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Série 2



1. The invariant of Minkowski space reads, with the metric tensor
Nw = diag(—1,1,1,1),

ds® = nap dx® dx” = g, dx" dx” (1)

where the coordinates X* come from a coordinate transformation
xt — x". Give the metric tensor g, in the new coordinates.



Solution:

it is enough to write out the respective derivatives (use the expansion dx®

ds® = 7apdx®dx”?
ox“ oxP
0 e
B gzn " oxv
Ox* OxP
"8 %0 o3

dx”

) dxHdx”

::E‘“j

= g, dx"dz"

and one can read off

_ Ox® OxP
g/Lu = Nap OxF Oxv

Ix* 3z
e 4X4)



2. Consider the determinant of the metric tensors g := det g,,,. Is
it Lorentz-invariant ?



Solution:
The metric tensor transforms as follows

_ Ox® OxP
B = 800 s v
and this can be viewed as a product of matrices. Taking the determinant

g = det(gw)

Ox Ox
= det(gap) det (8 M) det <8x”)

ax*\1?
e

For a general transformation x — X, g is invariant if and only if det ( o H) =1
9x” is a matrix with constant matrix elements. For a

For linear transformations, Aj = 2%
space rotation, det A = 1 is well-known. For a Lorentz transformation (in x-direction)

coshf sinh6
yv ooy . sinh@® cosh @ _ 72— 42v? =1
= deth= cosh? —sinh? 0 =1

1 1

= g is Lorentz-invariant, but it is not invariant under general transformations.



3. Show that the invariant volume element of a four-dimensional
space is given by

d*V = (—g) 12 44¢ = (—g) 1/2 dtdxdydz (2)

where g := det g,,,, is the determinant of the metric tensor g,,,..



Solution:

Under the transformation x — X, the volume element is d*x = det(ax)d4 .
One of the frames can be assumed to be Minkowski space with the metric
tensor 7, = diag (—1,1,1,1). From the previous exercice

- N Oxt Ox” B ox\1?

Hence (—g) = det %. In consequence

- \1/2 j4- 0x 0x 1/2
d*V = (—g)"%d*z = det (axax) (—g)"?d* = a*V



4. (@) Show that the invariant volume element of
three-dimensional space, for an observer with the four-velocity u is
given by

BV = (—g)? u® d3x (3)

(b) Write down the invariant volume element of the contra-variant
momentum d*p in four-dimensional momentum space.

(c) Write down the invariant three-dimensional volume element in
momentum space ‘on the mass shell”, that is with the constraint

/_p.p = m.



Solution:
(a) at rest, one has clearly d®V = dxdydz. One wants a scalar which to

reduces to this at rest.
Start from d*V, and introduce the component u° = % of the four-velocity u,
where T is proper time.

0
d*V = (—g)"*dtdxdydz = (—g)"*dtdxdydz—5 = (—g)"*u’drdxdydz
u

Since d*V and dr are scalars, d3V = (—g)1/2u0dxdydz must be scalar as
well.

(b) The four-momentum p = (P°, P) transforms as a four-vector. The
invariant volume element is

d*p = (—g)"?dP°dP*dPYdP?



(c) One has the extra constraint (—p-p) = m. This gives the invariant 3D
element

d*p = /(—g) Y2 apPap AP ap® o ((~gasPP?)M? — m)

From the theory of distributions (see e.g Gelfand & Shilov, Generalised
Functions, Vol. 1) one recalls the identity [dx §(f(x)) = > v m where
xo runs over all zeros of f(x), that is f(xg) = 0.

With the help of this, one eliminates the integration over P° and finds

-1

$Bp = (- )1/2dPXdPydPZ[ ;(—gagpapﬁ)l/zzgtapa
= (—g)?aP*dPYap* < "I’DO> (4)

In the rest frame,this reduces indeed to d3p — dP*XdPYdP?, as expected.



5. Relativistic electrodynamics is described by the field tensor F** = 9F AV — 9¥ A*
where A is the four-vector-potential. On a test body with electric charge g then acts
the Lorentz force (frz. force de Laplace (sic !)), with four-momentum p = mu and

proper time 7
dp#

dr

(a) Consider first the zeroth component (time component) p = 0 of the equation
(5). Express it via the electric and magnetic fields E and B and show that
dp°

EZQV'E (6)

(b) Write the equation for dp/dt, expressed via E and B.
Hint: consider the space components of (5).

(c) A particle with electric charge g and mass m moves on a circle with radius R in
an uniform magnetic field B = Be,.

(i) Express B in terms of known quantities and the angular frequency w.

(i) In the rest system, why the magnetic field B cannot furnish work on the

particle 7 Was is the finding of an observer, who moves with the relative velocity
Beyx 7 Which velocity does he find, and in particular, which value of u ?

