Eds.).

Question

What is the difference between one-factorial (one-way) and two-factorial (two-way) ANOVA?

Using Beispieldatensatz, test the following hypotheses:

- a) There is a main effect of gender on the number of remembered negative adjectives.
- b) There is a main effect of condition on the number of remembered negative adjectives.
- c) There is an interaction effect between gender and condition on the number of remembered negative adjectives.

Analyze > General linear model > Univariate

🔚 Univariate		×	Dependen	t variable
 ▶ vpnr ▲ alter ▲ neutral ▲ positiv ▲ ges ▲ AlterCluster ▲ posneg_noneutral ▲ posneg_noneutral2 	Dependent Variable:	Model Contrasts Plots Save Options Bootstrap	Independe variables /	nt factors
OK Paste	WLS Weight:		Univariate: Options Estimated Marginal Means Factor(s) and Factor Interactions: (OVERALL) Sex bed Sex*bed	Compare main effects Confidence interval adjustment: LSD(none)
			Display Descriptive statistics Estimates of effect size Observed power Parameter estimates Contrast coefficient matrix Significance level: .05 Confide	Homogeneity tests Sgread vs. level plot Residual plot Lack of fit General estimable function ence intervals are 95,0 % tinue Cancel Help

Tests of Between-Subjects Effects

Report the results:

Tests of Between-Subjects Effects

Dependent Variable: neutral

Source	Type III Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared
Corrected Model	23,215 ^a	3	7,738	2,028	,113	,040
Intercept	50,743	1	50,743	13,300	,000,	,083
AlterCluster	23,215	3	7,738	2,028	,113	,040
Error	557,025	146	3,815			
Total	2194,000	150				
Corrected Total	580,240	149				

a. R Squared = ,040 (Adjusted R Squared = ,020)

There is no sign. main effect of AlterCluster on the DV "neutral": F (3, 146) = 2.028, p = .113, η_p^2 = .040

Report the results:

Tests of Between-Subjects Effects

Source	Type III Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared
Corrected Model	7,448 ^a	3	2,483	2,562	,062	,098
Intercept	254,763	1	254,763	262,916	,000,	,787
hand_N	,158	1	,158	,163	,687	,002
Own_MT	2,318	1	2,318	2,392	,126	,033
hand_N * Own_MT	5,609	1	5,609	5,788	,019	,075
Error	68,798	71	,969			
Total	1382,500	75				
Corrected Total	76,247	74				
 D. Orwanski – 2002 (Adjusted D. Orwanski – 2002) 						

Dependent Variable: Post_Qu_6

a. R Squared = ,098 (Adjusted R Squared = ,060)

- There is no sign. main effect of hand_N on the DV "Post_Qu_6": F (1, 71) = .163, p = .687, η_p^2 = .002
- There is no sign. main effect of Own_MT on the DV "Post_Qu_6": F (1, 71) = 2.392, p = .126, η_p^2 = .033
- There is no sign. interaction between hand_N and Own_MT on the DV "Post_Qu_6": F(1, 71) = 5.788, p = .019, η_p^2 = .075