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Malte Henkel

aLaboratoire de Physique de Chimie Théoriques (CNRS UMR 7019),
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Série 2



1. The invariant of Minkowski space reads, with the metric tensor
ηµν = diag(−1, 1, 1, 1),

ds2 = ηαβ dxα dxβ = gµν dxµ dxν (1)

where the coordinates xµ come from a coordinate transformation
xµ 7→ xµ. Give the metric tensor gµν in the new coordinates.



Solution:
it is enough to write out the respective derivatives (use the expansion dxα = ∂xα

∂x̄µ
dx̄µ)

ds2 = ηαβdxαdxβ

= ηαβ
∂xα

∂x̄µ
dx̄µ

∂xβ

∂x̄ν
dx̄ν

=

(
ηαβ

∂xα

∂x̄µ
∂xβ

∂x̄ν

)
︸ ︷︷ ︸

=: gµν

dx̄µdx̄ν

= gµνdx̄µdx̄ν

and one can read off

gµν = ηαβ
∂xα

∂x̄µ
∂xβ

∂x̄ν



2. Consider the determinant of the metric tensors g := det gµν . Is
it Lorentz-invariant ?



Solution:
The metric tensor transforms as follows

ḡµν = gαβ
∂xα

∂x̄µ
∂xβ

∂x̄ν

and this can be viewed as a product of matrices. Taking the determinant

ḡ := det
(
ḡµν
)

= det
(
gαβ
)

det

(
∂xα

∂x̄µ

)
det

(
∂xβ

∂x̄ν

)
= g

[
det

(
∂xα

∂x̄µ

)]2

For a general transformation x 7→ x̄ , g is invariant if and only if det
(
∂xα

∂x̄µ

)
= 1.

For linear transformations, Λαν = ∂xα

∂x̄µ is a matrix with constant matrix elements. For a
space rotation, det Λ = 1 is well-known. For a Lorentz transformation (in x-direction)

Λαν =


γ γv
γv γ

1
1

 =


cosh θ sinh θ
sinh θ cosh θ

1
1

 ⇒ det Λ =

{
γ2 − γ2v2 = 1
cosh2 θ − sinh2 θ = 1

⇒ g is Lorentz-invariant, but it is not invariant under general transformations.



3. Show that the invariant volume element of a four-dimensional
space is given by

d4V =
(
−g
)1/2

d4x =
(
−g
)1/2

dtdxdydz (2)

where g := det gµν is the determinant of the metric tensor gµν .



Solution:
Under the transformation x→ x̄, the volume element is d4x = det

(
∂x
∂x̄

)
d4x̄.

One of the frames can be assumed to be Minkowski space with the metric
tensor ηµν = diag (−1, 1, 1, 1). From the previous exercice

−ḡ = − det
(
ḡαβ
)

= − det

(
∂xµ

∂x̄α
∂xν

∂x̄β
ηµν

)
=

[
det

(
∂x

∂x̄

)]2

(− det η)

Hence
(
−g
)1/2

= det ∂x∂x̄ . In consequence

d4V̄ :=
(
−ḡ
)1/2

d4x̄ = det

(
∂x̄

∂x

∂x

∂x̄

)(
−g
)1/2

d4x = d4V



4. (a) Show that the invariant volume element of
three-dimensional space, for an observer with the four-velocity u is
given by

d3V = (−g)1/2 u0 d3x (3)

(b) Write down the invariant volume element of the contra-variant
momentum d4p in four-dimensional momentum space.
(c) Write down the invariant three-dimensional volume element in
momentum space “on the mass shell”, that is with the constraint√
−p · p = m.



Solution:
(a) at rest, one has clearly d3V = dxdydz . One wants a scalar which to
reduces to this at rest.
Start from d4V , and introduce the component u0 = dt

dτ of the four-velocity u,
where τ is proper time.

d4V =
(
−g
)1/2

dtdxdydz =
(
−g
)1/2

dtdxdydz
u0

u0
=
(
−g
)1/2

u0dτdxdydz

Since d4V and dτ are scalars, d3V :=
(
−g
)1/2

u0dxdydz must be scalar as
well.
(b) The four-momentum p = (P0,P) transforms as a four-vector. The
invariant volume element is

d4p =
(
−g
)1/2

dP0dPxdPydPz



(c) One has the extra constraint
(
−p · p

)
= m. This gives the invariant 3D

element

d3p =

∫ (
−g
)1/2

dP0dPxdPydPz δ
((
−gαβPαPβ

)1/2 −m
)

From the theory of distributions (see e.g Gelfand & Shilov, Generalised
Functions, Vol. 1) one recalls the identity

∫
dx δ

(
f (x)

)
=
∑

x0

1
|f ′(x0)| , where

x0 runs over all zeros of f (x), that is f (x0) = 0.

With the help of this, one eliminates the integration over P0 and finds

d3p =
(
−g
)1/2

dPxdPydPz

[
−1

2

(
−gαβPαPβ

)1/2
2gtαP

α

]−1

=
(
−g
)1/2

dPxdPydPz

(
m

−P0

)
(4)

In the rest frame,this reduces indeed to d3p → dPxdPydPz , as expected.



5. Relativistic electrodynamics is described by the field tensor Fµν = ∂µAν − ∂νAµ
where A is the four-vector-potential. On a test body with electric charge q then acts
the Lorentz force (frz. force de Laplace (sic !)), with four-momentum p = mu and
proper time τ

dpµ

dτ
= qFµνuν (5)

(a) Consider first the zeroth component (time component) µ = 0 of the equation
(5). Express it via the electric and magnetic fields E and B and show that

dp0

dt
= qv · E (6)

(b) Write the equation for dp/dt, expressed via E and B.
Hint: consider the space components of (5).
(c) A particle with electric charge q and mass m moves on a circle with radius R in
an uniform magnetic field B = Bez .
(i) Express B in terms of known quantities and the angular frequency ω.
(ii) In the rest system, why the magnetic field B cannot furnish work on the
particle ? Was is the finding of an observer, who moves with the relative velocity
βex ? Which velocity does he find, and in particular, which value of u0′

?