(iii) Determine du® /dr and hence also dp® /dr. Why can the energy of the particle
change, although the magnetic field B does not furnish work ?

=qF"u, (5)



Solution:

(a) set u=01in eq. (5): dd—p: = gF%u, = gE'yv;, with i = 1,2, 3. Because
of d7 = dt/~, this gives indeed eq. (6).

almost identical at the non-relativistic form, but p® also contains the rest energy.

(b) this is worked out directly

dp’ B dp’
ar ~ de

= qF"u, = qF%uo + qFVuj = qvE' + g7’ By,

which is indeed the Lorentz force dp q(E +VvA B).
(c) (i = 92| = g|v||B|. Then
= |B| = wlpl _ _mw mw
q |v| gvV1-v2 gV1-w2R2
(ii) in (6), the change of the energy p® does not depend on B, hence
p® = cste.. No work is neither furnished, nor gained.
In the frame of the laboratory, the components of the four-velocity are

(having set ¢ = 1).

Y u =

, U = ——F/——=
V1—w?R2 V1—w?R2

UO:(l—szz)il/z X:L y wX



On the other hand, for an observer with relative velocity Sey, one finds from
a Lorentz transformation

U0 — 'y(uo _ﬁux) _ fy(l _ Bwy) (1 _w2R2)71/2 4= (1 B 52)71/2 ()

dp® _ du® _  mwyBu¥
(|||) we have ar = m ar — \/ﬁ ?é 0.

No contradiction, since the electric/magnetic fields transform as follows
EY = F%2=NNF"
= NNFY + NASFY = AJASFO? + AQASFT2
= 7.1.Ey_,_(_75).1.52

The electric field E does not at all transform as a vector.
If E =0, one has E"”Y = —y/3B#. From (5), one expects

o _ gy - menBu  meyfe
dr V1 —w?2R? V1 — w?R?

in perfect agreement with (*) above.
The electric field created by Lorentz-transforming the magnetic field B
furnishes the work.



6. A vector field J%(x) satisfies the continuity equation
(conservation law) 0,J% = 0 and for large distances r = |r| — oo
it falls off faster than r—2.

(a) Show that @ := [d3x JO is constant in time.

(b) Show that Q is a Lorentz scalar, that is [d3x JO = [d3x JO'.

Therefore, Q is called the conserved charge of the conserved
four-current J.



olutlon

> =y,
(a) take a domain Q bounded in time by x§
L below and xg above and with spatial sides far
from the origin
XA—

using Gauss's theorem

0 = / d*Vo,Je = / dt 8, J*dxdydz
Q Q

= / JoB3Te + / Joddye
ta tg

= / Jodxdydz—/ Ldxdydz = Q(tg) — Q(ta)
tg

ta

dX® is the surface element, oriented normal to the surface
- for the only surface here in finite distances, in time-direction

b) write the charge as Q = d*x J*0,0(nzxP), where ng = 1,
B

m =n=n3=0and O(u) = (1) iZig

Lorentz-invariant quantities. It is enough to check it at rest.

. To see this, note that @ only contains



Q= / d*x J29,00(ngx") = / d*x J2(x)0(x%) = / d®xJ°(0, x) = Q(0)

that is @ = Q(t) = Q(0) is time-independent.
:nder a Lorentz transform Q — Q' = [d*x J*0,0(nyx'?), with nj; = Nynsy.
ence

Q-Q= / d*x 0, <Ja(x)(@(n’ﬁx’ﬁ) - @(nsxﬁ))>

Since one knows that (i) J%(x) — 0 if |x| — oo fast enough and (ii)
@(n’ﬁx’ﬁ) — ©(ngx?) — 0 if |t| — oo, one can again apply Gauss's theorem
in 4D and express @ — @ as surface integrals.

This implies @ — Q@ = 0, hence Q is scalar.



7. Show that the two-dimensional space with the metric
ds® = dv? — v2du? (7)

is identical to the flat two-dimensional Minkowski-space with the
metric ds® = —dt? + dx?.

Hint: find a coordinate transformation t = t(v, u) and x = x(v, u)
which sends the Minkowski metric into the metric (7).

Also show that for a non-accelerated particle the contra-variant
component p, of the ‘four-momentum’ p is constant. Is this also
true for the component p, 7



Solution: _ ) o
one might use the analogy with polar coordinates as inspiration

make the ansatz t = vsinh u, x = v cosh u, hence x2 — t2 = v2 and x/t = coth u.

dt = dvsinhu+duvcoshu
dx = dvcoshu+ duvsinhu
and furthermore ds® = —dt? + dx? = dv? — v2du?. Inverting the above

infinitesimal transformation gives
dv = dxcosh u — dtsinhu and du = v1 (dt cosh u — dxsinh u). Next,

u »du h dt . h dx dt . tdx
= = —mv°— = —mvcoshu— + mvsinhu— = —mx— + mt—
Pu = BuuP dr dr dr dr dr
Non-accelerated particle: x(t) = xo + %t, % = cste., % = cste.. Hence
Pu = —m%xo = cste., as claimed.

