16.10.25

1 Bestimmen der Stammfunktionen

a) $\int \sin(x) dx$

b) $\int 2x^3 dx$

c) $\int \sqrt{x} dx$

d) $\int \frac{1}{\sqrt{2x}} dx$

e) $\int \tan(x) dx$

f) $\int \sin^2(x) dx$

g) $\int \ln(x) dx$

 $h) \int \frac{2x+3}{x^2-x-2} \, dx$

i) $\int \frac{x^2+1}{x^3+3x} \, dx$

2 Echte Integrale

a) $\int_{3}^{1} x^{2} dx$

b) $\int_0^{2\pi} \cos(x) dx$

c) $\int_0^{\pi} x \cos(x) \, dx$

3 Uneigentliche Integrale

a) $\int_1^\infty \frac{1}{x} dx$

b) $\int_{1}^{\infty} \frac{1}{x^2} dx$

c) $\int_0^\infty x e^{-x^2} dx$

4 Weitere Anwendungen

a) Wir betrachten die Funktion $f(x)=\sqrt{1-x^2}$ auf dem Intervall von[-1,1]. Berechne die Länge der Kurve. Kommt dir das Ergebnis bekannt vor? Tipp: $\int \frac{1}{\sqrt{1-x^2}} dx = \arcsin(\mathbf{x}) + \mathbf{C}$

b) Bestimme das Volumen einer Kugel mit Radius R mittels Rotation um die y-Achse. (Tipp: Benutze die Kreisgleichung)

c) Ein dünner Stab der Länge L=2m liegt auf der x-Achse von x=-1 bis x=1. Die Massendichteverteilung sei gegeben durch die Funktion $\rho(\mathbf{x})=(x+1)\frac{kg}{m}$. Bestimme die Gesamtmasse und den Massenschwerpunkt des Stabes mit Hilfe der Formeln: $M=\int \rho(\mathbf{x})\,dx$ und $Xs=\frac{1}{M}\int x\rho(\mathbf{x})\,dx$