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Summary of previous results on curved geometry

distances are measured through the metric tensor ds® = g,,dx?dx”
the components of the metric tensor given by base vectors e;:

8ab ‘= €3 €p = Bpa
geodesic: shortest line between two fixed points of space

H i . , b .
derived from a ‘Lagrangian’ L = gab%% with o: arc length
leads to geodesic equation, with x? := dx?/do and A ,, ;= dA/dxH

; e 1
X0+ T \x =0, Moy = ng’u (8unr T urs — Goau) = T4,

the I'”, are the Christoffel symbols

Theorem: Locally, one can find a new coordinate system x — X such that
g—ab()_() - 5ab + ’Yabcd)_(c)_(d +...

IS” curvature effects are described by objects beyond the Christoffel symbols



tensors have the most simple possible transformation behaviour under a
coordinate change x* — x'#

. m
a contra-variant vector transforms as V# — V’“ = ‘9’(,, vy

a co-variant vector transforms as V), — V= 2V,
a tensor of level ([) transforms as

yuh e o1 Or
Tty _ Ox Ox ox Ox proapr

— . .. T
ALy As OxP1 OxPr  Ox'M 6X/)\5 01...0s

vectors are tensors of level ((1)) and ((1)) The metric tensor gy, has level (g)

If D = det %f(l,/ is the jacobian, a tensor density of weight w transforms as

p1 Tpr 01 or
GlHLr =W Ox Ox _ Ox ox Sp1pr

AL As OxP1 OxPr Ox'M o 3X/)‘5 01...05

for the metric tensor g’ = detg[w = D~2g. With the volume element

dV = %&dex"dxAdx“dx” one has the invariance relation

(xapw is a tensor density with w = —1)

Ve dV' = /g dV

N.B.: in Minkowski space this becomes \/—g’ dV’ = /=g dV.



3.6 Co-variant derivative

N.B.: ortho-normal basis vectors e, = e, (x) are position-dependent !

Definition: The connexion js given by

A _ BmooA
ove, =,,ex , el = —v e

v o __ v
e, -e 76,"

the signs are correct 0 = 9, (e, - €~) = e, - (8ve") + (Bvey) - €~ = ey - (—1)y5,e° +0,ep - €°

Example: for a vector V, have components V¥ = et . V

= V= €' (0V) + V- (9,e")
transform;,as a tensor  spoils tensor properties
explicitly
Ox™ Ox'™ X'
AR T (aVr e
v oOx'V OxP ( A ) + ox"Voxr

transforms as a tensor spoils tensor properties

N.B.: the wﬁ‘y are not the components of a tensor



how to correct the transformation properties of the derivative
(1) for a scalar q), all is weII, since no basis vector is needed

ox*
0u® = 30" = 2000
(2) a vector V does not depend on a basis
ox
oV = V= axluakv
x> ox" Ox*
7Y _ alv — P
e’-9,V=e 8x’ﬂa’\v_ v 8x’ﬂe N4

= e” -0,V transforms as a tensor.
Definition: The co-variant derivative of a vector is defined as
vV .__ .U
D.,V":=e"- -0,V

rewrite as D, V¥ =9,VY -V - (6He”) =0, V¥ + ’yZ)\eA -V
in components, the becomes finally

DuV" = V"= V" y+ i VA = 0u V7 + i, V2




similarly, one write co-variant derivatives of more general tensors
contra-variant vector D, V" = V¥, = V¥ , + v/, v = OV + %

co-variant vector D, V, = V.., =V, , — fyli‘u Vy =0,V — ’)/Ii‘u Vi

and for a general tensor of level (/)
H1..-Mr _ H1---fr
Dia ., = DO,
+ ’yﬁllp T;\’ll“ 2)\5“ "+ further r — 1 terms, one for each upper index
K1 THL---Hr _ 3 i
Yaap Tm Moo further s — 1 terms, one for each lower index

* The metric tensor has the important property
Proof: start from g,, = e, -e,. Then

g = Opleu-e) = (Jpeu) e +e.-(0,e))

K K
= /}/pp‘elﬁ - ey + ’Ypuellz - €,

Hence, Buvip = Buv,p — V’p{pgﬁu - ’nggun =0. QED



Theorem: One has the identity |}, =,

5" The Christoffel symbols and the connexion are the same.
Proof: this is a consequence of the property g,...» = 0. Write it three times

Buvix = a/\g,uu - 7§#gpu - 'Viygup (1)
Sy = augA;L - 'Vgxgp# - 'Vﬁug)\p = aug)\,u - ’75)\gup - 'VﬁugpA (2)
—8vxp = — a/igu/\+ 'YZugpA+ 'YZAgup = - augvAJr ”YﬁygAer ’YZ)\g/N/ (3)

Take the sum of these three equations, and also recall symmetry 7,), =7,

8/\g;w + augku - augu/\ - 27§Vgup =0
1
= ’Yf)u = §g>\p (0v8up + Ouup — Op8uv) = r;}u
according to the definition of the Christoffel symbol. QED

From now on, we shall write for the co-variant derivatives
A A
Vi = Vi — FW Vw, V. y=V",+ FW Vi

andsoon ...



Theorem If at a point P, one has coordinates x* and the
metric tensor g, then there exists a transformation x* — X" such that

Bu(X) = 6 + Vv XO% + ...

Proof: consider the transformation (x are called ‘geodesic coordinates’)
X“:f(“—lr”’ x”x)‘—i— ax“—aﬂ—r“ P
2 T oxv vA
and also expand g, (x) = gu,(0) + gW,A(O)XA + .... Write the metric tensor
_ Ox OxP
guw(X) = @ﬁgAp(X)

1

<5ﬁ — rﬁaxa) (55 - 25) (82p(0) + grpX7) + ...

= £u(0) + |guia(0

) -
= 8uw(0) + guwa(0) X
=0

,uag)\u(o) - ré\zugli)\(o) XY+

hence the first non-vanishing terms are quadratic in the X®. Since the matrix
guv(0) is symmetric, it can be diagonalised via an orthogonal transformation.
A change of scale in the X* achieves the form g,,(0) = 6, QED



3.7 Parallel transport
when are two vectors U, V parallel

(a) euclidean plane
are the vectors U, V parallel 7

to decide this, try to translate V, without
/ / changing neither direction nor orientation, such
that becomes identical to U

IE" since this works, the plane is flat

(b) sphere

after parallel transport, the initial vector V; and
final vectors V¢, after a round trip from A via N
and B back to A, need not be identical: V; # V¢

IS" effect of curvature of sphere

V¢ rotates by angle £ with respect to V; = ¢ = Ko o: surface
K: curvature

Source: wikipedia



we now turn to a quantitative analysis of this phenomenon

make a parallel round trip in
the loop ABCD

x'=a+da
observe the difference between
the initial vector V; and the
final vector V¢

2_
X?=b+38b xX'=a

Source: Ryder, General Relativity, (2009)

(i) for a scalar

do(x) — im d(x + Ax) — d(x)
dx AJ(—)O Ax

involves the difference of ®(x) at 2 positions
= parallel transport of scalars will work



(ii) for a vector, this is more complicated

dV* = lim (V*(x + Ax) — V¥#(x))

Ax—0

there are 2 contributions to the change of V# =e# . V:
() V changes with the spatial position as for the scalar

(B) the frame e* changes

Avﬂ|t0tal = AVlu‘true + A\/M|

coord.

dV#* = DVH —TH V¥ dx?

the form of the second term follows from the definition of the connexion

Definition: A parallel transport is such that .

for a parallel transport, the change in the components V# only comes from the coordinate changes



Consequence: consider parallel transport along a curve x* = x*(o)
one has 0 = DV# = dV#* + T vVVdx*

take derivative with respect to arc length o

DVv# dv# dx?
- - Moy
0 Do do Tl do
() dxd
~ do \ do A do do

where we identified V#* = % with the velocity along the curve

1¥” we recover the geodesic equation for the curve x* (o)

geodesic curves are not only the most short curves between two fixed
points, but also the ‘most straight’ curves possible



Returning to a round trip along a loop, how to interpret the result of a
parallel transport

* for a sphere: angular excess ¢ = Ko, with o surface, K: curvature

eV

* general case € = % G
= dV =eV = KVo & 7

gives the structure to look for A "}I

€
* tensor of a surface: in 2D have vector o0 = AA B = oy = ¢k AiBj
write instead a tensor, as follows

1

ol =gy = e,k A"B™ = —(A'B/ — B'A)

N |

I¥” extend this definition from 2D to any dimension

o =L (ArB?P — APB*)

N




finally return to the round trip along the loop ABCD

the infinitesimal change of the vector is
SV" = —T§, VAoxH

collect the contributions of each segment

Source: Ryder, General Relativity, (2009)

VE(B) — V5(A)
VE(C) = vH(B)
v*(D) - V*(C)

VE(A) = V*(D)

- / FV A = / § VX!
x2=p x2=h

- / §V et = — / 5, VAdx?
xl=a+da xl=a+da

+/ ’;MV)‘dx“ :/ 5 VA
x2=b+6b x2=b+6b

+/ N VAdxt = / 5, VAdx?
xl=a xl=a



finally: return to round trip along the loop ABCD
the infinitesimal change of the vector V" is

SV" =I5,V oxH

collect the contributions of each segment

K
Source: Ryder, General Relativity, (2009) Then the total change of V" becomes

AVH

12

12

VE(A)r = VE(A)

e[
xl=a+da xl=a x2=b+6b x2=b
—/ 6201 (M5, V) dx? + / 5b 0o (T V) dx?t

xl=a x2=b
(5361) |:_8]_ ( §2 VA> + 82 (r§1 V)\)i| since infinitesimal parallelogramme
6a6b | (M + Maa) V3 = M VAa + Th V2|

§abb [51 5 — Mo + Malhy — M) VA



Summary: the analysis of the round trip along the loop ABCD has shown

that, in general

1
AVE = §5xl‘5xl’ M5, — T, + rgl,l'ﬁﬂ — 5. VA

1
= 7RI{)\,H,V V)\U#V

2

where R",,,, is the Riemann tensor

K _ Ik kK K TP _ Kk TP
R /\/w—r/\u,v Au,u+rpl/r/\u rpurx\u

1. from the quotient theorem, Ry, is a tensor, of level (3)
2. ‘ R\ # 0 < space is curved

3. R depends on g, and its two first derivatives

= ’ R is the central quantity to study for curvatures‘




Properties of the Riemann tensor
1. an alternative formulation [D,, Dg]V* = R#y,5V*
2. symmetry relations
(a) RN,\MV = —Rﬁ)\,,u follows directly from definition
(B) rewrite as follows Ry = 8epRP A
we have seen above that one can always go into ‘geodesic coordinates’ such that F';M =0
in geodesic coordinates Ry, = I";MV — ir/,u
recall that ' u 2g“”(gp>\ vt 8pvan — g)\,,,p#)
and one can show that

[y

R/‘i)\ul/ = E (gmt)\u — 8k, A + By — g)xu,/iy)

this gives the following symmetry properties

Rn)\;w = _R/@)\V;L = _R)\mw = R/ﬂ/ﬁ)\
3Rli[>\p,l/] H}\/,Ll/ + RI'{/LV)\ + Rnu)\u =0

N.B.: These are co-variant statements. They hold for geodesic coordinates.

= hence the symmetry properties are valid for all coordinates.



Consequence of the symmetry relations:

* without any symmetry, the tensor R has 4* = 256 independent components

* the antisymmetry in the first two and the last two indices, respectively:

each of those blocks has 6 independent components

* rewrite R in terms of the blocks: Ry, = Rag, with A,B=1,...,6.
since furthermore Rag = Rga, R can be viewed as symmetric 6 x 6 matrix,
which has 6 - % = 21 independent components.

* one further constraint from the last symmetry condition: 21 — 1 = 20

in d = 4 dimensions, the Riemann tensor R has 20 independent components

Theorem: In d dimensions, the Riemann tensor R has i5d?(d? — 1)
independent components.

*if d =2 ™ one component p.ex. Rla1
*if d = 3 6 components
*if d =4 20 components

Definition: (i) The Ricci tensor is R, := R’ ;,,, = 8" Roppy = Rup.
(ii) The Ricci scalar is R := g’ R, = R",.



Example 1: the 2D plane

(a) plane R?, polar coordinates ds? = dr? + r?d¢?, hence x* =r, x*> = ¢

we already know that I3, = 3, = % M, =—r and all other s vanish
Rappel: R*\., =T5%,, -5, + I';,,I";H —re.re,

only independent component of Riemann tensor

Rl = 501 — 310+ Mhlh — Thlhy
0
= 5(—r) - r%2r%1
1

= —1—(-r). = -1+1=0

indeed, the plane R? is flat, as expected.



Example 2: the 2D sphere
(b) sphere S2, spherical coordinates ds? = a2 (d¢? + sin? 6d¢?),

hence X1 = 0, X2 = ¢ a: radius of the sphere
we already know that I3, = —sinfcosf, 2, =T3, = cot ...all other [s vanish
1 1 1 1 1ri
Ro212 = r2271 - r21,2 + ri1r122 - ri2r’21

0 .
= %(— sinf cos ) — 3,15

= —cos?f+sin0+ cotfsinfcosh = sin’0+# 0

Ricci tensor:
R = R'in=R=g”gnRmn = 2_;232 -sin’f = 1
a?sin“ 0
Ro = R'yp=R', = sin’f
Rz = Ru =20
Ricci scalar: R = g''Ri; 4+ g*?Ryp = % 14 sin20 = 2 £0
a a2sin® 0 a2

R = 2a=2 measures the curvature, independent of the coordinate choice.



lllustration: the 2D sphere S? is curved: (radius R)

for a large spherical triangle, with lengths
~ R, the sum of the three inner angles
a, 3,7 exceeds 180°

but for a small triangle, with lengths < R,
the euclidean statement on inner angles
a+ B+~ = 180° holds true

4 == the small triangle becomes
| effectively euclidean

Source: https://wuw.businessinsider.com/triangles-in-elliptic-geometry-2014-67IR=T



finally, compare the metric tensor with the Ricci tensor

_ a2 0 R 1 0
i =\ 0 2sin20 P L0 sin?e

such that one reads off | R, = % g, |

(i) both tensors are proportional !
(ii) the proportionality constant is position-independent

1¥" conditions that | S? is a space of constant curvature

Definition: For a d-dimensional space of constant curvature K, one has

R = (d - 1)K gu

where K is a position-independent constant.

1
2

Example: for the sphere 52, one has K = & = IR (Ricci scalar).
Definition: An Einstein space has R,, = \gu, with A = A\(x).

Theorem: (BESSE) In an Einstein space, a conformal transformation gives A = cste..
If d =2 or d = 3, an Einstein space has constant curvature.



Example: the 2D torus T? := St x S?
parametric representation in 3D 0,6 € [0,2m)

x=(R+rcosf)cos¢ , y=(R+rcos)sing , z=rsinf

The two constants R and r determine the size and the shape of the torus

Negativé't’uwaturg o
For R > r, the torus has a positive curvature on

the ‘outside’ and a negative curvature on the
‘inside’

Postve Curvaturé

Source: https://en.wikipedia.org/wiki/Gaussian_curvature

surface: 47rR ,  volume: 2w°r’R

Cartesian equations to describe a torus include

(\/xz—i—yz—:‘:\’)z—i—zzzr2 = (X2+y2—|—z2+R2—r2)2:4R2(x2+y2)



3.8 Field equations of gravitation in empty space

we are done with the mathematics !

Can now try to consider possible field equations of gravitation.

Begin with most simple case: field equations in empty space

what kind of equation do we want: co-variant equations of second order

* 7 can we consider the equation R"),, =0 == NO

20 equations for only 10 unknown components of g, ™ any non-trival solutions ?
such an equation would state that outside of massive bodies the time-space
should be flat ¥ ! no gravitation !

* try something else, less restrictive: 7 what about

# gives 10 equations for the 10 unknown components of g,

# R’\Wﬁ # 0 still possible

# how can one know that this is a sensible physical choice ?
15" look at non-relativistic (newtonian) limit !



Non-relativistic limit of equation R, =0
should consider case of weak field,

when metric tensor gh¥ = n*¥ — h*¥ and h ‘small’ h<1
Rl“’ = rzu,/{ - rfu{,u + r;fc rﬁu - rgurﬁn

to leading order in h

1
777’60 (hau,u + hm/,,u - h,uu,o)

1
Ffw = *gm (ga,u,u + go'y,,u - g;u/,a) = 2

2
1
R[U/ = Enna (hO'IJ,MK + hMKZ,O'l/ - hul/,oﬁ - hoﬁ,uu)

this is a static approximation, since x° = t does not enter explicitly.

Consider in particular Ryo: static case
1 1
Roo = 777,{0 ha0,0n + hOn,oO *hOO,m@ - hm@,OO = **UWhoo,m
1 1 0° 5 1_,
= ——|—-===+V°)hp = —=V-h
2 ( 2o " ) o0 2"
If one introduces the gravitation potential ¢ = ¢(r), via hgo = féd), we have

Roo = 0 implies: the potential ¢(r) obeys Laplace’s equation V3¢ = 0.




Vorlesung VII




Rappel: had looked at curved spaces

central quantity: Riemann tensor

pHt

K s K K P K P
R Apy = r)\lM/ —pt rpurAu -r r)\u

usefulness: ‘ R%\uv # 0 < space is curved

for many practical calculations, rather study
Ricci tensor: R, = R”,,, and Ricci scalar: R = R*,.
Examples: (i) the 2D plane R? is flat,

(ii) the 2D sphere S is curved

(since Ry = a%g,w, S2 has constant curvature a% everywhere)

physical importance: field equations are formulated with R, and R.
Example: field equations for empty space <, = 0.