Since —m? = p'p= gvv(pv)2 +guu(pu)2 = (Pv)2 - %(Pu)2 = py # cste..



8. Show that the metric of the surface of the three-dimensional
sphere S3 embedded into 4D euclidean space reads:

ds? = R?[da? +sin®a (d6? +sin? 0 d¢?)] (8)
(R is the constant radius of the sphere)

Hint: how would you formulate 4D spherical coordinates ?



Solution:
a sphere S3 with radius R is given by x? + x3 + x3 + x; = R?. Then

introduce the coordinates

X3 = Rcosa

x3 = Rsinacosf

xp = Rsinasinfcos¢
x1 = Rsinasinfsing

In cartesian coordinates, the metric is ds? = dx12 + dx22 + dx32 + dxf and
reproducing (8) is straightforward.

start with dx; = —Rsin ada etc.



9. Hyperboloide haben die folgende Parameterdarstellung im
dreidimensionalen Raum R3

X aVs?2+d cos

r:<y):(wﬁsm§> odab (X4 (L)~ (2) =
z cs

wobei a, b, ¢ Konstante sind und d = £1. Fir d = +1 hat man

ein einschaliges Hyperbolid (hyperboloide a une nappe) H;

und fiir d = —1 ein zweischaliges Hyperbolid (hyperboloide a

deux nappes) H;.

Fir ein einschaliges Hyperbolid kann man wahlen s = sinh £ und

fur ein zweischaliges Hyperbolid s = cosh &.

Geben Sie die Parameterdarstellung in beiden Fallen an und
ebenfalls, welche geometrische Bedingung diese beiden Flachen
erfiillen. Wie kann man diese geometrisch veranschaulichen 7 Wie
lautet die Metrik ds® = dx? + dy? — dz? (fiir a= b = ¢) und
insbesondere der metrische Tensor in beiden Fallen ?



Solution: _ _ _

(a) einschaliges Hyperbolid d = +1: setzt man s = sinh &, so findet man
a cosh & cos

— | bcoshési die Oberfliche (X)* + (%) = (2)* =1 trisiert

r= cosh¢siny |, was die Oberflache a) + (b) — (C) = 1 parametrisiert.
c sinh¢&

Es ist aquivalent, a = b = ¢ zu setzen und als Oberfliche zu nehmen

x? 4+ y? — z2 = a%. Die Parametrisierung verifiziert diese Oberfliche, weil

X2 + y2 —2=2? (cosh2 13 cos? p+ cosh? 13 sin? Y — sinh? 1) =a° (coshQQ — sinh? {) =32
Damit wird die Metrik
ds? = dx® + dy2 —dz?

= (a sinh & cos pd& — acosh £ sin <pd<p)2 + (a sinh & cos pd€ + acosh £ cos <pd<p)2 - (a cosh §d£)2
(32 sinh? 55052 gpd§2

+(a? sinh? &sin? pdg?
a? sinh? £d€? 4 a° cosh? ¢ d<p2 — a? cosh? £ d¢?
a° (—d§2 + cosh?¢ d<p2)

+ a? cosh? £sin2 ¢d¢2)

+ a? cosh? ¢cos? godgo2) — a° cosh? £dg¢?

Mit der Notation (x*, x?) = (£, ¢) hat man ds® = g, dx*dx” mit dem metrischen

—a? 0
Tensor g, = 0 a?cosh®¢ )



(b) zweischaliges Hyperbolid d = —1: setzt man s = cosh &, so findet man

a sinh & cos

r=| bsinh&siny |, was die Oberflache (2)2 + (%)2 - (%)2 =-1
+c cosh¢
parametrisiert. Es ist aquivalent, a = b = ¢ zu setzen und als Oberflache zu nehmen
x? 4+ y? — 72 = —3°. Die Parametrisierung verifiziert diese Oberfliche, weil
X2 +y? -2 =2a° (sinh2 € cos? o + sinh? £ sin? ¢ — cosh? €)= a° (- cosh? ¢ + sinh? €)= —a?

Damit wird die Metrik
ds? = dx? +dy? —dz?
= (a cosh & cos pd& — asinh £ sin <pdgo)2 + (a cosh & cos pd§ + asinh € cos <pdgo)2 - (a sinh gdg)
= (32 cosh? §cos2 god52 + a’sinh? £sin2 4pd<p2)
+(a2 cosh? &sin? pdg? + a? sinh? £cos? godap2) — a°sinh? ¢dée?
= a?cosh? £de? + a?sinh? £ dp? — a?sinh?® £d¢€?
2%(d€? + sinh? £ dy?)