(iii) Determine du0′
/dτ and hence also dp0′

/dτ . Why can the energy of the particle

change, although the magnetic field B does not furnish work ?



Solution:
(a) set µ = 0 in eq. (5): dp0

dτ = qF 0νuν = qE iγvi , with i = 1, 2, 3. Because
of dτ = dt/γ, this gives indeed eq. (6).
almost identical at the non-relativistic form, but p0 also contains the rest energy.

(b) this is worked out directly

dpi

dτ
= γ

dpi

dt
= qF iνuν = qF i0u0 + qF ijuj = qγE i + qγεijkBkvj

which is indeed the Lorentz force dp
dt = q

(
E + v ∧ B

)
.

(c) (i) from the Lorentz force ω|p| =
∣∣∣dpdt ∣∣∣ = q|v ||B|. Then

B = |B| = ω
q
|p|
|v | = mω

q
√

1−v2
= mω

q
√

1−ω2R2
(having set c = 1).

(ii) in (6), the change of the energy p0 does not depend on B, hence
p0 = cste.. No work is neither furnished, nor gained.
In the frame of the laboratory, the components of the four-velocity are

u0 =
(
1− ω2R2

)−1/2
, ux =

ωy√
1− ω2R2

, uy = − ωx√
1− ω2R2



On the other hand, for an observer with relative velocity βex , one finds from
a Lorentz transformation

u′0 = γ
(
u0 − βux

)
= γ

(
1− βωy

)(
1− ω2R2

)−1/2
, γ =

(
1− β2

)−1/2
(*)

(iii) we have dp′0

dτ = mdu′0

dτ = − mωγβuy√
1−ω2R2

6= 0.

No contradiction, since the electric/magnetic fields transform as follows

E ′y = F ′02 = Λ0
µΛ2

νF
µν

= Λ0
0Λ2

νF
0ν + Λ0

1Λ2
νF

1ν = Λ0
0Λ2

2F
02 + Λ0

1Λ2
2F

12

= γ · 1 · E y +
(
−γβ

)
· 1 · Bz

The electric field E does not at all transform as a vector.
If E = 000, one has E ′y = −γβBz . From (5), one expects

dp′0

dτ
= qE ′yu′y = − mωγβu′y√

1− ω2R2
= − mωγβuy√

1− ω2R2

in perfect agreement with (*) above.
The electric field created by Lorentz-transforming the magnetic field B
furnishes the work.



6. A vector field Jα(x) satisfies the continuity equation
(conservation law) ∂αJ

α = 0 and for large distances r = |r | → ∞
it falls off faster than r−2.
(a) Show that Q :=

∫
d3x J0 is constant in time.

(b) Show that Q is a Lorentz scalar, that is
∫

d3x J0 =
∫

d3x ′ J0′ .

Therefore, Q is called the conserved charge of the conserved
four-current Jα.



Solution:

(a) take a domain Ω bounded in time by x0
A

below and x0
B above and with spatial sides far

from the origin

using Gauss’s theorem

0 =

∫
Ω

d4V ∂αJ
α =

∫
Ω

dt ∂αJ
αdxdydz

=

∫
tA

Jαd3Σα +

∫
tB

Jαd3Σα

=

∫
tB

J0dxdydz −
∫
tA

J0dxdydz = Q(tB)− Q(tA)

dΣα is the surface element, oriented normal to the surface

- for the only surface here in finite distances, in time-direction

(b) write the charge as Q =
∫

d4x Jα∂αΘ(nβx
β), where n0 = 1,

n1 = n2 = n3 = 0 and Θ(u) =

{
1 if u > 0

0 if u ≤ 0
. To see this, note that Q only contains

Lorentz-invariant quantities. It is enough to check it at rest.



Q =

∫
d4x J0∂x0Θ(nβx

β) =

∫
d4x J0(x)δ(x0) =

∫
d3xJ0(0, x) = Q(0)

that is Q = Q(t) = Q(0) is time-independent.
Under a Lorentz transform Q 7→ Q ′ =

∫
d4x Jα∂αΘ(n′βx

′β), with n′β = Λγβnγ .
Hence

Q ′ − Q =

∫
d4x ∂α

(
Jα(x)

(
Θ(n′βx

′β)−Θ(nβx
β)
))

Since one knows that (i) Jα(x)→ 0 if |x | → ∞ fast enough and (ii)
Θ(n′βx

′β)−Θ(nβx
β)→ 0 if |t| → ∞, one can again apply Gauss’s theorem

in 4D and express Q ′ − Q as surface integrals.
This implies Q ′ − Q = 0, hence Q is scalar.



7. Show that the two-dimensional space with the metric

ds2 = dv2 − v2du2 (7)

is identical to the flat two-dimensional Minkowski-space with the
metric ds2 = −dt2 + dx2.
Hint: find a coordinate transformation t = t(v , u) and x = x(v , u)
which sends the Minkowski metric into the metric (7).

Also show that for a non-accelerated particle the contra-variant
component pu of the ‘four-momentum’ p is constant. Is this also
true for the component pv ?



Solution:
one might use the analogy with polar coordinates as inspiration

make the ansatz t = v sinh u, x = v cosh u, hence x2 − t2 = v2 and x/t = coth u.

dt = dv sinh u + du v cosh u

dx = dv cosh u + du v sinh u

and furthermore ds2 = −dt2 + dx2 = dv2 − v2du2. Inverting the above
infinitesimal transformation gives
dv = dx cosh u − dt sinh u and du = v−1

(
dt cosh u − dx sinh u

)
. Next,

pu = guup
u = −mv2 du

dτ
= −mv cosh u

dt

dτ
+ mv sinh u

dx

dτ
= −mx

dt

dτ
+ mt

dx

dτ

Non-accelerated particle: x(t) = x0 + dx
dt t, dt

dτ = cste., dx
dτ = cste.. Hence

pu = −m dt
dτ x0 = cste., as claimed.