Example: the 2D torus T? := St x S?
parametric representation in 3D 0,6 € [0,2m)

x=(R+rcosf)cos¢ , y=(R+rcos)sing , z=rsinf

The two constants R and r determine the size and the shape of the torus

Negativé't’uwaturg o
For R > r, the torus has a positive curvature on

the ‘outside’ and a negative curvature on the
‘inside’

Postve Curvaturé

Source: https://en.wikipedia.org/wiki/Gaussian_curvature

surface: 47rR ,  volume: 2w°r’R

Cartesian equations to describe a torus include

(\/xz—i—yz—:‘:\’)z—i—zzzr2 = (X2+y2—|—z2+R2—r2)2:4R2(x2+y2)



Rappel: how to obtain the newtonian limit (stationary, and ¢ — o)

The newtonian limit is a weak-field limit where one sets g, = N + hW with h
‘small’. In addition, as ¢ — oo, one expects 7 ~ t, % ~ c, % ~ ‘(iixt =vige.
Furthermore, this is a static approximation where the potentials are
time-independent. The three spatial geodesic equations become
d2x’ d2x
+cr +0(1/c)) =0 = —
dt2 00( ( / )) dt2

which begins to look like a newtonian equation of motion.

= T, =a' acceleration

One must now work out, in the static approximation and to linear order in h:

; 1 . 1 1 1_.
0 = ng( 28,00 —8oo.w) = 2g ¥ goo.k = **U'khoo K+ O(h?) = 7§V’h00
——
=0
This gives the equatioZn_of motion dftx; — —c2Thy = & V'hgy. Compare with the
newtonian equation ‘é—té = —V'¢. ldentify the newtonian gravitational potential

hoo = =3¢ | or goo = —(1+ 39).

N.B.: herein, the mass of the test particle was set to m =1




In order to find the newtonian limit of the field equation, consider again
Guv =T + h = " =n"" — 0" + O(h?)

[to see this: g;bug’/h. = (’Up,v + h,u:/)('fly'i - hum) =~ 71;14»”]’/” - nuuhum + hp,V”IVK + O(h2) = 6; - hz + h,’j = 5;]

1 1
Then: rﬁx = Egﬂp (gpu,)\ + Bpi,v — gu)\,p) = Enﬂp(hpu,)\ + hp)\,u - hl/)\,p) + O(hz)
which is of first order in h. Compute the Ricci tensor, as follows

K K K K 1 .
R,u,l/ = rHU,)ﬁirulﬂJ/Jr rperu - rpurfug = 577 (hou,un‘khum,al/*h,u,u,o'nfho'n,,uu)+O(h2)
=0(h2), negligible

Concentrate on the component y = v = 0 (use the static approximation !):

1
Ro 2 =1"(hoo,0x + hox,c0 —ho0,0x — hor,00 )
2 —_——— —
= _Lyon S i 192 | hoy = — 292
= 51" hoo.or = —3 = o 00 = —5V7hoo

= The vacuum field equation Ry = 0 reduces to LAPLACE's equation V2¢ = 0.



4. The Einstein field equations

4.1 Equivalence principle and general co-variance
Equivalence principle: At each point of time-space with a gravitational
field, one can find a local inertial frame such that the laws of physics are

those of a non-accelerated cartesian frame.

Principle of general co-variance:

A physical equation holds under the influence of gravity if

(1) it holds without gravitational field (and is consistent with special relativity)
(2) it is co-variant under an arbitrary coordinate change x +— x'.

not required: that velocities, accelerations are eliminated from the equations (as in special relativity);
one rather uses gy, F/Aw, ...to describe the effects of gravitation

this is a dynamic symmetry, rather than an invariance principle

analogy with gauge invariance in electromagnetism

= look for equations of the form
ALty e = B

A, B are tensors of level (;) BF” such equations are automatically co-variant |



4.2 Gravitational field equations

in empty space R, = 0, must find coupling with matter how
Example: take a cloud of slowly moving dust particles (no interactions).
At rest, this cloud has energy density pg = mgng, where mg: mass of a dust
grain; ng: number density (# particles/volume) of dust.

If cloud is moving with velocity v, find from Lorentz transformation

mg — m6 = 7YMg transformation of energy E = moc?
no — ny=yng

/2
transformation of inverse volume } = Po — Po =7 Po

— Lorentz length contraction

IF" po transforms as component T% of a tensor T+

Definition: The energy-momentum tensor TH” = T"# is of the form

PO Sx Sy Sz po : energy density
T _ | Tx Gx Gy Gy S : energy current density

T, Gy Gy Gy, " @ : momentum density

Tz Gx Gz Gy Gjj : momentum current density
if Gix = Gyy = Gzz = p, then p is the pressure. s = 7 PLANCK, POINCARE

conservation laws 9, T*” = 0 give the energy- and momentum-conservation laws.



we restrict here to clouds of non-interacting particles (‘dust’ in astronomy).

Proposal: if u = l% is the four-velocity, and po(x) the matter density

’ TH = ,ogu“u”‘

* Since 4t =y = (1 - %)%, find T% = po(&)°= por? = p
hence T% describes the matter density i ina moving frame

* 0i _ _ podx®dx’ _ 7%p v/ P ad
Similarly T‘ = pou®u’ = S =18 =p% and vi=dd
Tik_@dx’dx _vivk

T c2dr dr T c2
the energy-momentum tensor of dust has the form see exercices
Vx Yy Vz
1 C2 Cc Cc
Yx Y Wy  wxVz
uy c c2 c2 c?

T =p vy Vx Vy Lf VyVz
c c c? cg
Vy Vx Vg Vy vz %
c c? c? c?

if N.R. limit ¢ = oc0: THY — TOO ~ P = pPo (the only non-vanishing component)




* let us verify & physically interpret the conservation law 0, TH = TH , =0

# for p = 0: this reads 7—0070 + TO"7,- =0or

10 10, .

ga(ﬂ)ﬂLgaxi(P‘/) = 0
ap B

= 8t+v (pv) = 0

I¥” identify energy density p and energy current pv
# for p = i: this reads T"o,o + T"jd- =0or

la Vi _A'_ii VJ — 0
cot p 20 \PY -

9 i
= a(pv)—i—V-(pvv) =0

¥ jdentify momentum density pv’ and momentum current pv'v

continuity equation in a volume Q: change in the conserved charge only through transport, via current across boundary 9Q

I¥” co-variant conservation law holds at rest
' is generally co-variant



Construction of the Einstein field equation
Lemma (Bianchi identity): The Riemann tensor obeys the identity

Ruupa;k + R'uuo)\;p + R#V)\p;a =0 (BI)
(A) A first attempt: try the ansatz k= cste.
Ruw = kT

cannot work, since T#”., =0 but R*¥., #0
to see the last point, take in (Bl) u = p and contract

RVG‘;A + RMVG’)\;,U, + R‘uu)\y,;cr =0
————

=—Ruxo
= R;)\ - RM)\;,u, - Rg)\;o' =0 after contraction with g¥“
= 5”)\R;pf2Rp/\;p=0
1
= R/’A.p = —R,
; 5
Definition: The Einstein tensor is GM¥ := RM — %g“l’R. GHr = vk

¥ co-variant conservation law m )



(B) A second attempt: try the improved ansatz EINSTEIN 1915

1 831G

with G: gravitational constant. T hese are KINSTEIN’S field equations.

Controles:
(i) set of 10 second-order PDEs for the 10 potentials in g, = g,
(ii) co-variant conservation law consistent G*”., = 87;—26T‘“’;V =0
(iii) does reproduce vacuum equation: T,, =0 = Ry, — %gw,R =0
but g#* R, — 3 g"“gu, R=R—-2R=0= R=0 hence R,, = 0.
N— —

=4
(iv) non-relativistic limit, should reproduce Newton's theory:

as before, from (E): R — 2R = Etrfzcg“" T.v, hence R = —782—2Gguy Tl“/ =: —87CTQG T
write alternative form of Einstein's field equations T =gV T,,
8rG 1 ,

R = 7(T,W — 8 T) (E)




8rG 1 ,
R;w = 7(7—“1/ - Eg;w T) (E )

* to carry out the non-relativistic limit, have for ‘dust’

1
THY ~p +0(c™h)

0

therefore T ~ —p and TH — %g””T ~ 55“’”

* On the other hand, consider weak-field case gy, = 1, + hu with |, | < 1
such that g = 7 — h* and g"*gw, = 8 — hl + hi} + O(h?) = &

* we have already seen before that Ry ~ —%Vzhoo — év%

* finally, (E") for 1 = v = 0 reproduces Poisson’s equation %V?¢ = 82¢ 2
V24 = 4rGp
where ¢ = —%hoo is indeed the newtonian gravitational potential.

This justifies the choice of the constant in (E,E’).



Gives the following scheme for field equations of gravitation

‘ Newton Einstein
. . 20 i 2 v )
equation of motion | 9% = —V'¢p 5 4 TH ECdE —
field equation V3¢ =4rGp G, =5£T,,
source mass density energy & momentum

the newtonian theory is the non-relativistic limit (¢ — oo) of Einstein's general relativity

“Time-space tells matter how to move;, matter tells time-space how to curve.”
WHEELER 1973

N.B.: the equation of motion is the one of light ‘test particles’ which do not curve the

time-space themselves.



4.3 Schwarzschild solution (1916)
gives the most simple of the non-trivial solutions of the Einstein equation
look for solution of the vacuum equation R,,, = 0, around a gravitating
spherical shell at rest — sun at rest in the centre of the solar system

static system: g, independent of x°
hence ds? invariant under x° — —x® = go; = gijo = 0.
because of spherical symmetry, have ansatz

ds? = —U(r)c2de® + V(r)dr? + W(r)r*(d6? + sin® 0d¢?)

where U(r), V/(r), W(r) are to be found.
*in general, can always arrange for W(r) = 1.

to see this: | general co-variance = coordinate r is just a radial parameter !‘

set W(r)r =:1p? = p=rvW = 2 =VW (1+ 559
Vv aw 2 . _
V(rydr = = <1 rr> dp? =: V(p)dp? and U(r) =: U(p)

at the end, relabel: p— r, V(p) — V(r), U(p) — U(r).




the ansatz has been reduced to the form
ds® = —U(r)c*dt® + V(r)dr? + r?(d6? + sin® 6d¢?)
* new notation: U(r) = (") and V/(r) = e**("). The ansatz becomes
ds? = —e?(0c2dt? 4 e2dr? + r?(d6? + sin® 0d¢?)
have diagonal metric with metric tensor
8 = diag (—e2”,e2)‘,r2,r2 sin? 9)
g’ = diag (—e72l’, e r 2 r2sin7? 9)

Herein, the two functions v = v(r) and A = A(r) are to be derived from
the Einstein equation R,, = 0.



g = diag (—e®,e*, r? r’sin’0)
g’ = diag (—e72”,e*2)‘,r*2, r~2sin"?2 0)
* work out Christoffel symbols from diagonal metric tensor o
in genera|: r;o. == %gh[ (ng,O' + Buop — ng'.,L) see exercice
1 1 1 _,,0 _
rl, = 5g1b(2gm70 — go0.) = 7515),11{9,00’1 = e 2’\5(7.92”) — 222
rgl = r(1)0 =
r%l =\, réz = —re , F§3 = —rsin® e
1
2 2
M = I5 = I'i,, = rgl = P
F§3 = —sinfcosf
B, = I3 = cotd

and all other ' = 0.



* the Einstein €q uations are do not confuse the index v with the function v = v/(r)

Ruy =0 =T, T T, — T8, =0

L,k IR pr! pv ov! K
for example
Roo = T — om0+ Toxloo — Mol 0
= rtl)o,l + 5T — (rior& + Fﬁoréo)
_ %(V'ez”_Q’\) + /=22 (u’ + N+ f) - 2(y/)262u—2/\
= 20+ VU + 2V /r)

* this gives the components of the Ricci tensor & Einstein field equations

2
Ro=0 = /' +/°—/\N+ ;V/ =0 (A)
Rii1=0 = " + v =+ g)\/ — l//2 =0 (B)
r
Rp=0 = —1—r/+rXN+e=0 (©)

and also R33 = Ry sin? 6 and all other R,, = 0 for p # 0.
1¥" have three equations (A,B,C) for two functions v, A



have three independent equations

2
Ro=0 = v'+/°—v/N+ ;1/ =0 (A)
2
Ri=0 = —/"+u/N+N-v?=0 (B)
r
Rpy=0 = —1-—r/+rN+e*=0 (©)

* solution of these equations:

# add (A) and (B): 2(N +1/) =0 = A(r) + v(r) = cste.
for r — oo expect return to Minkowski metric, hence A(r),v(r) — 0 = cste. =0
= have \(r) = —v(r)

# from (C): (L+2r/)e® =1 = (rez”)/ =1=re®=r—-2m

with the final form . I

# inject this solution into (A,B) and check that it also solves these.

. -1
* have for the metric tensor ggg = —( — 27’7’) and g11 = ( — 27’") .

however, for weak gravitational fields, we know already

comparison gives m = GC—’;/’ = %%’ with Z: Schwarzschild radius



the final result gives the (outer) Schwarzschild metric

-1
ds? = — <1 — %) c2dt? + <1 — %) dr® +r? (d92 + sin® d¢2)

* depends on the length Z = 2le\/’, M: mass of central object

x exact solution of Einstein equations, valid at exterior of central body (r > %)
* the (newtonian) weak-field solution is exact as well

% any details of the mass distribution in the centre do not enter

* large-distance () and weak-field (newtoniany boundary conditions

N.B.: the auxiliary assumption of a static, time-independent, solution is not really required
Theorem (Birkhoff): Any spherically symmetric solution of R, =0 is
static, and hence given by the Schwarzschild metric.

Example: A spherically symmetric star with radial pulsations still produces the static
Schwarzschild metric.

Analogue of the derivation of Newton's potential V(r) = 7G¥ of gravitation.

the test mass was scaled to m =1



Experimental test |: gravitational red-shift

now describe a set of experimental tests, all based on the (outer) Schwarzschild metric

metric tensor of Schwarzschild solution

-1
g = diag (— (1 - %> , (1 — %) .2, r?sin? 9)
r r

metric independent of x° = ct = t iS universal time
consider proper times between two events at a fixed space point (Schwarzschild metric)

ds® = —c?dr? = goc?dt? |goo(r)| =1— -=1-—x<1

hence |d7 = \/—goo dt < dt|.
IS" time passes more slowly in a gravitational field.




in order to measure this, compare time-dilation effects in two distinct places

under influence of a spherical gravitational field, of total mass M (planet, star,...)
! <¢—— 2nd max.
At
observe at place r; a light signal emitted at place r»
~f—— lst max.
emission of two wave maxima, with time difference At at ry

since t is universal time, have time difference At at rq, too

e
—

¥ ¥

2 i
proper time intervals are related to frequencies

dro =1 =22 = At\/~goo(r2) |
dT]_:%:%:At\/m b2

same as heuristic result in the introduction — Pound-Snider-Rebka experiment
no distinction between different theories of gravitation: does test the equivalence principle
Vessot-Levine Experiment (1976): send ‘hydrogene maser clock’ by rocket to
altitude 10*[km] and compare with frequency of identical clock on Earth. Confirm
GR-EP prediction with relative precision < 2 - 10~%. ‘Gravity Probe A’



Technological application: the GPS

Triangulation

localise a position on Earth by triangulation with
several satellites

distances found from time-delay measurements

Source: https://www.quora.com/Why-does-your-phones-GPS-need-Einsteins-General-relativity-to-work
for a precision of ~ 15[m], need accuracy of
~ 50[115] in time measurement Gravitational Time Dilation and GPS

satellite clock run: because of speed
Both effects do not V,
H GPS
* rotating frames — Sagnac effect worlod il ,:_\ satellte
R completely and vz
* non-spherical form of the Earth :,"us“heresf;sciéltheor; 2 ”it
. . . o et GPS reci
* time-dilation effects are large: calculated °':'e'a‘”"Y@t°c|ock runs slower
. . usedinall because of gravity
46 us| gravit. red shift posttoning %\ o [GM  /
. . calculations. %\, 0 Rc? 4
—7[us] special relativity
39[‘&5} 103 . r()quircd accuracy https://www.youtube. com/watch?v=91BvUr2wcdw

N. Ashby, Phys. Today 55 (May 2002), 41 (2002); Living Rev. Relat. 6, 1 (2003)

N.B.: ‘ precise enough to observe directly motion of tectonic plates, velocities up to ~ 10[cm/year] ‘




A new kind of test: strong gravitational fields |

Nobel prize 2020

astron. observation: Sgr A* compact, extremely massive object immobile at galaxy centre

infra-red observations (interferometers & adaptive optics): cluster of stars orbiting Sgr A"

T T T
W SHARP (corr.) 4000 l
0.20]- ® NACO (corr.) G
& & NRC?
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4 % 2 3
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Credit: ESO
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001 0.00
R.A. offset from Sgr A* (arcsec)

0) (km/s)

v (f

(=1) -

v

0.0t -0.02

f = 1.04 £ 0.05 Genzel et al.

star S2 passes close to centre

high velocity v ~ 7650[km/h] = 0.026¢
keplerian orbit plus relativistic corrections
redshift, extra v ~ 200[km/h] at pericentre

comparison parameter f, such that

A&A 615, L15 52018)
A&A 636, L5 (2020)

f = 0.88 £ 0.17 Ghexz et al. Science 365, 664 (2019)

keplerian orbit ruled out
near pericentre (gray line)

general relativity fit

20170 20175 2018.0

20185 2019.0

Sources: https://www.eso.org/public/images/eso1825b/; Genzel et al., A&A 636, L5 (2020)



4.5 Geodesics in Schwarzschild time-space

work out the mouvement of test particles in Schwarzschild time-space

in a given metric g,,,,, have geodesic equation

d2xH " dx” dx?
- _l’_ -
dr2 vAdr dr

need list of non-vanishing Christoffel symbols Rappel: I, = 18" (gp,0 + £i0.p — Epoi)

SRR LN P A

o = 0Tz 0 2y r)r

1 %% 1 1

r = s r —_ = 7'%) , [_ — 7’%) . 0

11 r<r - %)> 22 (r ) 33 (r ) sin
1

F%2 = r§1 = r%g = F§1 = -, F§3 = —sinfcosf

B3, = I3 =coth

Notation: have x° = ct and { = % etc. Have 4 egs. for variables (t,r, 0, ¢).



now write down the geodesic equations. For u = 0, have
t+ %ir’ =0 % [(1- ?) t| = 0 which becomes

r(ra%
RN .
(1_r> t = b = cste.