2

Mit der Notation (x*, x?) = (£, ) hat man ds® = g, dx*dx” mit dem metrischen

a2 0
Tensor g, = 0 a%sinh?¢ )



eine geometrische Vorstellung ergibt sich aus den Abbildungen:

4

einschalig/ une nappe zweischalig/ deux nappes

Physikalische Deutung: falls man die (ausgezeichnete) z-Richtung als Zeitachse in einem
Zeit-Raum-Diagramm interpretiert, so ist das zweischalige Hyperboloid eine Illustration des
Lichtkegels der Viererimpulses eines massiven Teilchens.

Bildquelle: https://de.wikipedia.org/wiki/Hyperboloid



10. (@) In euclidean spaces the angle 6 between two vectors U
and V can be found from the scalar product, since cosf = %
Consider more general spaces, with a metric tensor g,,,,. How to
define the angle between two vectors in such a case 7

(b) Consider conformal transformations x* — x*, for which the

metric tensor transforms as follows, by definition

8aB = f(x)goz,é’ (9)

where f = f(x) = f(x*) # 0 is an arbitrary (differentiable)
function. Show that conformal transformations keep all angles
invariant. How do light-like curves transform 7



Solution: _ _
(a) the cosine 0 between two vectors is defined as

cosf = u-v _ gu UV”
T - 1/2
VIV (g, UrU gosVevs)Y

(b) under a conformal transformation x — X one has

F(x)gu UPVY
(F(%) gy Ur U £(x)gap Vo VA )/

cosf s cosf =

= cos 0

invariance of angles under conformal transformations
* light-like curves maintain this property, since

0=x x=gux'x" — f(x)gux'x" =0=%-%



11. Consider the metric

2
ds® = dx? + dy® + dz? — id id Ed 10
- yoraz BT YT 3% (10)

Is this really a three-dimensional space ? Try to find new
coordinates ¢, 7 such that ds? = d¢? + dn?.



Solution:
Criterion: 3D space iff d3V = g'/2dxdydz # 0.

Hence work out the determinant

1-(2)? —34 23 1/2
; O i T
V= 1313 1_(13) 1313 dxdydz =0
_123 _412 g (2)2
1313 1313 13

= .
Since the metric does not depend explicitly on z, one can consider the projection
into the xy-plane where

3 4 \?
ds? = dx® 4+ dy? — (dx + dy)

shows that this projection is indeed 2D. One can diagonalise g;,,, and find
ds? = d¢? + dn?, where

12,3 4 12, 4 3
=5l =5l )



Série 3



1. The covariant derivatives of the metric tensor are defined as
follows

uvx = Buv ) — gUVrZ)\ — Buo N (1)
) 1
with rﬁ)\ = gltﬂrpl/)\ = Egup (gp%)\ + 8parv — gl/)\vp)

where "', denote the Christoffel symbols. Show that the metric
tensor g, always has a vanishing covariant derivative, that is
500 =0)

N.B.: this compatibility property of the metric is characteristic
for Einstein’s theory of gravitation. In particular, such metrics are
also compatible with flat spaces with a Minkowski metric tensor.



Solution: o |
Begin with recalling from (1) the definition of g,,.\. For comparing the
Christoffel symbols, it is useful to put all indices down-stairs

1
rpz/)\ = E(gpu,)\ + 8pav — gl/)\,p)
We then have
Buv:x = Buv\ — rzzu)\ - r,ul/)\

1 1
Buv,\ — E (guu,)\ + v, — gp)\,u) - 5 (g,ul/,)\ + Buiv — gu)\,u)

= 8Buv,A — Buv,A = 0

the symmetry g, = gu, has been frequently used



2. Show that for a diagonal metric with metric tensor

800
guw = diag (goo, 811, 822, 833) = u (2)
822
833
the Christoffel symbols have the following values:
1 Ogx
MFoa=0 ; TIty=———
VA A 2guu OxH

0 0
= sl = ol @)

Herein is always p1 # v £ X\ # p and there is no summation over
repeated indices !



Solution: )
The Christoffel symbols are given by

1
Moy = Eg”p (8ovx + 8orw — 8 p) (*)

(a) since g is diagonal, one must have p = u in (*). But since pu # v # X # p, none
of the components '"', ‘is non-zero.
(b) if we set v = X in (*), we find

1

1 1 —1
M = Eg’”) (8oax + 8oxr — &\p) = —Eg“pgu,p = _E(g“”) &

(c) if we set v = p in (*), we find
1, 1 ~1 0
rﬁk = §gl P (8oux + 8or — Burp) = E(gw) Eup,A = %) In(\gw|1/2)

(d) simply set = X in (c) and obtain

e —

TR l”(‘guu|l/2)



3. Die Pseudosphire P? hat die Metrik
ds? = a2 (df2 + sinh2§dg02) eines Hyperboloides. Was ist die
Form der geodatischen Kurven ?