Since −m2 = p · p = g vv
(
pv
)2

+ guu
(
pu
)2

=
(
pv
)2 − 1

v2

(
pu
)2 ⇒ pv 6= cste..



8. Show that the metric of the surface of the three-dimensional
sphere S3 embedded into 4D euclidean space reads:

ds2 = R2
[
dα2 + sin2 α

(
dθ2 + sin2 θ dφ2

)]
(8)

(R is the constant radius of the sphere)

Hint: how would you formulate 4D spherical coordinates ?



Solution:
a sphere S3 with radius R is given by x2

1 + x2
2 + x2

3 + x2
4 = R2. Then

introduce the coordinates

x4 = R cosα

x3 = R sinα cos θ

x2 = R sinα sin θ cosφ

x1 = R sinα sin θ sinφ

In cartesian coordinates, the metric is ds2 = dx2
1 + dx2

2 + dx2
3 + dx2

4 and
reproducing (8) is straightforward.
start with dx4 = −R sinαdα etc.



9. Hyperboloide haben die folgende Parameterdarstellung im
dreidimensionalen Raum R3

r =

 x
y
z

 =

 a
√
s2 + d cosϕ

b
√
s2 + d sinϕ

c s

 so daß
( x
a

)2
+
( y
b

)2
−
( z
c

)2
= d

wobei a, b, c Konstante sind und d = ±1. Für d = +1 hat man
ein einschaliges Hyperbolid (hyperbolöıde à une nappe) H1

und für d = −1 ein zweischaliges Hyperbolid (hyperbolöıde à
deux nappes) H2.
Für ein einschaliges Hyperbolid kann man wählen s = sinh ξ und
für ein zweischaliges Hyperbolid s = cosh ξ.

Geben Sie die Parameterdarstellung in beiden Fällen an und
ebenfalls, welche geometrische Bedingung diese beiden Flächen
erfüllen. Wie kann man diese geometrisch veranschaulichen ? Wie
lautet die Metrik ds2 = dx2 + dy2 − dz2 (für a = b = c) und
insbesondere der metrische Tensor in beiden Fällen ?



Solution:
(a) einschaliges Hyperbolid d = +1: setzt man s = sinh ξ, so findet man

r =

 a cosh ξ cosϕ
b cosh ξ sinϕ
c sinh ξ

, was die Oberfläche
(
x
a

)2
+
(
y
b

)2 −
(
z
c

)2
= 1 parametrisiert.

Es ist äquivalent, a = b = c zu setzen und als Oberfläche zu nehmen
x2 + y2 − z2 = a2. Die Parametrisierung verifiziert diese Oberfläche, weil

x2 + y2 − z2 = a2
(
cosh2 ξ cos2 ϕ+ cosh2 ξ sin2 ϕ− sinh2 ξ

)
= a2

(
cosh2 ξ − sinh2 ξ

)
= a2

Damit wird die Metrik

ds2 = dx2 + dy2 − dz2

=
(
a sinh ξ cosϕdξ − a cosh ξ sinϕdϕ

)2
+
(
a sinh ξ cosϕdξ + a cosh ξ cosϕdϕ

)2 −
(
a cosh ξdξ

)2

=
(
a2 sinh2 ξcos2 ϕdξ2 −2a2 cosh ξ sinh ξ cosϕ sinϕdξdϕ+ a2 cosh2 ξsin2 ϕdϕ2

)
+
(
a2 sinh2 ξsin2 ϕdξ2 +2a2 cosh ξ sinh ξ cosϕ sinϕdξdϕ+ a2 cosh2 ξcos2 ϕdϕ2

)
− a2 cosh2 ξdξ2

= a2 sinh2 ξ dξ2 + a2 cosh2 ξ dϕ2 − a2 cosh2 ξ dξ2

= a2
(
−dξ2 + cosh2 ξ dϕ2

)
Mit der Notation (x1, x2) = (ξ, ϕ) hat man ds2 = gµνdxµdxν mit dem metrischen

Tensor gµν =

(
−a2 0

0 a2 cosh2 ξ

)
.



(b) zweischaliges Hyperbolid d = −1: setzt man s = cosh ξ, so findet man

r =

 a sinh ξ cosϕ
b sinh ξ sinϕ
±c cosh ξ

, was die Oberfläche
(
x
a

)2
+
(
y
b

)2 −
(
z
c

)2
= −1

parametrisiert. Es ist äquivalent, a = b = c zu setzen und als Oberfläche zu nehmen
x2 + y2 − z2 = −a2. Die Parametrisierung verifiziert diese Oberfläche, weil

x2 + y2 − z2 = a2
(
sinh2 ξ cos2 ϕ+ sinh2 ξ sin2 ϕ− cosh2 ξ

)
= a2

(
− cosh2 ξ + sinh2 ξ

)
= −a2

Damit wird die Metrik

ds2 = dx2 + dy2 − dz2

=
(
a cosh ξ cosϕdξ − a sinh ξ sinϕdϕ

)2
+
(
a cosh ξ cosϕdξ + a sinh ξ cosϕdϕ

)2 −
(
a sinh ξdξ

)2

=
(
a2 cosh2 ξcos2 ϕdξ2 −2a2 cosh ξ sinh ξ cosϕ sinϕdξdϕ+ a2 sinh2 ξsin2 ϕdϕ2

)
+
(
a2 cosh2 ξsin2 ϕdξ2 +2a2 cosh ξ sinh ξ cosϕ sinϕ dξdϕ+ a2 sinh2 ξcos2 ϕdϕ2

)
− a2 sinh2 ξdξ2

= a2 cosh2 ξ dξ2 + a2 sinh2 ξ dϕ2 − a2 sinh2 ξ dξ2

= a2
(
dξ2 + sinh2 ξ dϕ2

)
Mit der Notation (x1, x2) = (ξ, ϕ) hat man ds2 = gµνdxµdxν mit dem metrischen

Tensor gµν =

(
a2 0

0 a2 sinh2 ξ

)
.



eine geometrische Vorstellung ergibt sich aus den Abbildungen:

einschalig/ une nappe zweischalig/ deux nappes

Physikalische Deutung: falls man die (ausgezeichnete) z-Richtung als Zeitachse in einem

Zeit-Raum-Diagramm interpretiert, so ist das zweischalige Hyperboloid eine Illustration des

Lichtkegels der Viererimpulses eines massiven Teilchens.

