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1 Newtonsche Mechanik

Newtonsche Axiome:

1. Kräftefreie Körper bewegen sich geradlinig und gleichförmig.

2. Beschleunigung a := d
dtv ∼ F (allgemeiner: ṗ = F)

3. actio = reactio

4. Lineare Superposition von Kräften

Drehmatrizen:

Rx(α) =

 1 0 0
0 cosα − sinα
0 sinα cosα


Ry(β) =

 cosβ 0 sinβ
0 1 0

− sinβ 0 cosβ


Rz(γ) =

 cos γ − sin γ 0
sin γ cos γ 0
0 0 1


2 Das D’Alembertsche Prinzip

Zwangsbedingungen:

� holonom: fµ (r1, . . . , rN , t) = 0, µ = 1, . . . ,Λ

vollständiges/totales Differenzial dfµ =
∑N

i=1 ∇rifµ · dri + ∂fµ
∂t dt = 0

� nicht holonom:
∑N

i=1 aµi (r1, . . . , rN , t) ·dri +aµ0 (r1, . . . , rN , t) ·dt = 0
aber: es existiert kein integrabler Faktor gµ, so dass gµaµi = ∇rifµ

� rheonom: zeitabhängige Zwangsbedingung

� skleronom: nicht explizit zeitabhängige Zwangsbedingung
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virtuelle Verrückungen {δri}: infinitesimale Änderung der Koordinaten, die
zu fester Zeit (δt = 0) die Zwangsbedingungen erfüllen.

reale Verrückungen dri: infinitesimale Änderung der Koordinaten in Zeitin-
terval dt entlang der Bahn

Methode der Lagrange-Parameter: (zur Hintergrundinformation für
TPI+II für Lehramt)
Allgemeine Notation: ri −→ xj ,Xi −→ Kj , ri −→ xj ,aµi,∇rifµ −→ ϕµ

j mit
i = 1, . . . , N, j = 1, . . . , 3N

1. Addiere Nebenbindungen mit Lagrange-Multiplikation λµ:

3N∑
j=1

(
mj ẍj −Kj −

Λ∑
µ=1

λµϕ
µ
j

)
δxj = 0

2. Eliminiere δx1, . . . , δxΛ aus den Nebenbindungen. Dann sind δxΛ+1, . . . , δxN

frei wählbar.

3. Bestimme λ1, . . . , λΛ, so dass

mj ẍj −Kj −
Λ∑

µ=1

λµϕ
µ
j = 0 fürj = 1, . . . ,Λ

und somit
3N∑

j=Λ+1

(
mj ẍj −Kj −

Λ∑
µ=1

λµ(t)ϕ
µ
j

)
δxj = 0

4. Lagrange-Gleichungen 1. Art:

mj ẍj −Kj −
Λ∑

µ=1

λµϕ
µ
j = 0

Also für holonome Zwangsbedingungen:

mj ẍj −Kj −
Λ∑

µ=1

λµ
∂fµ
∂xj

= 0

2



Kochrezept der Lagrange-Gleichungen 2. Art:

1. Auswählen generalisierter Koordinaten: q1, . . . , qf , die die (holonomen)
Zwangsbedingungen erfüllen: ri = ri(q1, . . . , qf , t) ≡ ri(qk, t)

2. Berechnen von Geschwindigkeiten vi(qk, q̇k, t) =
d
dtri(qk, t)

und kinetischer Energie T (qk, q̇k, t) =
1
2

∑N
i=1 mivi(qk, q̇k, t)
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3. Potenzielle Energie für konservative Kräfte: V (qk, t) = V (ri(qk, t))
⇒Lagrange-Funktion L(qk, q̇k, t) = T (qk, q̇k, t)− V (qk, t)

(Potenzielle/Lage-) Energie für nichtkonservative Kräfte: Qj =
∑N

i=1 Xi
∂

∂qj
ri(q1, . . . , qf , t)

4. Aufstellung der Bewegungsgleichungen (j = 1, . . . , f):

d

dt

(
∂

∂q̇j
L

)
− ∂

∂qj
L = 0 bzw.

d

dt

(
∂

∂q̇j
T

)
− ∂

∂qj
T = Qj

5. Lösen der Bewegungsgleichungen

3 Das Hamiltonsche Prinzip

Variationsidee:
Sei I : C2 −→ R,q(t) 7→ I[q] =

∫ t2
t1

dtF (q, q̇, t) ein Funktional.