The pseudo-sphere P? has the metric
ds? = a2(d€? + sinh? £ dp?) of a hyperboloide. What is the form
of the geodetic curves ?



Solution: : . : : :
This is the metric of a two-sheeted hyperboloide H, as seen in an earlier exercice.

Label the coordinates as (x!, x?) = (&, ). The geodesics are obtained as solutions of
the geodesic equations

) L 1
X4 TR XN =0, Thy = 58" (8onx + &prn = 8irp) = T4,

First one must find the non-vanishing Christoffel symbols. Since the metric is
diagonal, one can use the technique explained in the previous exercice. Also, the
non-zero elements of the inverse metric tensor are found, e.g. via g!! = i. The
only non-vanishing Christoffel symbols are

1 0 1 . .
3 2g11 2682~ "3 1- (2sinh&cosh&) = —sinh & cosh &
1 0 12sinh & cosh &
r2 = r2 = 22 _ = Coth
21 12 2g 5£g > sinh2£ 3

Then the two geodesic equations read

' +T3,53°% =0 = £—sinhfcosh p* =0
R4k =0 = §+2cothé€p=0



If © # 0, the second of these gives

1d¢
—d—(p—&—Zc thf—f—O = Incp+2|n(smh§) = cste. = ’gbsinh2§:h:cste
2

Rather than solving the last remaining geodesic equation, it is more simple to go back

. ! .
to the metric, if one chooses the parameter o = s as the arc length. From the metric

d¢ dp\? de\?  22h2
_ 2 (49 2 _ 2 (49
1=a (ds) + a%sinh g(ds) a (ds +7sinh2§

where the conservation law derived above (implicitly taking o = s) was inserted. From
this, the geodesic equations can be written as

d¢ | sinh®¢ —ah? dp  h

ds asinh & " ds  sinh?¢

Since we require the geometric form of the geodesic, we are really looking for the
orbit, which we seek in the form ¢ = (). Hence

h inh
d—(p—d—(pﬁ—j: asinh & —j:—arccos

h
d¢  dsdg Tsinh& \sinn?e — 22p2 ¢ <\/1/a2 T h Comg)

the details of this integration will be spelled out below




This form of the orbit can be re-expressed as cos( — o) — \/ﬁ cothé =0,

which can be re-stated as Acos + Bsiny + C coth{ = 0 with known constantes
A, B, C. This can also be rephrased as

‘Asinh§cos<p+Bsinh§sin<p+Ccoshsz‘ *

Equations of this kind arise form the intersection of a hyperboloide given by
x? 4+ y? — 722 = —2°, and a plane going through the origin which is described by
ax + By +~vz =0.

recall HESSE's normal form n - r = d for the equation of a plane, with distance d to the origin

Recall that a two-sheeted hyperboloide has the parametrisation
x = asinh&cosp, y = asinh&cosp and z = +acosh &.
Inserting this into the equation for the plane produces an
equation of the form (¥*).

The figure shows an example of such an intersection.




[ Mathematical remarks on the details of the integration:

want to lntegrate do — =+ —_sinhg (it is better not to cancel sinh &)

dg S'”h2 3 A/sinh2 € —a2h2

d¢ 1 )
Y — Yo = ﬁ:ah/sinh2£ . 2 notice ﬁ = cothzf -1
- sinh2 £
d¢ 2,2 2 —1/2 . deo
= iah/sinh2€ [1 - & (coth’¢ — 1)] notice 4S9 _ _ L
de¢ ~1/2
= iah/sinh2§ [1 + a’h® — a*h* coth® 5] set u = coth€ = du= — 05~

1 h2 —1/2
= :Fah/d ah[ —:222 —U2:| set u:d;zl—thrl cosaédu:—wl;l—thrl sin ada

\/ 32h2 +1 / sin o
= = t«

2h2 + 1 sina
1 h
= Zarccos | ———coth{ | = *arccos | ——— coth¢
JAe NEerr:

as claimed. |



4. In less than 4 dimensions, the Riemann tensor admits simple forms.

Write down simple explicit expressions for the Riemann tensor in

d = 1,2,3 dimensions. How many independent components of the
Riemann tensor do you find in each case 7

Hint: for d < 4 the Riemann tensor can be expressed uniquely
through the Ricci scalar R and the Ricci tensor. Use the known
symmetries of the Riemann tensor

R,ul/)\a = R)\U,uu , R,uu)\o' = _Ru,u)\a = _R;wa/\ , R/L[V}\O‘] =0

(4)

' In empty space, the field equations of gravitation are R, = 0.
What follows about gravitation in empty space ind =2 or d =3
dimensions ?



Solution:

a) d = 1: the Riemann tensor has a single component Ry111 = 0 because of

the symmetries. BS" a/| 1D spaces are flat.