Bildquelle: https://de.wikipedia.org/wiki/Hyperboloid



10. (a) In euclidean spaces the angle θ between two vectors U
and V can be found from the scalar product, since cos θ = U·V

|U| |V | .
Consider more general spaces, with a metric tensor gµν . How to
define the angle between two vectors in such a case ?
(b) Consider conformal transformations xµ 7→ xµ, for which the
metric tensor transforms as follows, by definition

gαβ 7→ f (x)gαβ (9)

where f = f (x) = f (xµ) 6= 0 is an arbitrary (differentiable)
function. Show that conformal transformations keep all angles
invariant. How do light-like curves transform ?



Solution:
(a) the cosine θ between two vectors is defined as

cos θ :=
U · V
|U ||V |

=
gµνU

µV ν(
gµνUµUν gαβV αV β

)1/2

(b) under a conformal transformation x 7→ x̄ one has

cos θ 7→ cos θ̄ =
f (x)gµνU

µV ν(
f (x)gµνUµUν f (x)gαβV αV β

)1/2
= cos θ

invariance of angles under conformal transformations
* light-like curves maintain this property, since

0 = x · x = gµνx
µxν 7→ f (x)gµνx

µxν = 0 = x̄ · x̄



11. Consider the metric

ds2 = dx2 + dy2 + dz2 −
(

3

13
dx +

4

13
dy +

12

13
dz

)2

(10)

Is this really a three-dimensional space ? Try to find new
coordinates ζ, η such that ds2 = dζ2 + dη2.



Solution:
Criterion: 3D space iff d3V = g1/2dxdydz 6= 0.
Hence work out the determinant

d3V =

∣∣∣∣∣∣∣
1−

(
3

13

)2 − 3
13

4
13 − 12

13
3

13

− 3
13

4
13 1−

(
4

13

)2 − 4
13

12
13

− 12
13

3
13 − 4

13
12
13 1−

(
12
13

)2

∣∣∣∣∣∣∣
1/2

dxdydz = 0

⇒ the space must be either 1D or 2D.
Since the metric does not depend explicitly on z , one can consider the projection
into the xy -plane where

ds2 = dx2 + dy2 −
(

3

13
dx +

4

13
dy

)2

g = det

(
1−

(
3

13

)2 − 3
13

4
13

− 3
13

4
13 1−

(
4

13

)2

)
=

14336

1692
6= 0

shows that this projection is indeed 2D. One can diagonalise gµν and find
ds2 = dζ2 + dη2, where

ζ =
12

5

( 3

13
x +

4

13
y
)
, η =

12

5

(
− 4

13
x +

3

13
y
)



Série 3



1. The covariant derivatives of the metric tensor are defined as
follows

gµν;λ := gµν,λ − gσνΓσµλ − gµσΓσνλ (1)

with Γµνλ = gµρΓρνλ =
1

2
gµρ (gρν,λ + gρλ,ν − gνλ,ρ)

where Γµνλ denote the Christoffel symbols. Show that the metric
tensor gµν always has a vanishing covariant derivative, that is

gµν;λ = 0 .

N.B.: this compatibility property of the metric is characteristic
for Einstein’s theory of gravitation. In particular, such metrics are
also compatible with flat spaces with a Minkowski metric tensor.



Solution:
Begin with recalling from (1) the definition of gµν;λ. For comparing the
Christoffel symbols, it is useful to put all indices down-stairs

Γρνλ =
1

2

(
gρν,λ + gρλ,ν − gνλ,ρ

)
We then have

gµν;λ = gµν,λ − Γνµλ − Γµνλ

= gµν,λ −
1

2

(
gνµ,λ + gνλ,µ − gµλ,ν

)
− 1

2

(
gµν,λ + gµλ,ν − gνλ,µ

)
= gµν,λ − gµν,λ = 0

the symmetry gµν = gνµ has been frequently used



2. Show that for a diagonal metric with metric tensor

gµν = diag (g00, g11, g22, g33) =


g00

g11

g22

g33

 (2)

the Christoffel symbols have the following values:

Γµνλ = 0 ; Γµλλ = − 1

2gµµ

∂gλλ
∂xµ

Γµµλ =
∂

∂xλ
ln
√
|gµµ| ; Γµµµ =

∂

∂xµ
ln
√
|gµµ| (3)

Herein is always µ 6= ν 6= λ 6= µ and there is no summation over
repeated indices !



Solution:
The Christoffel symbols are given by

Γµνλ =
1

2
gµρ (gρν,λ + gρλ,ν − gνλ,ρ) (*)

(a) since g is diagonal, one must have ρ = µ in (*). But since µ 6= ν 6= λ 6= µ, none
of the components Γµνλ is non-zero.
(b) if we set ν = λ in (*), we find

Γµλλ =
1

2
gµρ (gρλ,λ + gρλ,λ − gλλ,ρ) = −1

2
gµρgλλ,ρ = −1

2

(
gµµ
)−1

gλλ,µ

(c) if we set ν = µ in (*), we find

Γµµλ =
1

2
gµρ (gρµ,λ + gρλ,µ − gµλ,ρ) =

1

2

(
gµµ
)−1

gµµ,λ =
∂

∂xλ
ln
(
|gµµ|1/2

)
(d) simply set µ = λ in (c) and obtain

Γµµµ =
∂

∂xµ
ln
(
|gµµ|1/2

)



3. Die Pseudosphäre P2 hat die Metrik
ds2 = a2

(
dξ2 + sinh2 ξ dϕ2

)
eines Hyperboloides. Was ist die

Form der geodätischen Kurven ?