é—i-%r'é—sinﬁcosﬁq'bz =0

For i = 2, we have

For p# = 3, we have
.2 ..
¢+;r’q§+2cot96q§: 0

(GO)

(G2)

(G3)

Instead of writing the second-order equation for ;4 = 1, consider the invariant

-1
ds? = — (1 - ‘%) c?dt® + (1 — %) dr? + r*(d6? + sin®  d¢?)

distinguish two cases: if particles ds®> = —c?dr? # 0, if light ds?> = 0. Then

(1_ %) 1_'.2_ (1—2)_12—2—2—2(92+sin29¢2) :{ 1 particles

0

(G1)



* The mouvement is in a plane

to see this: consider geodesic, on equator = 7, tangential at the plane 6=0
(G2) = 6 =0 = for all 7 have § =0 = 0 = 5 = cste.

hence a mouvement restricted to a plane is admissible, as for newtonian gravitation.

Y200 d (27} _ 20 o
(G3) = ¢+ 2/p =0 = 5-(r?¢) =0 = | r‘¢ = a = cste.
this is the conservation of angular momentum, as for newtonian gravitation.

Case distinction: from now on, consider motion of particles.
Insert angular momentum conservation and the first integral (GO),

namely (1 — 7//) t = b, into (G1); recall as well r = S—(;<f) = g—gr%

RN . 74 -1 f2 r2 . . .
1 = (1—) t2—(1—> 2—2(92+S|n29¢2)

r r




* The mouvement is in a plane

to see this: consider geodesic, on equator 6 = 7, tangential at the plane 6=0
(G2) = 6 =0 = for all 7 have § =0 = 0 = 5 = cste.

hence a mouvement restricted to a plane is admissible, as for newtonian gravitation.

sy d/0; Y
(G3) = ¢+ 2/p=0= 5-(r?¢) =0 = | r°¢ = a = cste.
this is the conservation of angular momentum, as for newtonian gravitation.

Case distinction: from now on, consider motion of particles.
Insert angular momentum conservation and the first integral (GO),

namely (1 — ) ¢ = b, into (GL); recall as well i =

dr j _ dr a
%¢_d®r2

1 = <1_%>i2—<1—'@> =D +5in?0 )
r S——

r c2 c2 "~
=0 =1



* The mouvement is in a plane

to see this: consider geodesic, on equator 6 = 7, tangential at the plane 6=0
(G2) = 6 =0 = for all 7 have § =0 = 0 =7 = cste.

hence a mouvement restricted to a plane is admissible, as for newtonian gravitation.

(G3):q-b-+%r'd'>:0:>%(r2q.b)=0 = | r2$ = a = cste.

this is the conservation of angular momentum, as for newtonian gravitation.

Case distinction: from now on, consider motion of particles.
Insert angular momentum conservation and the first integral (GO),
z dr ] dr a

namely (1 — %) ¢ = b, into (G1); recall as well 7 = £ = or

p —1 -1 2 2 2
K 1 1

1 = (1 % P2 —(1— % a(dry”_1a
r c? r r* \ d¢ c2r2




this has now turned into an equation for the orbit r = r(¢)

-1 -1 - 2 2
1= 1_% b2—i 1_% & ﬁ _ii
r c? r r* \ d¢o c2r?

2 2
now remember that 714 (dr> = (d 1) :

dé dor
1(_@) _ b2_1<d1>2_11<1_«%))
a2 r a2 c2\dor c? r? r
j<d1>2 1 _ew-y a2 7
do r r2 a2 ra

take another derivative with respect to ¢:

o4 (1) (2 (1)), 24 (1) _#d (1) 374 (1
dop \ r/) \d¢? \ r rde \r) a2 d¢ \r r2 d¢ \ r
If % (l) = 0, have a perfect circle. Otherwise % %) # 0. Then, in general

d? 1\ 1 1%P 3%
dg?

r2 32 272

r

This is the relativistic generalisation of Binet’s formula for the orbit.



Have found the relativistic generalisation of Binet's formula, for particles

and similarly for light

d2 /1 1 1% 3% )
a2 \r) Ty T2 Tap| P )
d? /1 1 3%
- 2 light B’
d¢? <r>+r 22| 8 (B)



Have found the relativistic generalisation of Binet's formula, for particles

d? /1 1 1% 3% .
@ \r) T2 g patide (B)
and similarly for light
d? /1 1 3%
— (= )+====|, ligh B’
d¢2<r>+r 2r2 |’ ight (B)

with respect to the newtonian cases, have exact relativistic corrections.

N.B.: for light, recover for ? — 0 straight line, since with u = % have v/ +u =01

Egs. (B,B’) are the requested equations for the orbits of particles/light,
around a spherical mass M.

solving Binet's formula gives the solution of the relativistic one-body problem



4.6 Experimental test Il: perihelion precession

Rappel:
for a newtonian gravitational potential ~ % have standard Binet's formula
d2 /1 N 1 1 - PR o
—= | - - = - with p = 27 = =2 ‘parameter
d¢2 r r P ’ GM R c
find conic = = (1 + ECOS((Z) ¢0)) an ellipse if 0 < e < 1, choose ¢g =0
— 3 2
maX|maI/m|n|maI distance from centre: r = p/(1Fe), and g:_maafjg)lrislf—axis

min

* here, must study the relativistic corrections
since %% % ~ 1077 <« 1, a perturbative treatment is sufficient
use newtonian solution to insert into relativistic Binet's formula

a2 /1 1 1%c2 3 R
w()* ~ g TP (t2ecosot )
1%c%2 3973

22 T4 2

12

ecoso+ ..



The solution is found as follows, to leading order

1 Rc? 393
P ~ 2—‘32(1+ecos¢)+§ g epsing + ...
B2 3 %22
= 2;<1+ecos¢+4 P e¢sin¢+...>

12

[1 + ecos <¢ <1 - i‘@;cz)ﬂ +O(#/r))

this implies that the axis of the ellipse is not stationary, but rotates !

After a period, the angular shift is EINSTEIN 1915/16
2T 31 %> c?
Ap = —— — 2T~ —
_ 3522 2 32
4 32

N.B.: absolute prediction, without any free parameter !

N.B.: comes about since Binet's formula not only has %-potential, but riz-contributions as well.



Classic example: perihelion shift of planet Mercury

for orbit around sun Z = 2i"{’®, Mg = 1.99 - 1030 [kg]
orbit of Mercury: 3~ 5.8-10'%m], e ~ 0.21

leads to a predicted rotation angle (perihelion shift)
A¢ = 43" /[century]

N.B.: this is not observed directly !

Source: https://de.wikipedia.org/wiki/Tests_der_allgemeinen Relativitdtstheorie
a long-time study (decades !) of many astronomers gives the following
A¢ ("/[century])

574.103 £ 0.65 observed total precession from gravity effects
532.3100 + 0.0015 predicted from newtonian theory, including all
perturbations from other planets (Venus, Jupiter, Earth,..)
42.9799 + 0.0009 from Schwarzschild metric
The residual difference is in spectacular agreement with general relativity !
historically, was the first test of the Einstein equations

R.S. Park et al., Astron. J. 153, 121 (2017); G.M. Clemence, Rev. Mod. Phys. 19, 361 (1947)




A new kind of test: strong gravitational fields Il Nobel prize 2020
astron. observation: Sgr A* compact, extremely massive object immobile at galaxy centre

infra-red observations (interferometers & adaptive optics): cluster of stars orbiting Sgr A"

0.050

oz0] + NACO & sHARP ~ ~
L ™ N star S2 passes close to centre
e g 0.000 - ‘ ,.\'v - : ]
P oo\ | ‘ ) )
sl / 000 “‘g J N high velocity v &~ 7650[km/h] = 0.026¢
4 Pt me . keplerian orbit plus
f ol TN precession of pericentre
—ot0 { O N |
5 F f /
a 2 005 L v 3«@
| \ A¢p =37 =f
ol | F e orbie @*(1—¢?)
\ + SINFONI
%\ 7 L e Il comparison parameter f, such that 7fgp = 1
000 \{7'/ E . / . ."/ T
|~ i f=1.10+£0.19 Genzel et al. A&A 636, L5 (2020)

001 002 000 ~0.02 ~0.04 ~0.06 1995 2000 2005 2010 2015 2020 202
RA['] Time [yrs]

first ‘post-newtonian’ correction to acceleration

GM  GM
a=-5rtap {(2(7+6)f—7v2>5+2(1+7)fv
r r

blue: prediction of GR (8 = v = 1), green: keplerian (8 = v =0)
observation: | 8 = 1.05+0.11 and v = 1.18 +0.34

! not as precise as in solar system, but for much more strong fields




Vorlesung VIII




Rappel: EINSTEIN's proposal of field equation of gravitation with sources

8 G 1
& |Rw = 7(TW - EguVT)

1 8 G
R;w - Eg,u,uR = 7 T,uy

with T,,: energy-momentum tensor of matter, G: Newton’s gravitational constant

most simple solution of physical interest: gravitational field outside of a
mass point at rest (exact solution) (SCHWARZSCHILD)

-1
ds? = — (1 _ %> c2dt? + <1 — %) dr? + r? (d@2 + sin? d¢2)
r

can derive geodesic curves = orbits of freely falling test masses
I¥” derive relativistic extension of Binet's formula for the orbit r = r(¢)

particle

& 1\ 1 1z 3%
dg¢?

)T Tael




Rappel: EINSTEIN's proposal of field equation of gravitation with sources

8 G 1
& |Rw = 7(TW - EguVT)

1 8 G
R;w - Eg,u,uR = 7 T,uy

with T,,: energy-momentum tensor of matter, G: Newton’s gravitational constant

most simple solution of physical interest: gravitational field outside of a
mass point at rest (exact solution) (SCHWARZSCHILD)

-1
ds? = — (1 _ %> c2dt? + <1 — %) dr? + r? (d92 + sin? d<;§2)
r

can derive geodesic curves = orbits of freely falling test masses
I¥” derive relativistic extension of Binet's formula for the orbit r = r(¢)

EREEN 3
de? \ r ro 2r2 |’




Experimental test Ill: deviation of light

the orbit of a light ray is also given by a Binet formula exercice
2 (1\ 1 3%
— (=) +==2=1, light B’
d¢? <r>+r 202|078 (&)

P/ = 1 lcosgi)—F %(1+sin2¢)
\ - ron 2r 2
BZ" remarkable: light rays do not foIIow a straight line !

N.B.: curved orbits of light predicted by Cavendish (unpublished 1784) & Soldner (1804)
look at asymptotics for r — oo: (a) if #Z =0, have ¢ — £7

(b) if Z > 0, have ¢ — (% + 0) such that —+ S|n5 + 52 (1 + cos? (5) =0
=~ % The angle of |Ight deviation is, with numbers for deV|at|on at border of sun

4M@f _ Mo 15
R@C R@

curved orbits & numerical value spectacularly confirmed by EDDINGTON 1919

A =20~

present values: |A = (0.99992 + O.OOO23)AGR




have seen three spectacular confirmations of general relativity:

the so-called classical tests

1) test of the equivalence principle via gravitational red shift

I¥" Pound-Snider-Rebka and Vessot-Levine experiments

I¥” also confirmed in strong fields: Sirius B and stars close to Sgr A*
= ’ ! necessary ingredient for proper functioning of the GPS !

perihelion shift of planets in solar system

IS" general relativity explains extra rotation left unexplained by newtonian
celestial mechanics for more than 50 years

I¥" also seen in strong fields for stars in close orbits around Sgr A*

I11) deviation of light rays in gravitational fields

I¥” [ight does not follow a straight line under the influence of gravitation
clear contradiction with well-established newtonian physics and first
evidence for a new paradigm also noticed by larger public

N.B.: these confirmations are about parameter-free predictions, no
data fitting possible



4.6 Experimental test IV: radar echo

first example of a new class of experimental tests
1960s new technology : use radar echos to measure better distances of planets
@ revision of the astronomical unit (radius of Earth’s orbit ~ 150 - 10%[km]) by ~ 9.3 - 10*[km]

measured quantity: time of passage of a radar
signal Earth - Planet -Earth

planete
waiting time until return of signal
T = 2(1’(/-?, Fmim ) + t(r, fmin))

R: radius of Earth orbit,
- r: radius of planet’s orbit
echo returns so fast that planets’ & Earth's motion is neglected
herein ryin is the minimal distance of the radar’s orbit from the sun

non-relativistic calculation

Vorums 13, Numser 26 PHYSICAL REVIEW LETTERS 28 Decemsex 1964
FOURTH TEST OF GENERAL RELATIVITY

t (R I ) = R2 — r2 Irwin L. Shapiro
i - : Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, Massachusetts
NRAY; Fmin c min



(B) prediction of the Schwarzschild metric o dtoec
radar echos are light-like = ds° = 0 and mouvement is planar = d¢ = 0

(2 02 () ()]

Rappel: in calculation of orbit, had ( — %’) t = b = cste. and rz(/') = a = cste.

a e P dg
2= T =~ =: B = cste.
T EeHE -Ha T

which implies that % = B(1—Z). Insert this into the metric above

S R (G NEREI )

at r = i, the distance r is minimal, hence &~ =0.

dt lr=rpin
(1- -2

min

= this fixes B% = ¢?r2

min



2 12
dr:c(l—%)> l—rmgmif
21— 2

Imin

and integration leads to

_ py —-1/2
1 r 4 ' rr?nin 1- %
t(r, fmin) = E/,,dr/ (1_r,) (1_ 21 A

Imin

/rd/ r 1+%+1 %rmin +
i d (r2 - r2 )1/2 v Er’(r’—krmin)

min

= 1 r2 Mnin + X In w + % I~ fmin
Fmin 2 r + rmin

where the first term is the non-relativistic contribution.
Since both Earth & planet are far from the sun, one may simplify further

1 2 X
t(r,rmin):< P22 —|—a%’|n( r)+>
c Fin 2

12

ol

(9}




and the final time of passage (A/R) is SHAPIRO 1964

T_ 2(t(R, Foin) + £(7, rmin)) ~ % <R+ r+ % {In <

min

Numerical illustration: planet Mars r = 1.52[AU] = 2.28 - 10! [m]
planet Earth R = 1[AU] = 1.49 - 10'![m)]

dominant contribution To = 2(R + r) ~ 2.52 - 103[s] ~ 42[min]

maximal size of relativistic correction if ryi, = Re = solar radius

;'5'_282 105:>|n‘;?’§’:126

addltlonal time from Ieadmg relativistic correction
2%

AT ~ |:1+|
c

4Rr
] ~ 2.66 - 10~*[s] = 266|us]

@



I¥” required to measure T with relative precision better than 10~
atomic clocks achieve accuracies of order 10712 ¥ feasible in principle

‘radar echo reflected at surface of planet Venus

| . . . .
|shown is excess time delay, as a function of time

‘comparison with general relativity works up to < 10%
=/precision limited by surface roughness of planet

.M. Shapiro et al., Phys. Rev. Lett. 26, 1132 (1971)

practical comparison:

direct echo from planets

space crafts

space craft on planet (Viking)
space craft Cassini in Saturn orbit




4.6 Experimental test V: time delay

thought experiment: take two identical clocks, synchronise them
clock A stays in the labo (at the equator), clock B travels around the earth
what time-difference should one measure

from the Schwarzschild metric at equator 6 = g height fixed r = cste

ds? = — <1 — %) cdt? + r2d<]52 = —c%dr?

schematic view onto the north pole of the earth,

angular velocity of rotation w
angle ¢ measured with respect to point of reference

positions of the clocks at A,B




we evaluate the proper times for both clocks
clock A: which remains fixed (and rotates with the earth)
because of the earth’s rotation, with angular velocity w: d¢ = wdt
X R?w?
drs = [(1 — > - dt?

r

M R2 2
o CM_RWTY
Rc? 2c2

with M: earth’s mass, since Z < 1 and Rz“{Z < 1.

12

dra

clock B: which travels around the earth (direction east)
with the velocity ~ v 4+ (R + h)w with respect to the static metric

2
R+ h
drg = <1—th>—<( +C)“+V> de?

GM R242 + 2Rwv + v2
1-— ( — dt

d ~
B R+ h) c? 2c2



the relative deviation becomes

dra — drp GM 2Rwv + v2
A= ~ — h
dra REc2" c?
flight in western direction: replace v — —v
Numerical illustration:
(a) flight in eastern direction:
take h ~ 10[km] = 10*[m], v = 300[m/s], & = g = 9.81[m/s?].

N.B.: these are typical estimates for a commercial air-plane flight
81 ~1.00-1012, 2Rw ~ 931[m/s?], GRIVV ~ 5 1.10-12
c 2c
IS this gives

(b) flight in western direction:
re-use h ~ 10[km] = 10*[m], v = —300[m/s], S = g = 9.81[m/s?].
a change occurs for Z@Rw—v)v . 1051012

2c2
I¥” this gives

’ ! these values are within reach of the precision of atomic clocks ! ‘

..even in the early 1970s ...



15" instead of applying for money for an expensive satellite
mission, and wait patiently many years for approval, just put
your atomic clock into a civil air-plane and fly around the
earth !