(b) d = 2: the Riemann tensor has a single independent component. One can
take into account the symmetries and write the Riemann tensor in the form
Ra,Bwé = (ga'ygﬁé - gaégﬁv)r

with a scalar r.

Verifying the first three symmetries in (4) is obvious. For the last one, the Bianchi identity, consider

1
Ratsrs) = 3(Rapys + Rayss + Rasps)
r
= g(gu'gm — 80583~ t 8as8y5 — + — gargs3) = 0

We now compute the Ricci scalar
R=RYus = (8%8" — 858 a)r = (2-2-2)r=2r
so that we finally have

—

Roaﬁ’y& =

5 (ga'ygBtS - ga6g57) R




(c) d = 3: The Riemann tensor has 6 independent components. Since in 3D,
the Ricci tensor R, = R, has 6 independent components as well, one may
try to express the Riemann tensor through the R,,. First, the following
ansatz takes the symmetries into account

Rpu)\a = A(g,u)\RuU - gz//\RuJ - guJRy)\ + guaRu/\)
+B(g78vo — uo&n) R
where the constants A, B are to be found. (the second line is the same as in 2D)
By contraction, one obtains
RMV,LLU = Ry

= A(3RW — R —Roo + g,,gR) + B(3gyg — gw)R

= ARy, +8oR(A+2B)
This gives A=1and B = —%.
for a check, contract once more: R = AR(l + 3) +BR2-3 = (4 -1 — % . 6)R = (4 — 3) R.
* In empty space, the Ricci tensor vanishes R, = 0 (hence R =0 as well).
Therefore, the 2D /3D full Riemann tensor vanishes in empty space

= | no gravitational force in empty space ford =2 ord =3 !
¥ long-range gravitational forces across empty space need d = 4 time-space dimensions



5. In the rest frame of a perfect fluid with (proper) mass density p
and pressure p the energy-momentum tensor has the form

T =

O O oD
o OoOT O
oOT O O
T O O o

—

(6]

~

Find the energy-momentum tensor for an element of the liquid
with proper mass density p and proper pressure p, which moves
with the four-velocity u.



Solution:

In the rest frame, one has explicitly assumed here: cartesian coordinates
p 00 0
0 p 00
T =
00 po
00 0 p

In addition, one has u® = 1, u’ = 0, with i = 1,2,3. This suggests to propose
the form
T = pg"” + (p+ p)u*u”

* this reduces to the known expression in the rest frame, where gh¥ = np#v.
* the proposed form is generally co-variant.

Hence, by the principle of general co-variance, it will hold in general, for all
coordinate systems.

N.B.: ermoglicht auf sehr billige Art, T#" in nichtkartesischen Koordinaten explizit hinzuschreiben,

(nehme das Ruhesystem !) sobald man nur den metrischen Tensor g#¥ in diesen Koordinaten kennt



Série 4



1. Show that the gravitational force on a test body inside a
gravitating hollow sphere vanishes.

Hint: Birkhoff's theorem states, that the Schwarzschild metric is a
solution of the field equations K, = 0 in the case of spherical
symmetry. Can such a solution have singularities in the inside of a
sphere 7

You may remember an analogous result in Newton's theory of
gravity or else in electrostatics.



Solution: ] ] '
Because of the spherical symmetry, Birkhoff's theorem states that g, must

be Schwarzschild metric
1
ds® = — <1 — ‘@> de? + (1 — ‘?) dr? + r?dQ?
r

where df2 is the element of the solid angle.

If #Z # 0, the solution has a singularity at r = Z (% plays here the role of an
integration constant). However, singularities are physically inadmissible, since
one is in the interior of a sphere,without any masses. Hence % = 0. Then

the metric must be
ds? = —dt? +dr? + r2dQ?

which is the flat Minkowski metric. Since the corresponding Riemann tensor
vanishes, there is no gravitational force.



2. Mathematically a curved (‘Riemann’) space in d dimensions has
a constant curvature, if the Riemann tensor R, . can be expressed
as follows through the metric tensor g, (with det g # 0):

R,uu)ui =K (g;Mgzzn - gungy)\) (1)

where the constant K describes the constant curvature. Show that
the Ricci tensor has the form

RMV = gUTRauTV = K(d - 1)guu (2)

Can one make a statement about two-dimensional spaces (d = 2) 7
Hints: g7 g, = d. Recall the general form of R, for d = 2.



Solution: ) )
A direct calculation gives

Rpu = gUT Rau’ru
= KgJT (gUTg;w - gauguf)
= Kdguw — Kg,gur = K(d — 1)guw

If d =2, we had from a previous exercice that R,g,s = g(gowggg - ga(ggg,y).
Comparison shows that K = %R. A conformal transformation can be used to
make R = cste..