Suche q(t), so dass δI[q] = 0, d.h. I wird extremal.

Annahmen für variierte Bahnen:
Zu jedem t aus t1 ≤ t ≤ t2 wird dem Punkt q(t) auf der realen Bahn ein
variierter Bahnpunkt q′(t) zugeordnet. Dabei gilt:

1. q′(t) ∈ C2

2. δq(t) = q′(t)− q(t)

3. δt = 0

4. q′(t1) = q(t1) und q′(t2) = q(t2) Also gilt: δq′(t1) = δq′(t2) = 0

Variationsrechnung:

1. Extremum einer Funktion f(x) einer Variablen:

δf(x) = f(x+ δx)− f(x) =
d

dx
f(x)δx = 0

⇒ d¸f

dx
= 0beix = x∗

2. Extremum einer Funktion f(x1, . . . , xN ) mehrerer Variablen:

δf = f(x1 + δx1, . . . , xN + δxN )− f(x1, . . . , xN ) =

N∑
i=1

∂f

∂xi
δxi = 0

⇒ ∂f

∂xi
= 0beixi = x∗

i
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3. Extremum eines Funktionals f [x] einer Funktion x(t):

x1, . . . , xN −→ x(t)

δx1, . . . , δxN −→ δx(t)

x∗
i −→ x∗(t)

δf =

N∑
i=1

∂f

∂xi
δxi −→ δf =

∫ t2

t1

dt
δf

δx(t)
δx(t)

Mit f [x] =
∫ t2
t1

dtF (x(t)) folgt:

δf = f [x(t)+δx(t)]−f [x(t)] =

∫ t2

t1

dt{F (x(t)+δx(t))−F (x(t))} =

∫ t2

t1

dt
dF

dx
δx(t) = 0

und somit δf
δx(t) =

dF
dx = 0 bei x(t) = x∗(t)

Satz. Die Eichtransformation

L 7→ L′ = L+
d

dt
M(q, t)

mit beliebigerEichfunktionM lässt die Euler-Lagrange-Gleichungen invariant.

4 Hamilton-Formalismus

Kochrezept der Hamiltonschen Gleichungen:

1. Auswählen generalisierter Koordinaten: q1, . . . , qf

2. Transformation ri = ri(q1, . . . , qf , t) und ṙi = ṙi(q1, . . . , qf , q̇1, . . . , q̇f , t)

3. Berechnen der Lagrange-Funktion L(q1, . . . , qf , q̇1, . . . , q̇f , t)

4. Berechnen der generalisierten Impulse pj =
∂L
∂q̇j

und deren Umkehrung q̇j = q̇j(q1, . . . , qf , p1, . . . , pf , t)

5. Legendre-TransformationH(q1, . . . , qf , p1, . . . , pf , t) =
∑f

j=1 q̇jpj−L(q1, . . . , qf , q̇1, . . . , q̇f , t)

6. Aufstellung der Bewegungsgleichungen (j = 1, . . . , f):

q̇j =
∂H

∂pj
und ṗj = −∂H

∂qj

7. Lösen der Bewegungsgleichungen

zur Hintergrundinformation für TPI+II für Lehramt:

Definition. Kanonische Transformationen sind diffeomorphe Transforma-
tionen (umkehrbar eindeutig, 2mal differenzierbar):

(q,p) −→ (Q,P) und H(q,p, t) −→ H̄(Q,P, t),

welche die Hamiltonschen Gleichungen forminvariant lassen.
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zur Hintergrundinformation für TPI+II für Lehramt:

Definition. Für zwei beliebige Observable g(q,p, t) und h(q,p, t) ist diePoisson-
Klammer definiert als:

{g, h} :=

f∑
i=1

(
∂g

∂qi

∂h

∂pi
− ∂g

∂pi

∂h

∂qi

)
.

zur Hintergrundinformation für TPI+II für Lehramt:

Satz. Die Poisson-Klammern sind invariant unter kanonischen Transformatio-
nen.

zur Hintergrundinformation für TPI+II für Lehramt:

Satz. Die Transformation (q,p) −→ (Q,P) ist genau dann kanonisch, wenn
gilt:

{Qi, Pj} = δij , {Qi, Qj} = {Pi, Pj} = 0.

zur Hintergrundinformation für TPI+II für Lehramt:
Bezug zur Quantenmechanik:

klassische Observable g(q,p, t) → quantenmechanischer Operator ĝ : H → H

Poisson-Klammern {g, h} → Kommutator
[
ĝ, ĥ
]
= ĝĥ− ĥĝ

fundamentale Poisson-Klammern {qk, pl} = δkl → [q̂k, p̂l] = iℏδkl
{qk, ql} = {pk, pl} = 0 [q̂k, q̂l] = [p̂k, p̂l] = 0

Hamilton-Funktion H(q,p, t) → Hamilton-Operator Ĥ(q̂, p̂, t)

Bewegungsgleichungen: → Heisenbergsche Bewegungsgleichungen:
dg
dt = {g,H}+ ∂g

∂t
dĝ
dt = 1

iℏ

[
ĝ, Ĥ

]
+ ∂ĝ

∂t
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5 Starrer Körper

Definition. Der Trägheitstensor Θ ist gegeben durch:

Θjk =

N∑
i=1

mi

[(
d(i)
)2

δjk − d
(i)
j d

(i)
k

]
.

Dabei bezeichnet d(i) die Koordinaten/den Ort des i-ten Teilchens im körperfesten

Bezugssystem und
(
d(i)
)2

= d(i) · d(i).

Analog für kontinuierliche Massendichten ρ:

Θjk =

∫
d3rρ(d)

[
d2δjk − djdk

]
.

Definition. Das Trägheitsmoment Θn bzgl. einer Drehachse n̂ ist gegeben
durch:

Θn = n̂TΘn̂ =

N∑
i=1

mi

[(
d(i)
)2

−
(
d(i) · n̂

)2]
=

N∑
i=1

mi

(
l(i)
)2

mit l2 =
(
d(i)
)2 −

(
d(i) · n̂

)2
dem quadratischem Abstand des i-ten Teilchens

von der Drehachse n̂.

Satz (Satz von Steiner). Sei Θjk der Trägheitstensor eines Körpers der Masse

M in einem im Schwerpunkt zentrierten, körperfesten System S. Sei S
′
ein zu

S achsenparalleles, um a verschobenes System. Dann gilt:

Θ
′

jk = Θjk +M
[
a2δjk − ajak

]
.

Mit l2 = a2 − (a · n̂)2 (quadratischer Abstand des Schwerpunktes von der
Drehachse n̂) folgt für das Trägheitsmoment bzgl. n̂ :

Θ
′

n = Θn +Ml2.

Satz (Schwerpunktsatz). Der Schwerpunkt eines starren Körpers bewegt sich
so, als ob die gesamte Masse in ihm vereinigt wäre und die Resultierende Faußen

aller äußeren Kräfte in ihm angreifen:

M r̈0 =

N∑
i=1

F(i)außen = Faußen.

Satz (Drehimpulssatz). Die zeitliche Änderung des Drehimpulses L entspricht
dem angreifenden Drehmoment M :̧

N∑
i=1

mid
(i) × d̈(i) =

N∑
i=1

d(i) × F(i)außen ⇔ dL

dt
= M
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