= that is what Hafele & Keating did ...

cost 8000%, 95% for flight tickets (4 persons, incl. 2x ‘Mr. Clock’)

J.C. Hafele, R.E. Keating, Science 177, 166 & 168 (1972); and https://en.wikipedia.org/wiki/Hafele-Keating experiment
they give the table (all times in [ns])

| grav. (GR) kinem. (SRT) total measured
east | +144+14 —-184+18 —40+£23 —-59=£10
west | +179+18  +96 + 10 +275+21 4273+ 7

main source of error: precise schedule of the flights

this inexpensive (!) experiment works at the level of signal precision

has been repeated several times, with increasing precision. For example:

(1) signal precision S. lijima, K. Fujiwara, Ann. Tokyo Observatory 17, 68 (1978)
(2) signal precision ~ 4 -1071° CW. Chou et al, Science 329, 1630 (2010)

N.B.: height differences of 33[cm)]
gravitationally detected !




4.10 Post-newtonian parameters
it has become common to express the results of precision tests on general
relativity in terms of certain parameters - the post-newtonian parameters

for example, it is common to consider the following ad hoc extension of
the outer Schwarzschild metric
R B— R AN
ds? = —(1-= — B=n# 2dt?+(1-~7= dr?+r2dQ?
r 2 r2 r

such that EINSTEIN's theory corresponds to § =y = 1.

7 ars Ranging * - x1073 . H
1002 Mars Ranging 76 7 ~1<2x10 combined results for estimates on the
‘post-newtonian parameters’ 3, y

1.001 (—-t—- —-1 . . H
y-1=4x10¢ the joint experiments constrain (3, v more than any

Astrometric VLBI ‘04

Unit Curvature
[
T

4B-y-3<4.3x10" = |7 — 1= (—0.3 + 2.5) . 1075 and
0.999 - L .
| General Relativity /8 _ 1 — (0 2 :I: 2 5) . 1075
0.998 1 : ’
IR S S S B S.G. Turychev, Proc. IAU Symposium 261 (2009); LLR: Lunar Laser Ranging
0.998 0.999 1 1001 1.002 C.M. Will Theory and Experiment in Gravitation, (Cambridge 22018)

Non-linearity



the following graphs illustrate the experimental improvements realised

Source & Refs.:
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C.M. Will, Theory and experiment in gravitational physics, 2¢ éd. Cambridge (2018)

experimental measurements of the
post-newtonian parameter ~y

any disagreement with general relativity < 1073%

experimental test of position-invariance
(frequency shift of light in gravitation field)
the post-newtonian parameter « is defined via

Av

AU
=(1+a)— =
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experimental tests of the (weak) principle of
equivalence (Eétvés experiment)

experimental tests of Lorentz invariance

2
C
—-1_20
6=1 2
where c: speed of electromagnetic radium in vacuum
co: limiting speed of test particles of unbroken

Lorentz invariance

B¥" jllustrates the degree to which fundamental assumptions of relativity are

experimentally supported



a comment on the context of these experimental tests

o Black Holes
[ ] —— SMBH merger with LISA
- FeK-aline
Event Horizon Telescope
Sgr A* with GRAVITY
. LIGO detections

t
[
-4
\~ S2 orbit around Sgr A
[
° \ grav. redshift Sirius B
([ ] \

log (®/c?)

I~ Hulse-Taylor pulsar
Light Deflection
“ Shapiro Delay
° +~ Precession of Mercury
T | Pound-Rebka experiment
25 30 35 40 45
log (mass/gr)

-10

Source: GRAVITY collab., Genzel et al. A&A 615, L15 (2018)
can distinguish five classes of experiments

@ small mass, weak field: Pound-Snider-Rebka experiment
@ medium mass, weak field: all classical tests and binary pulsar (1970s)
© medium mass, medium field: gravitational redshift Sirius B (since 2018)
@ medium mass, strong field: coalescence of two black holes (since 2016)
@ large mass, medium field: astrophysics of black holes (since 2018)
= do expect more & exciting news from future telescopes:
Event Horizon Telesope & (2) LISA (space-based gravitational waves)



4.11 The cosmological constant

there is a ‘minimal extension’ of EINSTEIN's field equations

1 831G =
R,uu - Eg,uVR + /\g/u/ = ?T/_LV (E)

herein, A is a new constant of Nature, of dimension [Length_z].
Definition: A is called the cosmological constant.

presently accepted value (Planck coll. 2018): | A >~ (1.11 + 0.02) 107> [m_z} >0

= length scale A=*/2 ~ 10?°[m] ~ radius of the universe

Is the most natural term to add to EINSTEIN's field equation, but not a second derivative.
Historically introduced, by EINSTEIN in 1917, in order to achieve non-expanding solutions of
his field equations for the entire world. The true distances of galaxies were only found later
(so-called ‘great debate’ SHAPLEY-CURTIS in 1920, solved by observations of cepheids in
the Andromeda galaxy by HUBBLE in 1924). The general expansion of the universe was
predicted in 1927 by LEMAITRE (with A > 0) and found through HUBBLE's law as late as
1929. In 1917, EINSTEIN required A < 0O for his stationary (unstable !) solution.



N.B.: A cannot be much smaller than its observed value, otherwise its effects would be unobservable
even at the length scale of the entire universe

(a) special case without massive sources: T, =0
pv 1 pv nv 1
=g RW—Eg guw +N\g gm,:0:>R—§~4~R—|—4/\:0:>R:4/\

hence R, = Ag., = if N # 0, time-space is space of constant curvature,
and A~1/2 describes the curvature radius.

(b) Schwarzschild-de Sitter solution, at the exterior of a spherically
symmetric mass M

-1
ds? = — (1—%—/3\r2>dt2+< —%—g\rz) + r2dQ?

r

with dQ? = d6? + sin?0 d¢? and Z = 252’\/’ is the Schwarzschild radius.



(c) non-relativistic limit: transform field equation (E)

v 1 . v 8rG . 8 G 8 G
g" Rw,—ig” 8w +Ng" gy = o g Tw = —R+4N = o T = R=4A+ g T
=\ i 381G 1
then (E) implies: Ruw = Nguw + 7(7_“” ~ 58w T)
repeat the steps for carrying out the classical limit, identify ggpo = —(1 + %gb)
with the , which obeys a modified PoissoN'’s equation
V2¢+ N =4rGp
For a point mass M fixed the origin r = 0, the solution is exercice
GM A
b=—=" -1
r 6

in this setting, | NEWTON s law of gravitation is not exact|.

N.B.: in the Principia, NEWTON clearly states that he neglects unobservable effects



find gravitational force on Iight test body, non-relativistic limit, mass m

1 GM A
—F=-V¢= ——e +r
m r 3

N generates a ‘cosmological force’ which tears objects apart.
can one observe effects of A in the solar system

Answer: NO, and this will remain so forever !

C. Lammerzahl et al., Phys. Lett. B634, 465 (2006)
effect bound on A, in [m~?]

light deflection no effect
gravitational time delay < 6-1072
gravitational red shift <107%
shift of perihelia <1074
cosmology ~ 1072

N can only be measured at the scale of the whole universe,
or at the scale of clusters of galaxies

* since 2019: 7 is there just a ‘single cosmological constant’

* since a while: 7?7 can one understand A from quantum field theory 77 present tries off by a factor 10120



4.12 Singularities and black holes

in the Schwarzschild metric, there is a singularity at radius r = #Z
what happens if a particle crosses the Schwarzschild radius %

particle starts at rest, at a distance r = R from the
DI centre of large spherical mass M, and then falls
centrally into it % = 21

C

R
(a) radial mouvement, seen by an external observer who uses universal time ¢

-1
ds? = — <1 — %) c2dt? + <1 — %) dr? = —c?dr?

ions: + = 4t ;_ dr p— dry
notations: t = g-, = gr, hence r = at

(2o (o) s [ (e

1/2
the initial condition 4¢ L 0 implies with (*) 4t = <L> /
dtlr=R — p dr lr=R R—% .

next, recall from (GO) that (1 — %) = b = cste.




usethisat r=R: b= (1— %) dt R = (LR‘@)IQ. Since b = cste.

(**)

f—g— r b r R — 2\
dr r—%  r—% R

and finally, combining (*) and (*¥*), it is easy to see that

1/2 1/2
g:_cr—%’ g / R—r\Y (*5%)
dt r r R—%

one takes the negative solution, since the particle falls into the centre.

We want to find the time tf the particle needs to fall from its initial radius R
to a smaller radius r < R. Need to integrate (***)

1 (R—2z\Y? [T 032
t=te(r)=—- ( ) / do
NI IR (o= B (R0

clearly, the falling time t¢(r) diverges, when r — Z.




had falling time t¢(r), from radius Ratt=0to r < R

_ L (R-a\ 0%
te(r) = c< x > /Rdg(g—%’)(R—g)l/z

In order to analyse the singularity, consider o = % + ¢ with ¢ < 1 such that

1 (Rﬂ)l/z/r%dé (e%-‘r&‘)
R

tN=-\"%

3/2

LR [P Z# (rff%)

@ € (R_@_€)1/2_ ¢ Jr_m € _?l R—%

Interpretation: for an observer far away from the centre, the distance of the
falling particle with respect to the Schwarzschild radius decreases as

r—%=(R—%)e t/”

* very rapid slowing-down of apparent fall, on time scale Z/c.
Numerical example: for the sun %Z¢ =~ 3[km], so Z/c ~ 107°s]
* the event horizon at r = % is never reached ¥ frozen particle



(b) mouvement seen by the particle itself who uses proper time T

dr _drdt _ =& (AP (R-r\'"? r (R-Z\'?
dr — dtdr r r R—-% r—% R

where (***) and (**) were used.




(b) mouvement seen by the particle itself who uses proper time T

dr _drdt o2 (AN (R Y2 1/2
dr — dtdr r r r—% R

where (***) and (**) were used.




(b) mouvement seen by the particle itself who uses proper time T

dr _drdt _ (@\VEIR O\
dr  dtdr R r
where (***) and (**) were used.
The proper time 7 = 7¢(r) for the fall from radius R to radius r is then

0= 8) L= ) (A6 o)

For a freely falling observer, the falling time until arrival at the centre is

T |R3

Numerical example: for the sun, starting at sun’s radius R = 7 - 108[m] = 7¢(0) ~ 100]s].
* nothing special happens at r = %, from the point of view of a freely falling

* this falling time is finite !

observer. (provided R < oo is finite)



for further illustration: the velocity of the particle falling into the centre

measured with proper time: as seen by the in-falling particle itself
measured with universal time: as seen by a remote observer

l,““"“““““‘: l,"“““““"““‘:

0] —— fallender Beobachter | 3 03] —— fallender Beobachter

06F —i 06F

04 é 04

02 é 02F

0 L L L : L L L

5 107' 15 20 1 15 YZ 25 3

radial velocity v = v(r) is given in units of the speed of light ¢

the distance r of the particle from the centre

and the initial distance R } are in units of the Schwarzschild radius Z

radius-dependent velocity v = v(r) evolves differently for both observers, and also
depends on the initial distance R, although v(R) = 0 always

N.B.: for R finite, one always has v(r) < c for all r > #
N.B’.: in the examples shown R is still quite close to % !



depending on the place of the observer, very different results were obtained:
* an observer far away sees the particle freeze very rapidly at radius r 2> Z.
The particle never appears to arrive at the centre.
* a freely falling observer find nothing special at r = % and arrives after
a finite time at the centre.
* falling-in velocity v = v(r) behaves very differently for both observers

BE" njce illustration of the relativity of time

for radii r > 4, this picture can be used to describe the behaviour of the outer layers
of a collapsing stars: seen from the outside, the outer layers rapidly ‘freeze’ at a
radius r ~ % (frozen star) and it takes them an infinite time to cross the
Schwarzschild radius. Seen from the outside, the star never collapses to a point.

For the freely falling stellar matter, however, it will have arrived after a finite

time right at the centre and nothing occurred at a radius Z.

IF" the region with radii < % seems to decouple completely from the
regions far away from the centre.



Definition: A black hole is a massive body with radius R < Z.

N.B.: this requires extremely high mass densities !

Example: for the sun Ry ~ 7 - 10°[km] > % ~ 3[km]. It is not possible, however, to
reach r = % by going deep into the sun, since the mass M(r) = 4= [/dr r’p(r) = 0 as r — 0.

N.B.: a non-rotating black hole is described exactly by the Schwarzschild metric

¥ near to r 2, # extreme and unintuitive effects may arise

where are the ‘real’ singularities of the Schwarzschild metric

Definition: The Kretschmann invariant is 7 := R“”“)‘RW,{)\.

Theorem: (KRETSCHMANN) The invariant % is independent of the
choice of coordinates.

Example: For the Schwarzschild metric, one has 7 = 12(%)2%.

E
This means that at r = %, the corresponding time-space of a black hole is
non-singular, but there does exist a singularity at the centre r = 0.

ww There are many different coordinate systems in which the Schwarzschild metric is

non-singular at r = Z.



Vorlesung IX



Rappel: use of post-newtonian parameters for characterisation of experiments
often used: ad hoc extension of the outer Schwarzschild metric

such that EINSTEIN's theory corresponds to =y = 1.

' Mars Ranging ‘76 ¥ -1<2x107
1.002 .

combined results for estimates on the

,Tizaxi04 post-newtonian parameters’ 3, y

Astrometric VLBI ‘04

Cassini ‘03

Tiomeos = |y —1=(-0.3+£25)-10"°|and

1.001 |-

Unit Curvature

LLR"04 /]|
0990 48 -y -3<4.3x10% 5
» B—1=(0.2+25)-10
S.G. Turychev, Proc. IAU Symposium 261 (2009); LLR: Lunar Laser Ranging
C.M. Will Theory and Experiment in Gravitation, (Cambridge 22018)

| General Relativity

0.998

I I B

0.998 0.999 1 1.001 1.002
Non-linearity

although spectacular good confirmations of EINSTEIN's field equations, does not
exclude possibilities for generalisations/extensions

Example: cosmological constant A ~ (1.11 +0.02) - 10°?[m~?]




Rappel: analysed mouvement in time-space with Schwarzschild metric
% AN
ds? = — <1 - > c’dt® + (1 - > dr® +dQ?
r r

existence of a physical singularity at the Schwarzschild radius r = Z

Definition: A black hole is a massive body with radius R < %.

N.B.: this requires extremely high mass densities !

Example: for the sun Ry ~ 7 - 10°[km] >> % ~ 3[km)]. It is not possible, however, to
reach r = % by going deep into the sun, since the mass M(r) = 4x [/dr r’p(r) — 0 as r — 0.

N.B.: a non-rotating black hole is described exactly by the Schwarzschild metric
¥¥” near to r 2 % extreme and unintuitive effects may arise

where are the ‘real’ singularities of the Schwarzschild metric

Definition: The Kretschmann invariant is 7 = R“”"’\Rﬂm,\.

Theorem: (KRETSCHMANN) The invariant % is independent of chosen coordinates.
. . 2

Example: For the Schwarzschild metric, one has % = 12(%) %4

This means that at r = %, the corresponding time-space of a black hole is

non-singular, but there does exist a singularity at the centre r = 0.

w many different, physcially equivalent, coordinate systems without a singularity at r = %.



(c) orbital mouvement around a black hole
use here the Schwarzschild metric in a more general form  x = (ct,r,0,¢)

1 . 74
ds®> = —h(r)c2dt® + ——dr® + r?d6? + r’sin?0 d¢? , h(r)=1- =
h(r) r
geodesic cquations: R4 T =0, Ty = 3 (s + g — Buns)
the non-vanishing Christoffel symbols are, with c =1 W (r) = 480
h/
0 0
Mo = T = 2h
h/
rg)o = *%hh/ , ril = ~oh r;z = —rh , r§3 — —rh' sin%0
1 .
r%z = rgl = Ff3 = rgl = F ) r§3=—5m9C059
|—§3 = rgz = cotd
* mouvement in a plane, can fix coordinates such that 6 = % t= :}—j etc.

N.B.: velocities with respect to proper time = observer co-moving with particule in orbit



mouvement in a plane, fixed coordinates such that 6 = % i= 4t etc.

Write down geodesic equations explicitly. Cast them all as first integrals:
p=0: havef+%ir’=0:>§7(hi):0 :>
N.B.: is the analogue of (G0) treated before

Interpretation of b: in case without interactions (e.g. for r — o), expect h(r) — 1.
For special relativity, and using the proper time 7 as parameter, have
_dt E

b

with E: energy of particle, m: mass of particle.
This first integral is interpreted as the conservation of energy

(T0)

= 2: can take over (G2) from earlier treatment of the orbit:

.2 . .
0+ ~#0 — sinf cos > =0 (G2=T2)

is taken care of by fixing 0 = 7



i = 3: can take over (G3) from earlier treatment of the orbit:

0=m/2
havequ— 2i¢+2cotffp =0 1/ 4(12¢) =0 = r2¢ = a = cste
This is the conservation of angular momentum. We shall write L= £

rPo=1L (T3)

1 = 1: we use the metric instead, since this gives the conservation law

directly (here for particles)
1= hi? — h™ 17 — r2(0? +sin? 0 ¢°)

fixing @ = 7 and using the conservation laws (T0), (T2) gives

EN? 1 L\?> E21 1 L2 E2 L2
1:h<—) ffr'2fr2(—) =— -2 = = #=_——h—h=
mh h r2 m2h h m?2

so that we find

a second analogy of energy conservation
2 L2 L2
(mf)* = E? —m?h—m hr = E2 - (1 + r2> m?h(r) (T1)

Interpretation: mr is the radial component of the particle’'s four-momentum p



. .. . . 2
writing p = mf, find relativistic energy-momentum relation p? = E2 — (1 + %)m2h.