Hence, for d = 2 any space is conformally related to a Riemann space of
constant curvature.



3. A detailed study of the mouvement of galaxies, far from earth, has raised
interest in the following variant of Einstein’s field equations

1
R — ng,R +Agw =—kKTw , Ki=——5 (3)
where A is called cosmological constant. G is Newton's gravitational
constant.
a) What is the dimension of A ?
b) Show, via a convenient contraction, that the Ricci scalar R = kT + 4A
(here T := T}) and derive from (3) the following alternative form of the field
equations
1

Ry =Nguw — K (T/w - Eg,w T) (4)
c) Without external sources, that is for T, = 0, the flat Minkowski metric a
solution of the field equations (4) ? Compare the field equations (4) without
sources with the form of a Riemann space with constant curvature, as derived
in a previous exercice. Can you interpret geometrically the cosmological
constant A 7



d) In the non-relativistic limit the component ;. = v = 0 from eq. (4)
reproduces Newton's equations. Show that for A 7 0 one obtains a
generalised Poisson’s equation

A¢p+Nc? = 4nGp (5)

where ¢ = —%2h00 is Newton’s gravitational potential, g, = mu — by + ...
and A denotes the usual Laplace operator.

e) Show that for A # 0 one has phenomenologically an additional force

Fp = %/\c2r in the distance r from the centre of the force. For which class of
objects would you expect measurable effects of the constant A 7

Hint: in 3D spherical coordinates the Laplace operator reads

Af(r) =1 & (rf(r)), for the case of a spherical symmetry.

rdr?



Solution:
(a) Since R,,,, contains two derivatives = A has dimension [length~2].

(b) From (3) have R, = 1g,,R — Agu, — kT, Contracting, one finds
R=R',=3-4R—4N— kT, or R=4AN+kT. Insert this into (3) and find
Ry = %gw (4/\ + “T) —Nguw — KT = Nguw — “(Tw - %gw T)

(c) The Minkowski metric is solution of R, = 0, which is different from (4) with
A#0and T,, =0. In a previous exercice we have seen that for spaces with a
constant curvature R, = K(d —1)g,,. Comparison gives A = 3K. In the absence
of sources, the resulting space has the constant curvature K = %

(d) In principle, it is enough to repeat the calculations for obtaining the
non-relativistic limit from the lecture. For clarity, the main steps are repeated here.
The newtonian limit is a weak-field limit where one sets g, = 1, + hy, with h
‘small’. In addition, as ¢ — oo, one expects 7 =~ t, %—f ~ ¢, fi—XT' ~ %’ =vi<ec.
Furthermore, this is a static approximation where the potentials are
time-independent. The three spatial geodesic equations become

d3xf d3x’
dt? dt?

which begins to look like a newtonian equation of motion.

+PTh(1+0(1/c)) =0 =

= —c2r50 = a' acceleration



One must now work out, in the static approximation and to linear order in h:

. 1 . 1 . 1 . 1_.
Moo = Eg’”( 28,00 —8oo,w) = — =8 gook ~ —Eﬁlkhoo,k +0(h*) = —Ev'hoo

2
=0
This gives the equation of motion ‘(‘12:2 =Ty = C;V"hoo and should be compared
. . . 2,0 H . e .
with the newtonian equation %T); = —V'¢. One identifies the newtonian
gravitational potential | hoo = — 3¢ |, or goo = — (1 + 56).

In order to find the newtonian limit of the field equation, consider again
2
8w =M +huw = g =n""—h"+0(h%)
[tO see this: g,“,g”ﬁ = (77/,“/ + h;u/) (nyﬁ - hun) =~ n[LVnUK — n[LVhl/K: + h,uVT]wﬂ + O(hz)

=81 — hit + h = 6%]
Then

1 1
rﬁ) = Egup (gpl/,)\ + Bpi,v — gu/\,p) ~ Enup(hpu,)\ + hp/\,l/ - hu/\,p) + O(hz)

which itself is of first order in h throughout.



Recall the computation of the Ricci tensor

Ruw = T —Thnw Tl —To T,
—_————
=0(h?), negligible
1 ag
= EnH (hou,;m + huk,ov = Puv,or — hm,w) + O(hz)

Concentrate on the component y = v = 0 (use the static approximation !):

1

Roo =~ Enﬁa(hao,o,g-i-homao —hoo,or — how,00 )
——— ——— ——
- =0
1 1 1 0 1
oo = —= |~ L 42 | b = — =2
5" oo, 5 2 e + 00 > 00
=0

Next, in the newtonian limit, the energy-momentum tensor of matter is 7+~ =



The field equation (4) now takes the form
Roo = —=¥2hoo = —V26 - Agno — 12600 = —p — A
00 = "7 0= "2 = \8oo 5000 = 2P

which gives the ‘newtonian’ form

V%+A8:fggp
For A = 0, this should reproduce the newtonian equation V¢ = 4w Gp from which
the  given in the problem statement (3) follows. The full field equation in the
newtonian limit is

’V2¢+/\C2 =4nGp *)

N.B.: for the sake of comparison with the litterature, we have kept the c ...