The pseudo-sphere P2 has the metric
ds2 = a2

(
dξ2 + sinh2 ξ dϕ2

)
of a hyperbolöıde. What is the form

of the geodetic curves ?



Solution:
This is the metric of a two-sheeted hyperbolöıde H2, as seen in an earlier exercice.
Label the coordinates as (x1, x2) = (ξ, ϕ). The geodesics are obtained as solutions of
the geodesic equations

ẍµ + Γµκλẋ
κẋλ = 0 , Γµκλ =

1

2
gµρ
(
gρκ,λ + gρλ,κ − gκλ,ρ

)
= Γµλκ

First one must find the non-vanishing Christoffel symbols. Since the metric is
diagonal, one can use the technique explained in the previous exercice. Also, the
non-zero elements of the inverse metric tensor are found, e.g. via g11 = 1

g11
. The

only non-vanishing Christoffel symbols are

Γ1
22 = −1

2
g11 ∂

∂ξ
g22 = −1

2
· 1 ·

(
2 sinh ξ cosh ξ

)
= − sinh ξ cosh ξ

Γ2
21 = Γ2

12 =
1

2
g22 ∂

∂ξ
g22 =

1

2

2 sinh ξ cosh ξ

sinh2 ξ
= coth ξ

Then the two geodesic equations read

ẍ1 + Γ1
22 ẋ

2ẋ2 = 0 ⇒ ξ̈ − sinh ξ cosh ξ ϕ̇2 = 0

ẍ2 + 2Γ2
12 ẋ

1ẋ2 = 0 ⇒ ϕ̈+ 2 coth ξ ξ̇ϕ̇ = 0



If ϕ̇ 6= 0, the second of these gives

1

ϕ̇

dϕ̇

dσ
+ 2 coth ξ

dξ

dσ
= 0 ⇒ ln ϕ̇+ 2 ln

(
sinh ξ

)
= cste. ⇒ ϕ̇ sinh2 ξ = h = cste

Rather than solving the last remaining geodesic equation, it is more simple to go back

to the metric, if one chooses the parameter σ
!

= s as the arc length. From the metric

1 = a2

(
dξ

ds

)2

+ a2 sinh2 ξ

(
dϕ

ds

)2

= a2

(
dξ

ds

)2

+
a2h2

sinh2 ξ

where the conservation law derived above (implicitly taking σ = s) was inserted. From
this, the geodesic equations can be written as

dξ

ds
= ±

√
sinh2 ξ − a2h2

a sinh ξ
,

dϕ

ds
=

h

sinh2 ξ

Since we require the geometric form of the geodesic, we are really looking for the
orbit, which we seek in the form ϕ = ϕ(ξ). Hence

dϕ

dξ
=

dϕ

ds

ds

dξ
= ± h

sinh2 ξ

a sinh ξ√
sinh2 ξ − a2h2

= ± d

dξ
arccos

(
h√

1/a2 + h2
coth ξ

)
the details of this integration will be spelled out below



This form of the orbit can be re-expressed as cos
(
ϕ− ϕ0

)
− h√

1/a2+h2
coth ξ = 0,

which can be re-stated as A cosϕ+ B sinϕ+ C coth ξ = 0 with known constantes
A,B,C . This can also be rephrased as

A sinh ξ cosϕ+ B sinh ξ sinϕ+ C cosh ξ = 0 (*)

Equations of this kind arise form the intersection of a hyperbolöıde given by
x2 + y2 − z2 = −a2, and a plane going through the origin which is described by
αx + βy + γz = 0.

recall Hesse’s normal form n · r = d for the equation of a plane, with distance d to the origin

Recall that a two-sheeted hyperbolöıde has the parametrisation
x = a sinh ξ cosϕ, y = a sinh ξ cosϕ and z = ±a cosh ξ.
Inserting this into the equation for the plane produces an
equation of the form (*).

The figure shows an example of such an intersection.



[ Mathematical remarks on the details of the integration:

want to integrate dϕ
dξ

= ± ah
sinh2 ξ

sinh ξ√
sinh2 ξ−a2h2

(it is better not to cancel sinh ξ)

ϕ− ϕ0 = ±ah
∫

dξ

sinh2 ξ

1√
1− a2h2

sinh2 ξ

notice 1
sinh2 ξ

= coth2 ξ − 1

= ±ah
∫

dξ

sinh2 ξ

[
1− a2h2(coth2 ξ − 1

)]−1/2

notice d coth ξ
dξ

= − 1
sinh2 ξ

= ±ah
∫

dξ

sinh2 ξ

[
1 + a2h2 − a2h2 coth2 ξ

]−1/2

set u = coth ξ ⇒ du = − dξ

sinh2 ξ

= ∓ah
∫

du
1

ah

[
1 + a2h2

a2h2
− u2

]−1/2

set u =
√

1
a2h2 + 1 cosα ⇒ du = −

√
1

a2h2 + 1 sinαdα

= ±

√
1

a2h2 + 1√
1

a2h2 + 1

∫
dα

sinα

sinα
= ±α

= ± arccos

 1√
1

a2h2 + 1
coth ξ

 = ± arccos

 h√
1
a2 + h2

coth ξ


as claimed. ]



4. In less than 4 dimensions, the Riemann tensor admits simple forms.

Write down simple explicit expressions for the Riemann tensor in
d = 1, 2, 3 dimensions. How many independent components of the
Riemann tensor do you find in each case ?
Hint: for d < 4 the Riemann tensor can be expressed uniquely
through the Ricci scalar R and the Ricci tensor. Use the known
symmetries of the Riemann tensor

Rµνλσ = Rλσµν ; Rµνλσ = −Rνµλσ = −Rµνσλ ; Rµ[νλσ] = 0
(4)

� In empty space, the field equations of gravitation are Rµν = 0.
What follows about gravitation in empty space in d = 2 or d = 3
dimensions ?