Definition: The effective potential V. (r) for a massive particle is defined
from the energy-momentum relation

L2
E? = p> + V%(r) , with VZ(r) := m?h(r) (1 + 2>
p

photons or other massless particles can be treated similarly

Definition: The effective potential V.g(r) for a photon is defined
from the energy-momentum relation

L2
EY = p)+ V() with Vi (r) = h(r)

IS" Vg permits a clear qualitative discussion of possible movements
around a black hole (for either particles or photons)



[ for completeness, the derivation of the effective potential for photons is provided:

u = 0: had seen that hi = b. In order to interpret b, return to special relativity
in Minkowski space, have b = 4t = E, = photon’s energy. Therefore

E, =ht (P0)

u =2, p=3: is analogous to the case of a particle.
u = 1: from the metric find directly the conservation law

0=ht* — h 2 = FP6% — r’sin0 ¢°

™

fixing @ = 7 and using the conservation laws (P0), (T3), find c=1

E2 1 12 E2 -2 12
v _tp_ 2B 5y r

h  h " h  h 2

. 2 . ..
such that now F? = Eﬁ - hf—z. For a photon, one now interprets py, = cf = r as the
radial component of the photon's four-momentum p,. This gives the energy-momentum

relation pﬁ = ng — hf—Z which motivates the given definition for photons. ]



Special case: the Schwarzschild metric h(r) =1 — % units ¢ = 1

(a): particles of mass m

R L? % 1?2 1>
2 _o2(q —m2(1— _
Ver(r) = <1 r) (1 * r2) (1 PR )

Comment: in the non-relativistic limit (here achieved for r — o0)

#x 2 Zl2 1%  112-%*/4 112 +%°)4
Ve = 1-—+ =5 — o~ 1——-——+= ——
a(r) m\/ r + r? r3 m 2r + 2 r2 4 r3 +
Vet c1(r) relat. correct.

one has, besides the rest energy mc?, the classical effective potential (up to a shift in

the angular momentum) and further relativistic corrections.



Discussion of the shape of V2(r): one has V2,(%) = 0 and lim, .. V2(r) = m?

parameters # and m merely define scales of length and energy, respectively
1 shape of V%(r) only determined by angular momentum L/%

extremal points ry: maximum at r—, minimum at ry, where

2 2 3%?
rp=—4+—4/1—="- = critical value chﬁ%

in the plot, r, L are in units of #, and VC2ff is in units of m?

L [\ particule 1 real maximum /minimum for L > L.
maximum at r—, minimum at ry for L > L,

saddle point for L = L. at r = 3%

for L — oo, find r — 3%

if L =2%, then V3.(r_) = m?

I¥" physical behaviour depends on two parameters: angular momentum L and energy E



in the plot, r, L are in units of &, and VCZH is in units of m?

- e ] real maximum/minimum for L > L. = /3 %
[\ maximum at r—, minimum at ry for L > L.
1

saddle point for L = L. at r = 3%

o 09
5 .
N for L — oo, find r_ — 3%
H _ 2 — 2
ol if L =2%, then V4(r—) =m
o I ) . NR limit: Lo = %\/4 + 21 Z ~ 1.462, qualitatively similar
o 5 10

*if L < L, E? < m®: confined but unstable orbit = particle falls back into centre
*if L < L., E? > m?: unbounded motion, = particle escapes/falls into centre
*if L= L. =+/3 2%, E? < m?: confined unstable orbit = particle falls back into centre
for r = 3% there is a marginally unstable orbit
*if Lo < L < 2% and VZ(ry) < E? < VZ%(r—) < m?: stable bound orbit
*if Lo < L < 2% and VZ(r-) < E? < m?: confined unstable orbit = particle falls into centre
*if L. < L < 2% and m* < E*: unbounded motion = particle escapes/falls into centre
*if L > 29 and V% (r:) < E* < VZ%(r_): stable bound orbit

*if L > 2% and m*> < V%(r_) < E?: unbounded motion = particle escapes/falls into centre

= | no stable orbits for finite distance from event horizon r < %%




units c =1

Special case: the Schwarzschild metric h(r) =1 — %

: photons 12 2 2
photon Ve2ﬁ(r) _ (1 B %) X

r2 r)  r r3

Discussion of the shape of V% (r): one has V2.(%) = 0 and lim,. VZ(r) =0

€

in the plot, r, L are in units of Z

photon

shape of V/%(r) does not depend on L

a single maximum at ryg = %%
gives an unstable circular orbit

2
Vg = Vii(r) = 57 (5)

*if E2 < VZ: unbound orbit, incoming particle reflected at potential barrier
*if E2 > V2 particle falls directly into centre
IS" | absence of bound states for photons



— — T T T T
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shapes of effective potentials for mouvement around black holes very
different for massive particles and photons

= study of effective potential Ve2ff gives useful insight

BS" particle orbits have minimal radius ryi, such that no bound stable
orbits possible for r < rpin (according to criterion rmin = 3% or 3%)

I5" no bound orbits at all for photons, but scattering is possible



black holes occur very frequently in Nature: 4 examples

The first direct picture of a black hole in the centre of the galaxy
M87, of mass 6.5 - 10° My
the black disk in the centre has a diameter =~ 2.5%

hot gas emits radiation (the jet !) before falling
into the black hole

Event Horizon Telescope (2019)

https://de.wikipedia.org/wiki/Schwarzes_Loch

Sources: https://de.wikipedia.org/wiki/Messier_87

Simulation of the distortion of time-space by a non-rotating
black hole with mass M = 10M, seen from a distance
r = 600[km)] before the background of our own galaxy.

Source: https://de.wikipedia.org/wiki/Schwarzes_Loch

- The first ever identified black hole: the stellar system Cyg X-1.
The ‘companion’ is a blue super-giant, of mass ~ 27M, radius
|~ 32Ry temperature 3 - 10*[K], luminosity 2 - 10°Ls,. The black
H hole has a mass =~ 16 M. The period of the system is

. 5.60[days|. Cyg X-1 is the source of intensive X-ray radiation,

with X-luminosity 5 - 1024[W] ~ 10*Lq, x (eruptions up to 1031[W].)
Source: https://de.wikipedia.org/wiki/Cygnus_X-1



avec son amas central d’étoiles

Right Ascension difference from 17h 45m 40,0458
$05404 403 402 01" 00" 01" 02

512 ¥ >} \S1

vues sur le centre de la Voie Lactée, constellation Sagittaire

R/R (4.26x10°M_ )
9 s source: https://en.wikipedia.org/wiki/Galactic_Center
10’ 10° 10° 107
. i
' ‘ . 3 \ .

T -  tout au centre: SOUrCe trés compacte de rayonnement intense: Sgr A*
£ ok 1les orbites d’étoiles (S2 etc.) donnent la masse de Sgr A*:
8 {M, = (4.154 4+ 0.014) - 10° M, %o ~ 0.08[UA]
§ Wk Jimages directes préliminaires de la Collaboration GRAVITY:
H 1diametre disque 2Rsgr ax ~ (12.3 £ 4.3)% (mars 2019)
® ok Jtrés probable que Sgr A™ est un trou noir super-massif

10" 10' observations aussi fittées par trou noir Schwarzschild, dernier orbite stable &~ (1.2 £ 0.3)Ryin

radius (parsec) également possible: trou noir en rotation rapide = métrique de Kerr

1[UA] = 4.85 - 10~ %[pc]
source: GRAVITY collab, Genzel et al. A&A, 618, L10 (2018) and 636, L5 (2020)



5. White dwarfs and neutron stars

5.1 The inner Schwarzschild solution
analyse gravitational & relativistic effects in the presence of sources

good physical example:
* formed by contraction out of a gas cloud, under the influence of gravitation

* stabilised by internal nuclear fusion, accordingto p+p —d+et + v+

e stars are stationary ! (indeed, well, most stars are not variable)
e stars are spherically symmetric (at least, well, if not rotating very fast)
= use ansatz for metric a la Schwarzschild I¥” star's centre at rest

ds? = —e?(0c2dt? 4 eMdr? + r?(d6? + sin® 6 do?) (AM)

in order to describe interior of star, must now solve full field equation

1 3rG
R,u,l/ - Eg,uVR = 77—/111

(and also provide link with outer solution, from R, = 0)



(1) for the geometry:
can recall results from previous calculations of the Ricci tensor

RS = g”Rpo+ g% Rpo
——

and all other RY = 0. V() = O e
finally, find the Ricci scalar

R = R =R)+RI+R;+R3

4 2\ 2
— e (—2y” 22+ N - —(V = X) - 2) t3
r r r



(1) for the matter:

good choice for interior of stars: perfect fluid with density p and pressure p

(1) both viscosity and thermal conduction are disregarded = mouvement of fluid is adiabatic

(2) stars are hot gas balls under enormous pressure, deep in coexistence regime of liquids and gases

the energy-momentum tensor of a perfect fluid reads (a priori position-dependent)

p p )
TH = gg’“’ + (p—i— ?) utu *)

with u: four-velocity of small volume of fluid

o (*) is generally co-variant; at rest & in cartesian coordinates, reduces to
T%‘él;rt) =diag (0. 5. 5.5) o

o rest frame correct choice for star, since centre of gravitation at rest as well
o but need T, in spherical coordinates x = (ct, r,0,¢)

= from the ansatz (AM) for the metric, in spherical coordinates (*) leads to

pef2u

iy _ 2
(spher) —

ﬁ,\,“c
W=

p_1
c? r2sin% 9



recast field equations: R*, — 30, R = 8ZCTH,

require, again in spherical coordinates, for a perfect fluid

-p
5
(L
T, = <,
CZ

Then, the EINSTEIN field equations read, with G*,,

2)\ 1 1 |
GO — (A )2 L
0 € r r2 r2

_ 2 1 1
Gllze 2A(r+,2)_’2 ;

G22:7672>\ <V“+I/I2I/I)\/+V/X) ;
r r

=RV, — %6,UVR
B8, =¥, ()
T H=tET o

equations for u = 2 and p = 3 are the same, all others are trivial
e This must be completed by an equation of state p = p(p).

o For stars, a good choice is a polytrope equation

p

@

where v is the polytrope exponent.



Egs. (a,b,c,p) are the complete system to find the metric.

2)/ 1 1 8w G
—2X
e — - = |+t = = a
( r r2> 72 62 P ()
_ v/ 1 1 8nG p
ea(**?)*? = 22 (b)
r r r C C
v’ A 87 G
e—z) <u” + V/z _ 7//)\/ + 22 _ : % (c)
r r C C
2
- =Kp” @)
C

’|ook for the two functions A = \(r), v = v(r)
to simplify the integration: assume p = cste. — result will be valid more generally

(3) = a(re ) =1 7pr
- 8rG C 8rG
—2)\ p=cste 2 2
LA S Y T i
= € 3c2 P’ + r o 3c2

N.B.: no singularity at r = 0 admissible = fix C = 0.



Egs. (a,b,c,p) are the complete system to find the metric.

_ox (22X 1 1 871G
‘ (7’5)’72 = a2 @
_ox[2v) 1 1 871G p
¢ (T+ﬁ>_ﬁ = a2 ®)
’ ’
_em2A <V// L2 N 4 v /\7> _ 871'2(;£2 ©
r r C C
5 =Ko ®)
1¥still look for the function v = v(r), with assumption p = cste.
Derive (b) with respect to r and insert v/ from (c), to find
8rG p 2e72r
—— = — Vv + A
2 2 ( )

2e—2>\

r

adding egs. (a) and (b) gives:

W0 =" 0+ 3)



Egs. (a,b,c,p) are the complete system to find the metric.

“ax [2X 1 1 871G
T\ e)e T a2 @
_ox (2 1 1 81Gop
‘ (T*Tz R T a2 ®)
e 22 <V/I +DIZ e i/ _ >\7/> _ SwGi ©
r r C2 C2
P
- =Kp” ®
C
@Stlu |OOk for the funCtion V= V(r), with assumption p = cste.

Derive (b) with respect to r and insert v/ from (c), to find

8w G p
2z (V)
. C e 8rG p
adding egs. (a) and (b) gives: =5 (p + §>

/

/ —cste
(o 8] B B) = [ B ] o

where D is a constant




so far have found: p+ & = De™ and e 2" =1 — Ar?. Furthermore

22 , 8rG p
— ) =5 (o4 )



so far have found: p+ £ = De™” and e2* =1 — Ar?. Furthermore

2e—2A , 8rG p
) =5 (o+ )



so far have found: p+ & = De™ and e 2" =1 — Ar?. Furthermore

2 2 . 2e2\ 8rG | _
;(l//e 2\+)\/e 2)\): - (V/_'_)\/):?De v



so far have found: p+ & = De™ and e " — 1 — Ar”. Furthermore

SN

(V'u _AR) 4 d(;eﬂ)) = 878 e~

dr



so far have found: p+ & = De™ and e " — 1 — Ar”. Furthermore

SN

d - —v
(V'(l — Ar?) + a(—%e 2/\)> = 7De



so far have found: p+ & = De™ and e " — 1 — Ar”. Furthermore

_ 8 G

<u’(1 — AP + (—§(2Af)>> =z b

SN



so far have found: p+ & = De™ and e 2" =1 — Ar?. Furthermore

% (V' (1—Ar?) + Ar) = 8:—2GDe_”



so far have found: p+ & = De™ and e 2" =1 — Ar?. Furthermore

2e (V' (1 - Ar2) + Ar) = 87CT—2GDr



so far have found: p+ & = De™ and e 2* =1 — Ar?. Furthermore

2¢” (V' (1= Ar?) + Ar) = 8:—2GDr

or equivalently

20/ (1 — Ar®) + 2Ar e’ = %Dr
c
which is a linear differential equation in y(r) := ("), v =ve”
(r 47G D on1/2

Still must fix constants B, D. Specified by physical boundary conditions &1

(i) vanishing pressure at the stellar border, p(R) 20 R: stellar radius
() = p=De R = D= pe"R) = 2,B(1 - AR?)'/?

e = B [3(1 — ARV (1 - Ar2)1/2}



so far have found: p+ & = De™ and e 2* =1 — Ar?. Furthermore

2¢" (V' (1—Ar?) + Ar) = 87CT—2GD r

or equivalently

1-Ar?) + A = —-D
( r’) + Ar 2 -r
a linear inhomogeneous differential equation in . A =ver
417G D 1/2
= e”(')zv(f)zjj—B(l—Arz) / A=5Ep

Still must fix constants B, D. Specified by physical boundary conditions &4

(i) vanishing pressure at the stellar border, p(R) 20 R: stellar radius
() = p=De R = D= pe"R) = 2,B(1 - AR?)'?

e = B [3(1 — ARV (1 - Ar2)1/2}



(ii) at stellar border r = R, the metric should meet continuously the
outer Schwarzschild solution (50): we had

-1
—g3o ) (r) = 00 = 1 — ? , g (r) = ePsol) = <1 - %)

e gives first matching condition

<1 - AR2> — e2MR) L e2rso(R) — (1 _ ‘f)

| ) i 1
= AR? = % which reduces to the standard relation for the radius R = (%%)3

|
o the second matching condition e?/(R) = ¢2/50(R) Jeads to B = 1.

8nG
A: 37::2p

Final result: the (inner) Schwarzschild solution, with

ds® = — g(l — ARV %(1 — AP)?| 2ae +

2102
1—Ar2+rdQ

describes the interior of a spherical star, with constant density p



Vorlesung X




Rappel: mouvement in the gravitational field of a black hole
use a slight generalisation of the Schwarzschild metric

1
h(r)

Qualitative studies via effective potentials:

ds? = —h(r)c2dt® + ——dr® + r*(d6? +sin 0 d¢?)

(a) for massive particles have

E? = p? + VZ%(r) , with V3Z(r) := m?h(r) (1 + 2

(b) for photons (or massless particles) have

E$ — P»Zy + VC2H(r) , with VC%(r) = h(r)ﬁ




* Schwarzschild metric: h(r) =1— %

L= particule T photon
05
L

shapes of effective potentials for mouvement around black holes very
different for massive particles and photons

= study of effective potential Vezff gives useful insight

BS" particle orbits have minimal radius ryi, such that no bound stable
orbits possible for r < rpin (according to criterion rmin = 3% or 3%)

I5" no bound orbits at all for photons, but scattering is possible



Rappel: solve full field equation R, — g, R = 82E T,

h density p
pressure p

with TH = B g 4 (p+ &) utu” for a . wit

e interior of spherical star (with p = cste) given by inner Schwarzschild metric

3 12 1 1/2 dr?

2 2 2 2 1.2 2 2
ds® = — 5(1—AR) —E(l—Ar) codt +m+rd9
with A = 8”Gp

only requirements: stationary solution, spherical symmetry.

also required continuity with outer Schwarzschild metric at stellar radius R

please do not confuse with Ricci scalar !



This was derived from the field equations of a stationary spherically
symmetric field

d52 — _C2e21/(r)dt2 + e2)\(r)dr2 + r2(dc92 + sin20d¢2)

with a perfect fluid as source

a2V 1) 1 87G
e — =] - = —
r r2 r2 c? P
o 1 1 87G p
o (v Ly L orb p
€ ( r + r2) r2 c2 ¢2
_e—2>\ (u”+u’2—u’/\’+l/—/\/> — %%
r r c2 ¢

and the equation of state of the perfect fluid is taken as a polytrope

p
a =

' Egs. (a,b,c,p) are the complete system to find the metric.