(e) On phenomenological consequences: (*) is linear, hence just consider the extra
term coming from V2¢p = —A.

1d? d? 1 3
= ;ﬁ(rd)/\(r)) =-N = ﬁ(rqzﬁ/\(r)) =—Ar = roa(r) = —T?)Ar
such that finally ¢a(r) = —%r2. The corresponding ‘cosmological force’ is
Fa(r) = _Ldg\r(') = 1Ar.

Since A ~ 107°2[m~2], there is a corresponding length scale A=1/2 ~ 10%[m]. In
astronomy, an often-used length scale is the light year, which is of order

1[1ight year] ~ 1016 [m] (which is distance a photon travels in one year). Hence

A~=1/2 ~ 10'light year] which is the order of magnitude of the radius of the visible
universe. Effects of the ‘cosmological force’ should be seen in considerations of the
behaviour (e.g. expansion) of the entire universe — and next, one might consider

effects on the mouvement of clusters of galaxies which occur at scales at the order of
108[light year].



4. At the surface of a pseudo-sphere P2 one has the metric
ds? = g, dx"dx” = a° (dx2 + sinh? qu52) (6)

where a is a fixed length scale. Is P? a curved space ? Compute
the Ricci scalar R as a function of a. Do you see a property in
which the pseudo-sphere P? is distinct from the usual sphere S ?
Hints: The Riemann tensor R and the Christoffel symbols I are
given by

RI;[U/ = I;\V,u - rl;,u,,u + rl;,ur/))\y - rzuriu
1
rl,j)\ = ig,up (ng,)\ + o v — gl/)\,p) (7)

How many independent components the Riemann tensor does have
for P2 7 The Ricci tensor is Ry, = R}, and the Ricci scalar
R=gM"Ru = R}.



Solution:

One has the metric, with (x}, x2) = (x, ¢): ds? = a%(dx? + sinh® x d¢?). The
metric tensor is diagonal, hence using previous exercices one readily has the
non-vanishing Christoffel symbols

11 90 1
r, = —-— = ——-1-2sinh hxy = —sinh h
2 281 anzz 5 sinh x cosh x sinh y cosh y
1 1 0 1 2sinh y cosh

822 3)( 2 sinh?y

Since P? is two-dimensional, there is a single independent component of the
Riemann tensor, for example

Ry, = r%2,1 - r%1,2+r}1r'22 AR

0 . ot s
— 87 (_ sinh % cosh X) _ r%z rgl N.B.: all terms not spelled
X

= —cosh?x — sinh® y — (f sinh x cosh X) coth x

out explicitly here vanish !

= —cosh?y —sinh? y +cosh? y = —sinh®>x #0

Since R}, # 0 = P? is curved



1

2 s 2
ma (-Slnh X) :—1#0

R1221 = g22g11R2112 =
N.B.: one might have found R%; directly as well
R = r%1,2 - r%2,1 + ol — AT,
= —%(coth x) — il

_ sinh? x — cosh? x

= W — coth? X
= —1+coth2x—coth2x = -1
One computes the Ricci tensor
R = R:{n = R1221 =-1
Ryy = Rij,=R},=—sinh’y

N.B.: for illustration: Ri» = Ri, = Ri» + R%, and
1 1 1 1 1
Rip =T1p1 =T+ Tl — il =
2 2 2 2 i 2 i
Rizy =T12p — T2+ Tl — Mol = 0

|
o

as one might have anticipated from the symmetries of the Riemann tensor. = R, = 0.



Finally, the Ricci scalar is

1

2
s 2

1
R=g"Ru +g22R22:?(—1)+ 2

R is non-vanishing, of dimension [length=2] and negative. This last property is
distinct from the usual sphere 52, where R = +35 > 0 (see lectures).

We also note the matrix forms of the metric and Ricci tensors:
B a2 0 R _ -1 0
=0 2 sinh? y T 0 —sinh®y

Hence, | R, = f%gm, . The pseudo-sphere P? is a space of constant curvature K.

N.B.: Indeed, it is known from a previous exercice that in 2D spaces with constant
curvature K = %R — in agreement with the explicit results found here, where

1 1
K = —% = 5R, see eq. (R).

A the calculations here are for geometric spaces and not for Minkowski time-spaces !

Theorem: (HUYGENS) The surface area of P? is 4wa® and its volume %wa3.

Theorem: (HILBERT) It is impossible to embed P? into the euclidean R3.
Theorem: (WHITNEY) For any manifold with dim .# = m < J there is an embedding f : ./ — R".