Solution:
(a) d = 1: the Riemann tensor has a single component R1111 = 0 because of
the symmetries. � all 1D spaces are flat.
(b) d = 2: the Riemann tensor has a single independent component. One can
take into account the symmetries and write the Riemann tensor in the form

Rαβγδ =
(
gαγgβδ − gαδgβγ

)
r

with a scalar r .
Verifying the first three symmetries in (4) is obvious. For the last one, the Bianchi identity, consider

Rα[βγδ] :=
1

3

(
Rαβγδ + Rαγβδ + Rαδβγ

)
=

r

3

(
gαγgβδ − gαδgβγ + gαδgγβ − gαβgγδ + gαβgγδ − gαγgδβ

)
= 0

We now compute the Ricci scalar

R = Rαβαβ =
(
gααg

β
β − gαβg

β
α

)
r =

(
2 · 2− 2

)
r = 2r

so that we finally have

Rαβγδ =
1

2

(
gαγgβδ − gαδgβγ

)
R



(c) d = 3: The Riemann tensor has 6 independent components. Since in 3D,
the Ricci tensor Rµν = Rνµ has 6 independent components as well, one may
try to express the Riemann tensor through the Rµν . First, the following
ansatz takes the symmetries into account

Rµνλσ = A
(
gµλRνσ − gνλRµσ − gµσRνλ + gνσRµλ

)
+B
(
gµλgνσ − gµσgνλ

)
R

where the constants A,B are to be found. (the second line is the same as in 2D)

By contraction, one obtains

Rµνµσ = Rνσ

= A
(
3Rνσ − Rνσ − Rνσ + gνσR

)
+ B

(
3gνσ − gνσ

)
R

= ARνσ + gνσR
(
A + 2B

)
This gives A = 1 and B = −1

2 .
for a check, contract once more: R = AR

(
1 + 3

)
+ BR2 · 3 =

(
4 · 1− 1

2
· 6
)
R =

(
4− 3

)
R.

* In empty space, the Ricci tensor vanishes Rµν = 0 (hence R = 0 as well).
Therefore, the 2D/3D full Riemann tensor vanishes in empty space
⇒ ! no gravitational force in empty space for d = 2 or d = 3 !

� long-range gravitational forces across empty space need d = 4 time-space dimensions



5. In the rest frame of a perfect fluid with (proper) mass density ρ
and pressure p the energy-momentum tensor has the form

Tµν =


ρ 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

 . (5)

Find the energy-momentum tensor for an element of the liquid
with proper mass density ρ and proper pressure p, which moves
with the four-velocity u.



Solution:
In the rest frame, one has explicitly assumed here: cartesian coordinates

Tµν =


ρ 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p


In addition, one has u0 = 1, ui = 0, with i = 1, 2, 3. This suggests to propose
the form

Tµν = pgµν +
(
ρ+ p

)
uµuν

* this reduces to the known expression in the rest frame, where gµν = ηµν .
* the proposed form is generally co-variant.
Hence, by the principle of general co-variance, it will hold in general, for all
coordinate systems.

N.B.: ermöglicht auf sehr billige Art, Tµν in nichtkartesischen Koordinaten explizit hinzuschreiben,

(nehme das Ruhesystem !) sobald man nur den metrischen Tensor gµν in diesen Koordinaten kennt



Série 4



1. Show that the gravitational force on a test body inside a
gravitating hollow sphere vanishes.
Hint: Birkhoff’s theorem states, that the Schwarzschild metric is a
solution of the field equations Rµν = 0 in the case of spherical
symmetry. Can such a solution have singularities in the inside of a
sphere ?
You may remember an analogous result in Newton’s theory of
gravity or else in electrostatics.



Solution:
Because of the spherical symmetry, Birkhoff’s theorem states that gµν must
be Schwarzschild metric

ds2 = −
(

1− R

r

)
dt2 +

(
1− R

r

)−1

dr2 + r2dΩ2

where dΩ is the element of the solid angle.
If R 6= 0, the solution has a singularity at r = R (R plays here the rôle of an
integration constant). However, singularities are physically inadmissible, since
one is in the interior of a sphere,without any masses. Hence R = 0. Then
the metric must be

ds2 = −dt2 + dr2 + r2dΩ2

which is the flat Minkowski metric. Since the corresponding Riemann tensor
vanishes, there is no gravitational force.



2. Mathematically a curved (‘Riemann’) space in d dimensions has
a constant curvature, if the Riemann tensor Rµνλκ can be expressed
as follows through the metric tensor gµν (with det g 6= 0):

Rµνλκ = K (gµλgνκ − gµκgνλ) (1)

where the constant K describes the constant curvature. Show that
the Ricci tensor has the form

Rµν := gστRσµτν = K (d − 1)gµν (2)

Can one make a statement about two-dimensional spaces (d = 2) ?
Hints: gστgστ = d . Recall the general form of Rµνλκ for d = 2.



Solution:
A direct calculation gives

Rµν = gστRσµτν

= Kgστ
(
gστgµν − gσνgµτ

)
= Kdgµν − Kg τν gµτ = K (d − 1)gµν

If d = 2, we had from a previous exercice that Rαβγδ = R
2

(
gαγgβδ − gαδgβγ

)
.

Comparison shows that K = 1
2R. A conformal transformation can be used to

make R = cste..
Hence, for d = 2 any space is conformally related to a Riemann space of
constant curvature.