5.2 Tolman-Oppenheimer-Volkoff equation
next step: obtain an equation of state for the star equilibrium, at rest
the equation of state p = p(p) relates density and pressure at a single space point,
must understand the radial dependence p = p(r) in the stellar interior
I¥” reconsider the relationship between p and p.
starting point:
conservation law for the energy-momentum tensor of a perfect fluid at rest

p

10
0= T =8 4 (o4 5) ] = gt (o ) ]

2 v _ 1 @ L av
for any tensor of level (j) one has $"”,, = f(?a(\/—g SHYY +ThH,S

g

W

0 - T it S (Vo0 8) )

p
+ Tl (p+ 5 ) uw”

at rest, underlined term vanishes for v 7 0 since u” = 0 if v # 0. The derivative 9p(--+) =0

since star at equilibrium. Hence, the underlined term also vanishes for v = 0.



Again, at rest have the relation - da = = gwroo (p+ ) ( 0)2

Since g‘mroo( )2 = 7§g#ag“ 800, (goo) = 8a(|n v —8o0o0 ) =0a INVe (") =1/ (r)8u 1,

for a = 1 this leads to 5 )
p
ar = e e

Next, take the difference of (a) and (b)

(2N 2wt 2 £ 2508, B)
r r r2 2T T2 \PT 2

= 1-e(1+r/))+r)e 72\—4:2Gr2(p—p)

c?

Also, re-write (a) in the form & use inner Schwarzschild metric

N 1[e™® 1 816G , oy 4G ., 1R
¢ o [ et c2p = rXe - c2/)r7§7

ro2
Insert this into (#) and also (t). This gives

R rp/ A G 2 1% A G 2 P
1-(1-Z)(1- _ o ( _7)
( r)( p+pc2)+ R e P

r2 r2

(t)

which simplifies into the Tolman-Oppenheimer-Volkoff equation p = cste

p B)E+ )7

dp (
1
dr ™G r—%




Discussion: Tolman-Oppenheimer-Volkoff equation, for p = cste
do_, BT8P
dr r—%

to be completed by equation of state p(r) = p(p(r))

difficult non-linear differential equation for pressure profile p = p(r)

(i) in the newtonian limit (¢ — oo and r > %)

which is the standard fundamental equation of newtonian hydrostatics

(ii) obviously, increasing the density p leads to an increased pressure gradient,
directed towards the centre = contributes to collapse.
remarkably, increasing the pressure p has the same effect !

IE" qualitatively different from newtonian hydrodynamics.



Tolman-Oppenheimer-Volkoff equation for space-dependent density p = p(r)

28— G.a(rnlr) (1 ¥ 28) (1 + %) (1 ' QM()>

where .Z(r) := [y dr’ 4mr?p(r"). c=1
This must be completed by an equation of state p(r) = p(p(r)).

This is a system of equations for a star at equilibrium.
What about the stability of the solutions

Theorem 1: A star made from a perfect fluid of constant chemical
composition and with entropy/nucleon s constant, goes from stability under
a radial perturbation §p = dp(t, r) to instability at a point of the central
density p(0) where

8U(p(0),s,...) _ aN(p(O),s,...)
9p(0) ’ 9p(0)

where U is the equilibrium energy and N is the number of nucleons.

=0

shows where a transition from stability to instability can occur at all



Theorem 2: A star, with constant entropy/nucleon s and constant chemical
composition, satisfies the Tolman-Oppenheimer-Volkoff (TOV ) equations if
and only if the total stellar mass

M = # () = / dr 47r? p(r) p(r) =0 for r >R
0

is stationnary under all radial variations of p(r) which conserve the total
baryon number n(r) is the baryon number density

N = /Ooodr 47r? n(r) <1 B 2G/r/(r)>1/2

~~

This equilibrium is stable if and only if M (or the total energy U) is
minimal with respect to such variations.

gives a variational characterisation (with a constraint) of stellar equilibrium

furnishes a clear illustration of the physical conditions for the validity of TOV

underlined term comes from gravitational length contraction (¥ inner Schwarzschild metric)

N.B.: nothing is said yet on the mechanisms the star uses to equilibrate



Proof: use a Lagrange multiplicator A to write the constrained variation as
OM — X6N =0

Explicitly, this is spelled out as follows

0 oo ~1/2
M — XN = / dr4mr?6p(r) — )\/ dr 4rr? <1 - 2G///(r)) on(r)
0 0

r

—)\G/Ooodr Amcr (1 — 2G///(r)) o n(r)o.2(r)

r

Rappel: [ thermodynamics dU + pdV = %dS U: internal energy  p: pressure

V: volume S: entropy
internal energy ofastar U= M — mNN mypy: mass of a nucleon
for the densities this reads u(r) = p(r) — myn(r). Thermodynamics for the densities

%ds:d(gfm/v)JrPd (i) ]

For an isentropic variation 0 = §s = d(2) +pd(L) = on(r) = p(rgsrr/))(r)(Sp(r)




in addition: 6.7(r) = [y dr’ 4wr'?6p(r’). Insertion gives
oo —1/2
SM —ASN = / dranr {1— —2n) (1 - 2G‘///(’)>

0 p(r) + p(r) r
o0 / —3/2

f/\G/ dr’ anr’ (1 — %}”) n(r')} op(r)
0

This variation is stationary, if {---} = 0. This implies a certain equation for the
(constant) Lagrange multiplier A. It follows that { . } must be independent of r,

or 9,{---} = 0. This gives
W (e +p’)> (1 - 2G//(r)>1/2

= <p+p (p+p)° :
( //’) (1 - 2G///(r))3/2 e (1 ) %)3/2

L
TP e r

p+
recall that isentropy lead to n'(r) = %. Insertion into above relation produces

AN 12
26.4( )> (p+0) (///+47rr3p)

—r’p =G (1 -
B
QED

which is equivalent to TOV.



5.3 Polytropes and white dwarfs

Klarstellung: Ein Astrophysiker denkt bei ‘weien Zwergen’ keinesfalls an
Grimm’'sche Marchen, oder an alte Wichte ...Schade !

Bildquellen: https://de.wikipedia.org/wiki/Schneewittchen, https://de.wikipedia.org/wiki/Zwerg_(Mythologie)



5.3 Polytropes and white dwarfs

the TOV equation should describe the equilibrium state of a star,
including relativistic corrections

o for simplicity, begin with non-relativistic stars: that is u << myn and p < myn
such that p ~ myn, hence p< p = 4rrip < M and 264 < 1
then the TOV reduces to —r?p’(r) = G.#(r)p(r) or equivalently

d <r2dp(r)
dr \ p(r) dr

which is the constitutive newtonian hydrostatic equation for a gas ball.
Should be integrated with initial conditions (here for centre of star)

p(0) = po = cste. , p'(0)=0

N.B.: if p’(0) # 0, it follows from the gas ball equation that p’(0) =0

) = —4mGrp(r)

k5" must still provide the equation of state p(r) = p(p(r)).



Equation of state: polytrope

o1

u=p—myn= ﬁp , 7: polytrope exponent

stars considered to be isentropic (s = cste). Therefore
Cdopy d 1\ dguy d /1) 1 d (1\  1dp
~dr (n)+pdr <n>_dr (n)+pdr <n>_ (’Ypdr( )+ndr>

solving this differential equation gives p ~ (1/n) ~7 and since p ~ myn

polytrope equation K = cste.

For a newtonian star, the total mass is dominated by rest mass M, such that N = m—%
% object physical model
1 self-gravitating gas sphere ideal gas
6/5 | star SCHUSTER's exact solution
4/3 | sun EDDINGTON's model
5/3 g:gsfat;v;jzifs convective ideal gas




I integration of hydrostatic equation hard = turn to equivalent variational problem !

K&” minimise internal energy functional of the star U = U[p] = (T + V)[p]

R
T = /dr47rr2 u(r) , thermal energy
0

R
vV = —47TG/ drr #(r)p(r) , gravitational energy
0

which polytropic stars are stable
for illustration: uniform implosion of stellar matter, with density p = cste.

R 2 AT o3
mass M :/ drénrep = ?pR ~ Nmpy
0

R R
4 47 K
thermal T = / dr4nr® u(r) = 7T1K/f’/ drr? = —Wip'yR:‘
0 T 0

R R 1672
gravit. V = —47rG/ drr (/ dr’ 4zxr” p) p =-———-Gp°R®
0 0



one scales out the mass M and finds

U=T+V=2ap 1= bp'? | where a=

for v > %, U = U(p) has minimum at

b

1/(v=4/3)
pmin = (33(’}1 . 1))

leads to mass-density scaling relation

M24—7T
3

(

15K

4G

3/2
> SB-4)2

valid within 10 — 20% for ~

4
Wi
|
wion

, if7>%

N.B.: coefficient only contains global constants = universality

B5" g polytropic and isentropic star is stable for ~y > %.



Application to white dwarfs

preceeding discussion disregarded energy production, and energy radiation
IS" applicable to stars with few or exhausted ‘fuel’ for nuclear reactions

o s: not heavy enough that nuclear reactions can start

@ white dwarfs: one end stadium of stellar evolution when
accessible ‘nuclear fuel’ is used up

stellar evolution: after formation out of a gas cloud, a new star rapidly
reaches an equilibrium configuration, characterised by an empirical equation
of state (‘main sequence’) L, = L,(T,) between its luminosity L, and its
temperature T,. Energy radiated off is produced by nuclear fusion
(i) first hydrogen fusion 4H — *He B~
H most frequent, gives most energy
(ii) then helium fusion 3*He — 12C ¥ red giant
(iii) finally oxygene production *He + 2C — 10
must end at the latest with production of Fe nuclei
fusion of Fe nuclei loses energy

= without energy source, the star will contract



when * contracts, the électrons will fall to the lowest possible energy levels

if temperature low enough, électrons should occupy all energy levels ¢ = (k),
up to Fermi momentum kg

4 kp k3
# électrons/volume n= 71-3/ dk k2 -2 = F
(27h) Jo 37213

because of Pauli principle, have exactly 2 électrons in each quantum state

mass density p = nmypu, where p = # électrons/per nucleon
Example: 2p +2e~ —d+2v+ et + e~ +e~ — d+ e + energy
—_—

— 2y
deuteron d has 2 nucleons = ;1 = 2 for fusion from pure hydrogene

372 >1/3




there will be perfect électron condensation, if kg T < (k2 +m )1/2
if that is so, obtain

8 S, 2\1/2
u = (271-71)3/0 dk k [(kF +m ) me] , energy
k .
p = 87r3/ de k2L1/2 , pressure
3(2nn) (@ + md)

the Fermi momentum kp = kp(p) gives the equation of state p = p(kg(p)).
rappel: from relativistic statistical mechanics u = [ “dk e(k)n(k), p = %foocdk v(k) - k n(k)
and v(k) = ds(k), n(k) is the Fermi distribution (limit T — 0).

Definition: The critical density p. is given by the condition

37r 1/3
ki 1= me = Lk < pc) = pc~10° [kg/m3]
mp

Definition: (i) Matter is called non-degenerate, if p < pc.
(ii) Matter is called degenerate, if p > pc.



these two limit cases are examples of the simple polytrope model discussed above
(A) non-degenerate: one has kp < me, hence o
I 8rk? K2 (37r2 ) /
u= — s = =
2 15me (2nh)°  15mem® \ mup

] 5/3
= polytrope, with v = % and K = 2, ( EL ) .

15mem2 \ myp

the isentropic and polytrope model above gives for mass M, and radius R,

1/2 1/6
M, ~ 2.79; 2 (p/()o)> Mgy , R.~2-10%7" (;;go)) [km]
c Cc

even if p = p(r) the scaling relation M ~ p°/3 remains valid, constants shift by 10-20%
(B) degenerate: one has kp > m,, hence

be3p po_ BTKE D ( 372 )4/3
’ 12m.(2xh)° 127 \map
; 4 h 2 \*/3
= polytrope, with Y= 3 and K = 22 (;Z#) . CHANDRASEKHAR

p(0)\ "2
M, ~587u>M, , R, ~53-10%! <p> [km]|




have obtained upper mass limits for stable polytropic stars  cuaworasexnar
(A) non-degenerate: p < p. or kp < me

1/2 1/6
w2792 (M) g L R 210t (M)

(B) degenerate: p > p. or ky > me

p(0)\'?
M, ~587u>My , R, ~53-10%"" <p> [km]

IS" entire stars pressed into a ball with merely the double of the Earth’s radius
origin of the name: very compact objects, emitting white light

I¥” | upper mass limit of stable white dwarf: with p~2 = | M, < 1.4 M,

e importance of relativistic effects: not very large, since

(p(O))a/3 <4107 oo { 2 non-degenerate

X 1) —1 Me
# Pe 1 degenerate

further details: Weinberg, Gravitation & Cosmology (1972)



White dwarfs are regularly observed and well-studied

e Sirius A & B

1844 BESSEL Sirius suspected double star

1851 PETERS orbit determined
1862 CLARK first observation

Sirius A Sirius B
mass 21Mg  0.98Mg
radius 1.7Rs 0.0087Rg
luminosity 2504 0.03Lg
temperature | 9900[K] 25000[K]
period 50.1y

o IKPeg A& B

1862 ARGELANDER variable star
1927 HARPER orbit determined

IK Peg A IK Peg B
mass 1.65Mg 1.15Mg
radius 1.47Rg 0.006Re
luminosity 6.6Lo 0.12L4
temperature | 7600[K]  35500[K]
period 21.7d

Hubble space telescope image & orbit

Source: https://de.wikipedia.org/wiki/Sirius

IK Peg A/B  vs

sun (artist's view)

Source: https://de.wikipedia.org/wiki/IK Pegasi



e historically, the evolution of Sirius A/B has been relatively tranquil

stars are remote from each other, semi-major axis 20[AU] = orbit of Uranus
Formation 240 - 10%y ago

Sirius B should had initially 5Mg mass = rapid evolution to red giant

140 - 10% ago: Sirius B becomes red giant = He is fusioned to C,0

Sirius B loses 80% of original mass (how much transferred to Sirius A ?)

the burnt-out C- and O-rich nucleus of that red giant we see as Sirius B today
124 - 10%y ago: contraction of the nucleus until stabilised by electron degeneracy

BZ" Sirius B was first white dwarf ever observed

e the future evolution of IK Peg A/B has the
stars are fairly close to each other, semi-major axis 0.3[AU] = orbit of Mercury
Formation of system (50 — 600) - 10°y ago
massive progenitor of IK Peg B, turned into a red giant, lost hydrogen/helium enveloppe
IK Peg B contracts into a white dwarf, consists essentially of C,0
IK Peg A is relatively hot, will turn into a red giant within (2 — 3) -10%
since orbit is close, the mass lost by IK Peg A will mainly fall on IK Peg B
even now, IK Peg B is one of the most heavy white dwarfs known
a white dwarf more massive than the Chandrasekhar limit 1.4M, will explode
IK Peg is nearest known candidate for a future supernova explosion (just 150 [ly] away)




Vorlaufer einer Typ la Supernova

Zwei normale Sterne in
einem Binarsystem.

Der zweite, leichtere Stern
und der Kern des Riesen
winden sich in einer gemein-
samen Hiille aufeinander zu.

Der alternde Begleitstern
schwillt an und gibt nun
Gas an den Zwerg ab.

Der groBere Stern wird
zum roten Riesen...

Die gemeinsame Hiille wird
abgestoRen, wahrend der
Abstand zwischen Kern und
Sekundérstern schrumpft.

Der weile Zwgrg
bis er eine kritische Masse
erreicht und explodiert...

Source: https://fr.wikipedia.org

aghskan,

(.‘.

...der Gas an den zweiten
Stern abgibt und diesen ein-
hillt und wachsen |aBt.

Der verbleibende Kern des
Riesen kollabiert und wird
zum weilen Zwerg.

... und schleudert damit den

Begleitstern davon.

iki/Fichier:Progenitor_IA_supernova.svg



implosion of a white dwarf = supernova typ IA
identical physical initial conditions

universal light curve and same maximal luminosity
can be used to measure distance of supernovae
surpernovae are most bright events in the universe

peak luminosity comparable to the one of an entire galaxy
peak luminosities measured up to 570 - 10°Lg
brightest SN seen on Earth in 1006: visible at daytime

¥ yse as ‘distance candles’

—Mi
L/Lo SNla

decay of SN light curve from radioactive decays (Ni, Co)

remnants of SNs can have spectacular forms

Source: https://en.wikipedia.org/wiki/Type-Ia-supernova



white dwarfs are stabilised by pressure of degenerated électrons
white dwarfs are macroscopic quantum objects

some propetrties: typical densities of several materials
masses (0.17 — 1.35) Mg, material density [kg/m?3]
typically 0.6 Mg water 1000
radius (0.8 —2) - 1072Rg, sun 1408
density 107 — 101%[kg/m?] osmium 2.3-10%
surface gravity 10°g sun (core) 1.5-10°
temperature (1 — 4) - 10*[K] white dwarf 10°
Fermi energy ~ 10°[K] nucleus 2.3-10%
coldest WD: T = 3900[K] neutron star (core) 107 — 1018
this WD is > 11 - 10°[y] old black hole >2-.10%

o white dwarfs are stratified (layers O, C, He, ...)
o interior is opaque (excited électrons do not find free levels deep inside)
o scale height of atmosphere ~ 10?[m] = very thin hot atmosphere
and crust of few [km] until one reaches the high-density core
o no internal energy source = slowly cool, on time scales > 10°[y]



Structure of a White Dwarf

Atmosphere (1-10 km)
Zone of temperature change

Isothermal core

5000 km

>
i
+

1.0

I
=
=

0.5

Relative density
T
e
o

¥ Relative temperature

0.7 1.0 = Radius fraction

Source: https://cronodon.com/SpaceTech/WhiteDwarf.html



5.4 Neutron stars

end state of stellar evolution: described by polytrope, * stable for v > %
after exhaustion of nuclear fuel: * becomes ‘white dwarf’,
stabilised by électron degeneracy pressure

but for kp 2 5me, électrons captured by protons (inverse 3-decay)
p+e — n+v

also occurs if M, larger than Chandrasekhar limit

== ’new star collapse !‘ = observed as supernova !

e neutrinos () escape = unambiguous signal for a supernova
e stellar matter is transformed into neutrons
o matter will be compressed until the neutrons become degenerate



both électrons and neutrons are fermions, but neutron mass m, ~ 2000m,
can re-use same model as before, with électrons replaced by neutrons
and p+— 1

8 kF kF/mn
p o~ u:ﬂ/ dkk2(k2+m%)1/2:3pc/ du v’/ 2 +1
0 0

(2ﬂ'h)
87_(_ kF _1/2 kF/m,, u4
= — dk k* (k? 2 = / dy ———
P = Sy fy KO o [T o

where the critical density is now

8rmic3
b= 3oy = 6 - 10'8 [kg/m?]

That is the density of nuclear matter !

consider case of perfect neutron condensation = can effectively look at T — 0 limit



(A) non-degenerate: p < pc or kp < mp newtonian polytrope

M, ~27 (P/E‘:))”Q Mo, Ro~11 <f’f(fc’>>”6 )

N.B.: here ;‘? ~ 0.3, relativistic effects are becoming important

(B) degenerate: p > p. or kp > m,

~ 3 (ke (), 1L
p—4 m, P67P—4 " Pc—3f)

equation of state of a photon gas =
The TOV equation becomes in the extreme relativistic case p = %p

‘fzdﬁ(rr) = 4G (r)p(r) (1 + %) <1 _ 2G’/r”(r)>_1

with the exact solution p(r) = 5677% Misner & Zapolski 1964

but: expect two independent solutions ...



two qualitative features:
e density p(r) diverges for r — 0 = extreme concentration in the centre
o slow decay of p(r) for r — 0o = outer layers not fully degenerate

I¥" improve T OV equations and solve numerically.

Leads to estimates of upper mass limit (TOv-limit) and of radius

M.,

N ~o

< (22-29)My , Rep = (10 — 12)[km]

how is this limit affected if neutron star rotates

10

T T T
- Unstable Neutron stars Unstable Y White dwarfs —

two branches of stellar T ’ Y

equilibrium Chandrasekhar limit |

Mm— —v

(1) pure 56 Fe white dwarf
(2) pure neutron star

MM o

if the neutron star becomes

Pure neutrons

unstable, no known process can

; 0.01
stop collapse into black hole b 0 00 P 70000

R(km)

Source: Weinberg. Gravitation & Cosmology (1972)



neutron stars have been observed, first with radio waves (‘pulsars’) then also optically
at present the most heavy known neutron stars include:

PSR J1748-2021B, M, = (2.74 +0.21) My,

PSR B1957+20, M, = (2.4+0.12) Mg

PSR J2215+4-5135, M, = (2.27 + 0.17) Mg

the most light known black holes have masses Mgy > (3.4tg:f )Mo

= \the TOV limit should be somewhere in between ... ‘
but: there are candidates for neutron stars beyond the TOV limit !
e.g. GW170817, M ~ (2.74 100t )My, merger of two neutron stars, BH collapse 5-10s] later ?

Some numerical illustrations:

(a) angular momentum ¢ = MR?w = R?w = cste during collapse
sun: Rp =7-10%m], we = 3- 107%™}
Neutron star: R, =5 -10*[m)]

(b) magnetic flux ® = 71BR? = BR? = cste during collapse
sun: B ~ 1074[T] (global?17 B ~ 107'[T] (sun spots) } ~ B, > 104[,1,]
Neutron star: R, =5 10%[m]

actual fields (10* — 10%)[T] = extremely strong magnetic field !
N.B.: in labos on Earth: Bmax < 16[T]; dipdle magnets of LHC collider: 8.2[T]

~

} = w, ~ 10%[s71] very rapid rotation !



schematic section of a neutron star

Outer Crust 7 3
oSE lons, Electrons 15 km 107 gfem Crystalline
0.3-0.5 p, 14 km{T 101 gfem®  Mantle
Inner Crust Electrons, Neutrons, Nucleii
Lzkm 052p, 10 km [={10% gfcm?
Outer Core Neutron - Proton Fermi liquid
Superfluid

Few % Electron Fermi gas

. 4 Neutron <
1kmy10¥ gfem®  Liquid

complex inner structure *density increases towards interior (factor 108)

full neutron degeneracy only deeply inside

atmosphere thickness < [cm)]

*core temperature falls from 10™[K] to
10*[K] in the first [My] after formation

neutron stars emit intensive periodic radiation in
concentrated rays from magnetic pdles

= pulsar periods ~ [ms]

1934 theoretical proposal BAADE, ZWICKY
1967 observation (radio) HEWITT, BELL
1992 observation (optical) RX J1856.5-3754 — Chandra observatory

Sources: https://de.wikipedia.org/wiki/Neutronenstern, https://en.wikipedia.org/wiki/Neutron_star



Vorlesung Xl




Rappel: solve full field equation R, — g R = 855 T,

with TH = %g#l’ —+ (p-'- (‘%) utu for a , with density p

pressure p

e interior of spherical star (with p = cste) given by inner Schwarzschild metric

3 12 1 1/2

2 2 2 2 2 2
ds:—[z(l—AR) —5(1-ar) de? + — 5 + 1240
and A = 8725;[) explicit solution ds? for generic p exists

e Pressure profile p = p(r): = Tolman-Oppenheimer-Volkoff (Tov) equation

2P G.a(r)(r) <1 " ZE:;) (1 " %) <1 + QG‘/fl(’)y

where .Z(r) := [y dr’ 4xr?p(r'). c=1
o also need equation of state p(r) = p(p(r)).




recast solution of TOV-equation as constrained variational problem

0 [} —-1/2
Mip] = / dr 4mr? p(r) Zmin , N= / dr 4mr? n(r) (1 - 2Gr///(r)> fixed
0 0
Alternatively, can minimise energy U[p] = M[p] — Nmy = (T + V)[p]
T: thermal energy, V: gravitational energy
lllustration: polytrope equation of state p = Kp”, isentropic star
U
J
for density p = cste, find

U=U(p) =ap" ' — bp'/?

which, for v > %, has a single minimum at pmin-

=" universal mass-density scaling relation valid within 10 — 20% for v = 4 — §
ar (15K\*? 5 ,
4

¥ a polytropic and isentropic star is stable for v > 3.



Rappel: Have analysed two possible

white dwarf

neutron star

degeneracy
maximal mass limit
radius

density

surface gravity

what about effects of rotation on a white dwarf/neutron star

two branches of stellar
equilibrium

(1) pure 56 Fe white dwarf
(2) pure neutron star

if the neutron star becomes
unstable, no known process can

stop collapse into black hole

electrons

1.4M,,

~ 10*[km]
10°[kg/m?]
10°g

neutrons

(2.2 —2.9)M,
(10 — 12)[km]
1017 kg /m?)
1011g

- Unstable

I I |
Neutron stars *)t(— Unstable Y White dwarfs —
\
\
tl A

Chandrasekhar limi

)
§ Mo { §
= Re e sasogeOnan et
01— R
Pure Fe5¢
Pure neutrons
0.01 | L | |
1 10 100 1000 10000
R{km)

Source: Weinberg, Gravitation & Cosmology (1972)




6. Gravitational waves
* new phenomenon in gravitation, quite analogous to electromagnetic waves
* theoretically predicted by EINSTEIN in 1916
* first direct observation announced the 11" of february 2016
* new ‘window’ in astrophysics, complementary to ‘optical’ observations
* created by strong gravitational fields; propagation is a weak-field effect

* 1974 indirect evidence from change of period of binary pulsar
PSR 1913+16 HULSE, TAYLOR °

using the world'’s largest radio telescope (Arecibo)
diameter 305[m] — collapsed déc. 2020

* since 2015 direct detection (LIGO & VIRGO collab.)

Cumulative period shift (s)
|
T

a0 bl
1975 1980 1985 1990 1995 2000 2005
Year

https://www.ligo.caltech.edu/page/what-is-ligo

https://www.sciencesetavenir.fr/espace/univers/peut-on-sauver-le-radiotelescope-d-arecibo.149148
https://de.wikipedia.org/wiki/PSR_1913%2B16




ﬂ():- ej2\\ < Séminaire du département de Physique et Mécanique <
= o2 Société Frangaise de Physique

19152016 : 101.an3 de. velntivité généenle.

Nathalie Deruelle

Laboratoire AstroPacticule et Cosmologie — Paris 7

Jo..donherai“un apercu de l'évolution de la théorie
d'Einstein de la gravitation depuis sa naissance en 1915 et
essaierai de montrer sa "déraisonnable efficacité".

Jeudi 11 février, 14h
Amphi 8

a bit of regional history: a SFP seminar announcement in Nancy the
11" of February 2016 — followed by a certain LIGO press conference . ..



6.1 Linear approximation

a wave equation is derived in the linear approximation

uv = Nuv + hul/ = g;g}/)

where ‘hW} < 1, merely keep terms of first order

have system with weak curvature

but can still make general coordinate transformations

IS” consider Lorentz transformations on the background metric

/ v / v
xP = X = N XY X = X, = Ny X

AF,, is space-independent matrix of Lorentz transformations, /\”,,/_\#K =4,"

The metric tensor transforms as follows
S
g’“’ e g/;w - /\Mp/\uagpa - gLV = AM A, &po

while the Minkowski metric is invariant A,"A, 150 = 17,



(1) _

the complete metric g,/ = 7, + hy, transforms as follows

NATEY = + NN hye =81 = NSNS Bpe = h

a weak gravitational field is described by the tensor hy,,, but in flat time-space.

Write down EINSTEIN's field equations: notice first that

1
iu - E”Kp(hpku + hop — hAu,p)
1
= Rus = E(huﬁ,av + hav s = Puv,ap = hapu)
= R;(L}/) = UQBR&B@ = (hf: av T hy uB hHV:Z - hv/“’)

where a3 = 0,0%a = [a (d'Alembert) and /1 := h"*,.

Next, the Einstein tensor reads G,S ) = RS,) —1RrMWyp,,.

N.B.: the energy-momentum tensor T,L(l,

87TG (0)

2 Tow

l,) does not depend on h,,, — see newtonian limit

Gl =

N.B.: to this order, the conservation law T#"., = 0 reduces to T*“’(O)ﬂ, =9, T (0 =,



field equations G;(w) = SWG T( )| for the metric tensor g( )

® are symmetric matrices G;(Ul,) = G,E#), T,S?,) = Tu(g)

e obey conservation laws 6”G(1) 0” T‘(L?,) =0
= gives 10 — 4 = 6 independent field equations
(1) _ (1)

o metric tensor symmetric g,/ = gy, and conserved 0"g, ( ) =0
= have 10 — 4 = 6 independent variables

= remaining 4 degrees of freedom are used to maintain general covariance !

Definition: An infinitesimal gauge transformation is a change of coordinates

Xt X=Xt () |PME)| <1, |oubH(x)| < 1

N.B.: terms in b and its derivatives are only kept to first order.

Ox'H Ox*
_ Su "
o0 oMy + 0 bt — T

= 0o — Du b + O(b?)



) "
had seen, for gauge transformation: gx",a ~ 0"y — Oab"

this implies for the transformation of the metric tensor
r (1) Ox* Ox” (1)
B T xm oxB
~ (0o = 0ab") (6" — 95b") (M + hyur)
~ 000" 8 (M + huw) — Oab¥ N — 0gb" Ny

and this gives the gauge transformation of the tensor h,g: bo = b0

W = hag — dubs — sba

N.B.: maintains the symmetry h,g = hgq.



there are many analogies between electromagnetism and linearised gravity:

electromagnetism linearised gravity
source ¥ TH = TVH
conservation law Ou* =0 OuTH =0
field A'LL hul/ = hu,u
gauge tranformation | A, — A, — 9, N\ hu = hy — 0uby, — 0ub,
Lorenz gauge OH*AL =0 8“/_7,“, =0
field equation DA, = %7, Ohy = 26267,
(in Lorenz gauge)
with abbreviation: hy, := hy, — %ho‘unm/

N.B.: the physicists L. Lorenz (Copenhagen) and H.A. Lorentz (Leiden) are distinct people.
But there also exists a ‘Lorentz-Lorenz equation’ in optics.



6.2 Lorenz gauge

Definition: The trace-inverted field is given by

- 1
hu == hu — Ehnm, , h:=h%,

* one has /_7 = Flﬁ = h'uu — %h -4 = —h explains the name
* gauge transformation 1/ ; = h,s — J.bs — Jsb, = H =h— 208 bg.
Consider the gauge transformation

1
h/a — 5= *h/ o
1
= haﬂ - aabﬁ - (95ba - E(h - 237b,y)7]a/3
1
= ha/g — fhna/g — 6abg — agba + (87b7)77a5

2
= f_laﬁ — 6ab5 — agba + (8%7)77065 (J)



take the divergence in eq. (J) =0
%W op = 0%hap—0%0abs — 0“9gba + 0%(97by)nap = 0%hag—DObg

choosing the gauge transformation such that [lbg < 80‘/_1aﬁ, one can always
achieve that the Lorenz gauge 0%h 5 = 0 is satisfied. The function b(x) is
unique up to solutions of [1bg = 0.

K&” |t is always possible to have the Lorenz gauge 8"5#,, = 0 satisfied.

this implies 0" h,,, = %&,h. Furthermore, for the linearised Ricci scalar
RM = 949" h,,, — Oh = 9, (39,h) — Oh = —%Dh
and for the linearised Ricci tensor
R = % (820, hoy + 8,0%hay, — Ohy,, — 8,0, h)

1 1 1 1
= 5 <(9V23uh + 3H§0,,h - Dh/“, 8H8Vh> == *EDh#V



The linearised Einstein tensor becomes

1

1 1 1
1) 1 1 _ —
GH) =RY — 5R< ) Ny = — 50y + g Oh = =50k,

For linearised gravity, the field equation takes the form of a wave equation
(with external source)

- 167G o
Oy = == 79

Small perturbations of the metric propagate as waves with light velocity‘
EINSTEIN 1916

retarded formal solution can add arbitrary solution of (hy, =0
(0) lr=r']
o (t r)——4G dr’ Taw (t = =)
uv\t ) /
c |r —r|

retarded potential, quite familiar from electromagnetism

N. Deruelle, J.P. Lesote, “Les ondes gravitationnelles”, Paris (2018)



6.3 Plane waves

gravitational wave propagation in the vacuum, without source 7',58) =0
= [h,, =0, since h= —h, also have [Jh =0

wave equation (W)

ansatz: plane waves hy, (x) = ¢, e&*

with k = (£, k): four-momentum of wave, ¢, = ¢,,, polarisation tensor

c’ A
* insert into wave equation (W): k%, e** =0
= k% = k,k® = —“CJ—ZZ Tk 20 light-like four-momentum

* must obey Lorenz gauge 0" h,,, =0 = k¢, = 0 transverse wave

Gravitational waves are transversally polarised and propagate on the light cone.

Experimental bound: the gravitational wave event GW170817 was also observed as ~y-ray
burst in the galaxy NGC 4993. The observed time difference of arrival of the gravity and

light signals gives C —
_3.10°15  erav — flisht 5 10-16
Clight




6.4 Transverse traceless gauge
(a) can always make further gauge transformations provided [lb,, = 0.
one has: hy, = qwe x|

: and choose: b, = B,e B, = cste
rappel: eq. (J): Wos = hap — Oabs — Ogba + (07by)Nap

ik-x.

gauge-transformed 62% =€ap — ikaBﬁ _ ikﬁBa + inaﬂ(k . B) (J')

polarisation tensor

take the trace ¢’ := ¢/®, = &%, +2ik -B = ¢ + 2ik - B
via a convenient choice of B, can always achieve that ¢’ = 0.

= ’ The polarisation tensor has vanishing trace ¢ = 0 ‘
(b) 7 can one also obtain that g,0 =0
From the gauge transformation (J')

/ . . . ? "
euozeug—1k#Bo—1koBH+1n#0(k-B) =0 (J")

in principle, 4 conditions ELO =X 0. However, also have k*¢,,,, = 0 and k2 =0.
Constraint from (J") kteq = kie,0 — k> By —iko(k - B) + ik (k- B) 0.

only three independent conditions in (J') on the B, !

B | For the polarisation tensor, can always have ¢ = 0 and €0 = €q,, = 0‘




(b) count number of independent components of the polarisation tensor ¢,

a priori: 10 independent components
Lorenz gauge ke, =0 4 constraints
trace vanishes ¢ = 0 1 constraint
transverse gauge €,0 =0 3 constraints
bilan: 10-4—-1-3 2 independent components

BS" | A gravitational wave has two possible po/arisations‘

Example: gravitational wave, propagating in z-direction
= wave vector k = 2 (w,0,0,w)

c
weu3 = 0

from transversality: k*e,3 =0 and €,0 = &g, = 0 =
y 13 10 O €3 = €3, =0

gives the metric

0 0 0 O
I _ 0 hy hx 0 i%(zfct)
) =10 h. —h, o |©

0 0 0 O

the amplitudes hy,hy correspond to the 2 possible polarisations



6.5 Effect on test masses

Example 1: a single free particle meets a gravitational wave
initially, particle at rest, with four-velocity u*(0) = (c,0,0,0).
the effect of the passage of gravitational wave comes from the equation of motion

m
ddi—f—r“Auu =0
-

initially, only u® # 0 and u =0. Have for 7 =0

du*
—i—rgououo—o — TZO for all 7
T

dut
dr

since l'go = %n“p(hpo,o + hopo — hOO,p) = 0 because all terms vanish.
—~ = =

=0 =0 =0
= particle remains stationary in its rest frame

I5" | Need at least two particles in order to detect gravitational waves

N.B.: principle of equivalence: all gravitation can be absorbed into changes of coordinates !