3. A detailed study of the mouvement of galaxies, far from earth, has raised
interest in the following variant of Einstein’s field equations

Rµν −
1

2
gµνR + Λgµν = −κTµν , κ := −8πG

c2
(3)

where Λ is called cosmological constant. G is Newton’s gravitational
constant.
a) What is the dimension of Λ ?
b) Show, via a convenient contraction, that the Ricci scalar R = κT + 4Λ
(here T := Tµ

µ ) and derive from (3) the following alternative form of the field
equations

Rµν = Λgµν − κ
(
Tµν −

1

2
gµνT

)
(4)

c) Without external sources, that is for Tµν = 0, the flat Minkowski metric a
solution of the field equations (4) ? Compare the field equations (4) without
sources with the form of a Riemann space with constant curvature, as derived
in a previous exercice. Can you interpret geometrically the cosmological
constant Λ ?



d) In the non-relativistic limit the component µ = ν = 0 from eq. (4)
reproduces Newton’s equations. Show that for Λ 6= 0 one obtains a
generalised Poisson’s equation

∆φ+ Λc2 = 4πGρ (5)

where φ = − c2

2 h00 is Newton’s gravitational potential, gµν = ηµν − hµν + . . .
and ∆ denotes the usual Laplace operator.
e) Show that for Λ 6= 0 one has phenomenologically an additional force
FΛ = 1

3 Λc2r in the distance r from the centre of the force. For which class of
objects would you expect measurable effects of the constant Λ ?
Hint: in 3D spherical coordinates the Laplace operator reads
∆f (r) = 1

r
d2

dr2 (rf (r)), for the case of a spherical symmetry.



Solution:
(a) Since Rµν contains two derivatives ⇒ Λ has dimension [length−2].
(b) From (3) have Rµν = 1

2gµνR − Λgµν − κTµν . Contracting, one finds
R = Rµµ = 1

2 · 4R − 4Λ− κT , or R = 4Λ + κT . Insert this into (3) and find

Rµν = 1
2gµν

(
4Λ + κT

)
− Λgµν − κTµν = Λgµν − κ

(
Tµν − 1

2gµνT
)

(c)The Minkowski metric is solution of Rµν = 0, which is different from (4) with
Λ 6= 0 and Tµν = 0. In a previous exercice we have seen that for spaces with a
constant curvature Rµν = K (d − 1)gµν . Comparison gives Λ = 3K . In the absence
of sources, the resulting space has the constant curvature K = Λ

3 .
(d) In principle, it is enough to repeat the calculations for obtaining the
non-relativistic limit from the lecture. For clarity, the main steps are repeated here.

The newtonian limit is a weak-field limit where one sets gµν = ηµν + hµν with h

‘small’. In addition, as c →∞, one expects τ ' t, dx0

dτ ' c , dx i

dτ '
dx i

dt = v i � c .
Furthermore, this is a static approximation where the potentials are
time-independent. The three spatial geodesic equations become

d2x i

dt2
+ c2Γi

00

(
1 + O(1/c)

)
= 0 ⇒ d2x i

dt2
= −c2Γi

00 = ai acceleration

which begins to look like a newtonian equation of motion.



One must now work out, in the static approximation and to linear order in h:

Γi
00 =

1

2
g iν
(

2gν0,0︸ ︷︷ ︸
=0

−g00,ν

)
= −1

2
g ikg00,k ' −

1

2
ηikh00,k + O(h2) = −1

2
∇ih00

This gives the equation of motion d2x i

dt2 = −c2Γi
00 = c2

2 ∇
ih00 and should be compared

with the newtonian equation d2x i

dt2 = −∇iφ. One identifies the newtonian

gravitational potential h00 = − 2
c2φ , or g00 = −

(
1 + 2

c2φ
)
.

In order to find the newtonian limit of the field equation, consider again

gµν = ηµν + hµν ⇒ gµν = ηµν − hµν + O(h2)

[to see this: gµνgνκ =
(
ηµν + hµν

)(
ηνκ − hνκ

)
' ηµνηνκ − ηµνhνκ + hµνηνκ + O(h2)

= δκµ − hκµ + hκµ = δκµ]

Then

Γµνλ =
1

2
gµρ
(
gρν,λ + gρλ,ν − gνλ,ρ

)
' 1

2
ηµρ
(
hρν,λ + hρλ,ν − hνλ,ρ

)
+ O(h2)

which itself is of first order in h throughout.



Recall the computation of the Ricci tensor

Rµν = Γκµν,κ − Γκµκ,ν + ΓκρκΓρµν − ΓκρνΓρµκ︸ ︷︷ ︸
=O(h2), negligible

=
1

2
ηκσ
(
hσν,µκ + hµκ,σν − hµν,σκ − hσκ,µν

)
+ O(h2)

Concentrate on the component µ = ν = 0 (use the static approximation !):

R00 ' 1

2
ηκσ
(
hσ0,0κ + h0κ,σ0︸ ︷︷ ︸

=0

−h00,σκ − hσκ,00︸ ︷︷ ︸
=0

)

= −1

2
ηκσh00,σκ = −1

2

− 1

c2

∂2

∂t2︸ ︷︷ ︸
=0

+∇2

 h00 = −1

2
∇2h00

Next, in the newtonian limit, the energy-momentum tensor of matter is Tµν =


ρ

0
0

0

.

Then T = Tµ
µ = −ρ and Tµν − 1

2
gµνT =


ρ

0
0

0

 + ρ
2


−1

1
1

1

 = ρ
2
δµν .



The field equation (4) now takes the form

R00 = −1

2
∇2h00 =

1

c2
∇2φ

!
= Λg00 − κ

ρ

2
δ00 = −κ

2
ρ− Λ

which gives the ‘newtonian’ form

∇2φ+ Λc2 = −c2κ

2
ρ

For Λ = 0, this should reproduce the newtonian equation ∇φ = 4πGρ from which
the κ given in the problem statement (3) follows. The full field equation in the
newtonian limit is

∇2φ+ Λc2 = 4πGρ (*)

N.B.: for the sake of comparison with the litterature, we have kept the c . . .



(e) On phenomenological consequences: (*) is linear, hence just consider the extra
term coming from ∇2φΛ = −Λ.

⇒ 1

r

d2

dr2

(
rφΛ(r)

)
= −Λ ⇒ d2

dr2

(
rφΛ(r)

)
= −Λr ⇒ rφΛ(r) = − 1

2 · 3
Λr3

such that finally φΛ(r) = −Λ
6 r

2. The corresponding ‘cosmological force’ is

FΛ(r) = −∂φΛ(r)
∂r = 1

3 Λr .

Since Λ ≈ 10−52[m−2], there is a corresponding length scale Λ−1/2 ∼ 1026[m]. In

astronomy, an often-used length scale is the light year, which is of order

1[light year] ∼ 1016[m] (which is distance a photon travels in one year). Hence

Λ−1/2 ∼ 1010[light year] which is the order of magnitude of the radius of the visible

universe. Effects of the ‘cosmological force’ should be seen in considerations of the

behaviour (e.g. expansion) of the entire universe – and next, one might consider

effects on the mouvement of clusters of galaxies which occur at scales at the order of

108[light year].



4. At the surface of a pseudo-sphere P2 one has the metric

ds2 = gµνdxµdxν = a2
(
dχ2 + sinh2 χdφ2

)
(6)

where a is a fixed length scale. Is P2 a curved space ? Compute
the Ricci scalar R as a function of a. Do you see a property in
which the pseudo-sphere P2 is distinct from the usual sphere S2 ?
Hints: The Riemann tensor R and the Christoffel symbols Γ are
given by

Rκλµν = Γκλν,µ − Γκλµ,ν + ΓκρµΓρλν − ΓκρνΓρλµ

Γµνλ =
1

2
gµρ
(
gρν,λ + gρλ,ν − gνλ,ρ

)
(7)

How many independent components the Riemann tensor does have
for P2 ? The Ricci tensor is Rµν = Rκµκν and the Ricci scalar
R = gµνRµν = Rµµ .



Solution:
One has the metric, with (x1, x2) = (χ, φ): ds2 = a2

(
dχ2 + sinh2 χ dφ2

)
. The

metric tensor is diagonal, hence using previous exercices one readily has the
non-vanishing Christoffel symbols

Γ1
22 = −1

2

1

g11

∂

∂χ
g22 = −1

2
· 1 · 2 sinhχ coshχ = − sinhχ coshχ

Γ2
21 = Γ2

12 =
1

2

1

g22

∂

∂χ
g22 =

1

2

2 sinhχ coshχ

sinh2 χ
= cothχ

Since P2 is two-dimensional, there is a single independent component of the
Riemann tensor, for example

R1
212 = Γ1

22,1 − Γ1
21,2 + Γ1

i1Γi
22 − Γ1

i2Γi
21

=
∂

∂χ

(
− sinhχ coshχ

)
− Γ1

22Γ2
21

N.B.: all terms not spelled

out explicitly here vanish !

= − cosh2 χ− sinh2 χ−
(
− sinhχ coshχ

)
cothχ

= − cosh2 χ− sinh2 χ+ cosh2 χ = − sinh2 χ 6= 0

Since R1
212 6= 0 ⇒ P2 is curved



R2
121 = g22g11R

1
212 =

1

a2 sinh2 χ
a2
(
− sinh2 χ

)
= −1 6= 0

N.B.: one might have found R2
121 directly as well

R2
121 = Γ2

11,2 − Γ2
12,1 + Γ2

i2Γi
11 − Γ2

i1Γi
12

= − ∂

∂χ

(
cothχ

)
− Γ2

21Γ2
12

= − sinh2 χ− cosh2 χ

sinh2 χ
− coth2 χ

= −1 + coth2 χ− coth2 χ = −1

One computes the Ricci tensor

R11 = R i
1i1 = R2

121 = −1

R22 = R i
2i2 = R1

212 = − sinh2 χ

N.B.: for illustration: R12 = R i
1i2 = R1

112 + R2
122 and

R1
112 = Γ1

12,1 − Γ1
11,2 + Γ1

i1Γi
12 − Γ1

i2Γi
11 = 0

R2
122 = Γ2

12,2 − Γ2
12,2 + Γ2

i2Γi
12 − Γ2

i2Γi
12 = 0

as one might have anticipated from the symmetries of the Riemann tensor. ⇒ R12 = 0.



Finally, the Ricci scalar is

R = g11R11 + g22R22 =
1

a2
(−1) +

1

a2 sinh2 χ

(
− sinh2 χ

)
= − 2

a2
< 0 (R)

R is non-vanishing, of dimension [length−2] and negative. This last property is
distinct from the usual sphere S2, where R = + 2

a2 > 0 (see lectures).

We also note the matrix forms of the metric and Ricci tensors:

gµν =

(
a2 0

0 a2 sinh2 χ

)
, Rµν =

(
−1 0

0 − sinh2 χ

)

Hence, Rµν = − 1
a2 gµν . The pseudo-sphere P2 is a space of constant curvature K .

N.B.: Indeed, it is known from a previous exercice that in 2D spaces with constant

curvature K = 1
2R – in agreement with the explicit results found here, where

K = − 1
a2 = 1

2R, see eq. (R).

the calculations here are for geometric spaces and not for Minkowski time-spaces !

Theorem: (Huygens) The surface area of P2 is 4πa2 and its volume 2
3
πa3.

Theorem: (Hilbert) It is impossible to embed P2 into the euclidean R3.

Theorem: (Whitney) For any manifold with dim M = m ≤ n
2
there is an embedding f : M → Rn.