Example 2:
two particles, with distance ds® = = guwdxdx”, meet a gravitational wave

wave propagates in z-direction, take polarisation state hy = hy; = hyy(ct — z)

ds® = —c2dt? + [1+ hi(ct — 2)] dx® + [1— hyp(ct — z)]dy2 +dz?

for simplicity, take an instant where h;; > 0

e two particles with same y-coordinate have spatial distance
ds? = (1 + hll)dx2 > dx? — will separate further

e two particles with same x-coordinate have spatial distance
ds? (1 — h11 dy < dy? — will approach further

-O-0-O-O-



Example 3:
two particles, with distance ds® = = guwdx#dx”, meet a gravitational wave

wave propagates in z-direction, take polarisation state hy, = hjo = hya(ct — 2)

ds® = —c?dt? + dx? + 2h1p(ct — z)dxdy + dy? + dz°

rotate coordinates by 45°: X = %(X +y).y= \F( x+y)
ds? = —c2dt? + [1 + hpa(ct — 2)]d%2 + [1 — hao(ct — 2)]dy? + d2°

same kind of analysis as before

O0-0-0-C

IS" The passage of a gravitational wave leads to changes in the distance
between two particles



Quantitative Estimates

* since fields are very small indeed, newtonian description essentially enough
* two particles at positions r and r +s. The accelerations are

d?rf ; d*(r' +s%) ;
W:—Vﬁﬁ(’)v T:—Vﬁs(""s)
with the expansion ¢(r +s) ~ ¢(r) +s- V¢(r) + ..., find for separation
d?s’ 82(;5 j relative acceleration 82(25
= —— S — = e
dt? or'ors distance or'or
M

lllustration: newtonian potential ¢ = —

E r=1rl

P _ _GM (o
oriori P \"Y T r?

if 15¢ particle on z-axis, r = (0,0, r), one has

d2 Sy B GM 1 . Sy
a\ T E :
s —2 s

1" tidal forces: expansion in z-direction (longit.), contraction in xy-directions (transv.)



a gravitational wave propagating in z-direction generates the perturbation

0p = —f(r‘:wsin(kz—wt) , k=4

with f: relativistic correction factor = 022¢ ~ f‘ 2 M 2 sm(kz — wt)
the relative amplitude of the position change

s fGM detailed analysis: f ~ (£)
S |l’|C2 etalled analysis: p

possible sources: neutron stars, in ‘cosmic neighbourhood’
— until Virgo super-cluster of galaxies

|r| =~ 15[Mpc] =~ 50 - 10°[light years] , f~0.1 , M~ M

leads to | 25 ~ 1072!| 1¥ extremely weak amplitudes !

even for a distance s ~ 10[km], have 6s ~ 1071"[m] ~ 0.01 [nuclear radius]

¥¥” | Direct detection of gravitational waves requires extraordinary efforts‘




Detector of gravitational waves
main principle: interferometry Source: https://en.wikipedia.org/wiki/Gravitational wave
===

Lichtspeicherarm

Probemasse NN

Lichtspeicherarm

Probemasse Probemasse 2

Probemasse

Strahl-
teiler Photodetektor

two suspended mirrors as test masses, arranged as Pérot-Fabry interferometer,
Iength of arm L light n times reflected, storage time At, = n- é
passage of a gravitational wave changes interference pattern

main task: eliminate all real and imaginable background noise !

IS yse at least two instruments in coincidence

Instruments: LIGO (Hanford & Livingston (U.s.A.)) L = 4[km] > 1200 members

VIRGO (Cascina (Italy)), L= 3[km] > 550 members

IZ | on 61 of decembre 2020: 20 confirmed gravitational wave events, 52 candidates

for details, see https://en.wikipedia.org/wiki/List_of_gravitational_wave_observations



6.6 Energy flux of gravitational waves

e restrict to linear approximation
e gravitational waves move on minkowskian background
e gravitational waves also transport energy and momentum

S = gl(“f/) +hu gl(“f/) = N + O(h?)  ‘flat’ background metric
gives analogous decomposition of the Ricci tensor
f 1 2
Rw=R{+ RY + RD +. ..
——
1storder  2ndorder
Vacuum field equation: R, = 0. At first order, have seen that R,Sly) =0
f 2
RY) + RZ) =0

Both terms are of second order O(h2) small curvature of background by grav. wave
The energy-momentum tensor t,, of the gravitational wave is given by

1 871G c? 1




to be averaged over a volume large enough: locally, any time-space is flat in certain coordinates !

= g ((72) 3o (7))

Example: linearly polarised wave (here h,-state) propagating in z-direction

-1 ) -1 )
_ 1+ hy 0 o 1-hy 0
Buv = 0 1— hy » £ = 0 1+ hy
1 1

with hy = hoy cos(w(t — z/c)). The averaged Ricci tensor is

(R = (s, = Fiarla)

Mo=To= M= %(/_M,o — hihyo)
Ms=Th = —Th = —3(hro — hihio)
= Ry = R = 1(doh), RE = RY) = 0 and R® = "R = 0.

energy density of gravitational plane wave (contribution of hy polarisation only)

The non-vanishing Christoffel symbols: {

2

e (@5



to be averaged over a volume large enough: locally, any time-space is flat in certain coordinates !

= g ((72) 3o (7))

Example: linearly polarised wave (here hy-state) propagating in z-direction

-1 ) -1 )
_ 1+ hy 0 o 1-hy 0
Buv = 0 1— hy » £ = 0 1+ hy
1 1

with hy = hiocos(w(t — z/c)). The averaged Ricci tensor is

<th2,,)> <rgAr N >

Mo=To= M= %(/_M,o — hihyo)
Ms=Th=-Th= —%(/‘u,o — hihio)

= Ry = R = 1(doh), RE = RY) = 0 and R® = "R = 0.

energy density of grawtatlonal plane wave (contributions of both hy and hy polarisations)

The non-vanishing Christoffel symbols: {

2

c - -
too = 167G <(doh+)2 + (30hx)2>



to be averaged over a volume large enough: locally, any time-space is flat in certain coordinates !

= g ((72) 3o (7))

Example: linearly polarised wave (here hy-state) propagating in z-direction

-1 ) -1 )
_ 1+ Ry 0 v 1-hy 0
Buv = 0 1— hy » &= 0 1+ hy
1 1

with hy = hyocos(w(t — z/c)). The averaged Ricci tensor is

<R§f)> <r;&r —r%rm>

1 1 o _1(F  _ T F
The non-vanishing Christoffel symbols: { Mo = rOl o rl T2 (1h+’0 h+h+’0)

= R = R = 3(dhy), RY = R =0 and R(2 " RZ) =o.
energy density of graV|tat|onaI plane wave (with hy = hi1 = —hoy and hy = hip = hy1)

o C2 T \2 7 \2\ C2 8’1,’] 8h,-j
= 1676 <(8°h*) + (Gohx) >_ 327G < at ot >

transverse traceless gauge




to be averaged over a volume large enough: locally, any time-space is flat in certain coordinates !

= g ((72) 3o (7))

Example: linearly polarised wave (here hy-state) propagating in z-direction

-1 ) -1 )
_ 1+ Ry 0 v 1-hy 0
Buv = 0 1— hy » &= 0 1+ hy
1 1

with hy = hyocos(w(t — z/c)). The averaged Ricci tensor is

<R§f)> <r;&r —r%rm>

Mo=To = T =3(hio—hihio)
Ms=T5 =T = —%(h+,o — hihyo)
= Rog) = R§3 = (30h+) 11) = 22 =0and R® = 17“”/-?;(123 =0.

The non-vanishing Christoffel symbols: {

energy density of graV|tat|onaI plane wave (with hy = hi1 = —hx and hy = hip = ho1)
2 3
C c’?h,—,- 8h,—,— C 6h,-- 6h,—-
too = flux f:= cto = 1=
%~ 327G < ot ot > = eneray flux 0= 300G < ot ot >

analogue of electromagnetic Poynting vector transverse traceless gauge



6.7 Radiation of a rotating binary source

rappel: recall the retarded wave, for |r| > || =t
4G W=y a6 Ir]
ho(t, r) = — /d’ c ~ —— [drf T, (t——.r
o (£:1) c? lr —r/| c? |r| o c’ )
for weak fields, conservation law T#” , = 0:
(i) set u = 0 and derive by x%: T% gy = —% (‘9873') = —% (6812’) =—T%
(i) set p=k: T o+ T9; = 0. = Both together give
ik
T% 00 = T jx *)
carry out the following transformation, Q C R® + bound. cond. (r=(x"x*x%)
aTH*

OxI Oxk =x"x" OxJ

=0

_/dr x"aij +XmaTj"
Q OxJ OxJ

= (xr T xmT) —|—/dr (9T +8nT") =2 /dr T
Q JQ

Ox/

/dr(ikx—i—&kx)

=0



together with (*) this gives

1 82 m _n 700 mn
5 A0 er x"T =2 dr T
c? Ot Q Q

for the retarded wave, at large distances

2
A (¢, r) =~ 2G12/dr’ pmn 261 07 /dr’ T00xmxn

c2r c* r ot?

For the planned applications here, the NR limit is enough: T given by the mass density p.

2G1 -
hm”(t,r):c—f;lm”(t—g) , lm"(t):/drp(t,r)x X"

Quadrupole formula for gravitational radiation, I™": quadrupole moment

= ’ Gravitational radiation is quadrupole radiation‘

in contrast to the dipole electromagnetic radiation



Case study: two stars of equal mass M, in a circular orbit of radius R
angular frequency of orbit: w = 2% = (w)l/2

b IR3 3'd KEPLER's law
at time t the stars have the positions
. o
(x,y,2) = (Rcoswt, Rsinwt,0) Q
Y Z) = (=R coswt, —Rsinwt, 0)
such that
Im" =2M x™(t)x"(t)
Example: /'1(t) = 2MR? cos? wt S
2w after half a period have identical * configuration

1 + cos2wt sin 2wt . cos2wt  sin2wt
I(t) = MR? sin2wt 1 — cos2wt , I(t) = —4w?MR? | sin2wt — cos2wt
0 0

and the metric reads already in transverse traceless gauge

_ 8MG R%w? cos2wt,  sin2wt, S,
-, sin2wt,  —cos2wt, ' r=torfe

h* (t, r)

N.B.: only describes emission in z-direction



next, describe emission in x-direction:
require: hy; = hip = 0 = only hy» # 0 remains = h,,, not traceless

formal trick to solve this: if M = < i Z > then tr M = a+ d. Now

[ a b a+d at+d, % b # 0
=2 g) " = (T e (R

e blue term is in transverse traceless gauge;
o red term does not contribute to gravitational field

= for emission in x-direction, have

0
~ 8MG R*w? 0
ot r cos 2wt, 0
0 — cos 2wt

B (t,r)

tr=t—r/c

* with these metrics, find the energy density tgg of a gravitational wave

)_ ¢
- 167G

(h+,0)2 + (h><,0)2

. . . . . . z
if emission in z-direction t(()0



can now put everything together:
(a) flux in z-direction
have hy ~ cos2wt,, hy ~ sin2wt, and h3 o+ h% o ~ 1

; 3 MG\ * / R2w?\ 2 16G 6
f—ctéo)=16C7TG <8 > < W> 4t — 6 M2R4w

ct r 5 r

(b) flux in x-direction

have only terms cos 2wt,

= gives oscillating signal, best perform average over at least one period

- T 26 w® 1

hlgh/_y anISOtrOpIC emISSIOn Source: L. Ryder, General Relativity (2009)

3 i?
* flux decreases as

1/r and not as 1/r% | Y ©2¢§>

; 7

Orbiting stars in the xy plane. Radiation is emitted in all directions, but not with equal strength.




6.8 Radiated energy

energy density of a gravitational wave, via the quadrupole moment
gy Yy g

& L™

8mc r

where the average is over at least one period

A It is assumed implicitly here that the tensor /™" is transverse traceless !
otherwise ™" — |M" — %5’””/";(

too =

Then the total energy emitted is

dE G G ... ..
D dQ 2 t - — dQ mn mn = % mn m
dt /Sd rctoo 8mcd /Sd 3 ) 5¢5 g )

* only third derivative | ™" enters into the energy dissipation
* numerically very small pre-factor G ¢ ~°

BS" | even in strong fields the gravitational radiation will be very weak

much more weak than electromagnetic radiation



Case study: two stars of equal mass M, in a circular orbit of radius R

had already found the quadrupole tensor = ([ mn I ™) = 128M2R*wO

dt ~ 5¢ Y T BB RS T80

dE _ 128G\ 54 5 _ 2G* M° 1c<,%>>5
G \R

¥5" | | 3 binary star system radiates gravitational waves ! ‘
effect notable only if orbit radius is very close to Schwarzschild radius of binary system
total energy of binary system in circular orbit & angular frequency (3 Kepler)

GM? GM\ /2
E = 2Mc? — W= ()

4R 7 AR3

energy loss = reduction of orbital radius R and reduction of period P

dP _3dR _ 3dE _  48x (#\%?
P 2R 2E  5/32

This is a prediction for a strong gravitational field !



Binary pulsar PSR B1913+16

neutron stars emit very regular pulses (radio waves, 59[ms]) ¥~ pulsar

— one of the best clocks available
Source: https://physicsfromplanetearth.wordpress.com/2016/04/19/gravitational-radiation-1/

1974 HuLse & Tavror find yet another pulsar

but also observe unexplained shift in pulse frequency
explained as Doppler shift caused by companion

w very close binary system: a = 1.950100 - 10°[km] ~ 2.8R,
two neutron stars on a highly elliptic orbit e = 0.6171334
M; = 1.438 + 0.001 M5, Mp = 1.390 + 0.001 M,
I¥” very precise astronomical characterisation of this binary pulsar companion invisible

1" can repeat all classical tests of general relativity
for fleldS, including

e shift of periastron

e Shapiro time delay

lead to consistent constraints on masses M > of binary

1978 change of period P, = —(2.40263 + 0.00005) - 1072 < 0

J.M. Weisberg, Y. Huang, ApJ 829, 55 (2016)

Pulsar mass (Mg)
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Figure 3. Orbital decay of PSR B1913-+16 as a function of time. The curve represents the orbital phase shift expected from gravitational wave emission according to
General Relativity. The points, with error bars too small to show, represent our measurements.

Comparison of the change P in the orbital period observed in the binary pulsar
PSR B1913+16 with the prediction of general relativity, over > 35 years.

Qua ntitatively, POGbS 0.9983 4+ 0.0016 |. parameter-free prediction




PSR B /poR References

J0348+4+0432 1.05 + 0.18 Antoniadis et al. (2013)
J0737-3039 1.003 + 0.014 Kramer et al. (2006)
J1141-6545 1.04 + 0.06 Bhat et al. (2008)
B1534+12 0.91 + 0.06 Stairs et al. (2002)
J1738+40333 0.94 + 0.13 Freire et al. (2012)
J1756-2251 1.08 + 0.03 Ferdman et al. (2014)
J1906+4+0746 1.01 £ 0.05" van Leeuwen et al. (2015)
B1913+16 0.9983 + 0.0016 This work

B2127+11C 1.00 + 0.03 Jacoby et al. (2006)

Source: J.M. Weisberg, Y. Huang, ApJ 829, 55 (2016)
main source of uncertainty: lack of precise knowledge of mouvement of matter in the galaxy
Similar observations have been carried out for several binary pulsars.

This permits observational tests of general relativity for strong fields.
Listed here are the measurements for PObS/PGR

N.B.: for PSR J0737-3039, both neutrons stars are seen as pulsars — double pulsar

= firm conclusion:
gravitational waves do exist, as predicted by General Relativity.




return once more to general theory: frequency of emitted gravitational waves

here for My = M, = M

fo2w L(GMNYE 1 e (a\'?
217w \4R8  V8rR\R

as » * loose energy, orbital radius R decreases
BE" &« will finally collide PSR B1913-+16: time to collapse ~ 300[My]
right before collision, frequency of gravitational wave will increase ¥ ‘chirp’

Hanford Livingston Virgo

measured gravitational V/M\Wh porapd . Pp N fone e W

radiation from such a collision

(usually two black holes)

both LIGO and VIRGO T ‘
t i W\/WW*M/\M

GW event 14" of August 2017 Source: http://ligo.org/science/Publication-GW170814/index.php




T T T T
Inspiral Merger Ring-
down

£ sis0e

)
K 4s
> 05H— Black hole separation —43 g
'g 0'4 == Black hole relative velocity 12 %5
s oL q1g
>03F I L I L1o @
0.30 0.35 0.40 045

Time (s)

here is an illustrative reconstruction of the latest stages of the fusion of
two black holes

Source: https://ima.org.uk/7430/gravitational-waves-new-window-universe/



The Gravitational Wave Spectrum

Quantum fluctuations in early universe

Binary Supermassive Black
Haoles in galactic nuclei

wvy
@
g Compact Binaries in our
g Galaxy & beyond
] Compact objects
captured by Ratating NS,
Supermassive Black Supernovae
; Holes —
age o
wave period years hours sec ms

universe

logifrequency) 16 -14 -12 -10 -8 6 -4 -2 O +2

—
Casmic microwave Pulsar Timing Space Terrestrial
background Interferometers  interferometers
polarization

Detectors

a new window into the universe: gravitational waves
(predicted 1916, indirect evidence 1974 /75, first direct detection 2015/16)

Source: https://en.wikipedia.org/wiki/Gravitational_wave



Le détecteur d’ondes gravitationnelles

Pour sa conception et ses résultats, les astruphysmens
Rainer Weiss, Barry Barish et Kip Thorne récompensés

gravitationnelle

La lumiére
rebondit
sur le miroir

MIROR MIROIR

{2 Séparateur
de lumiére en deux
faisceaux identiques

Une onde
gravitationnelle
jﬂodfﬂe les tubes :

4 X ’un se contracte,
Interférometre . e
geanta lasers O Lumicre

laser
I_ | G O envoyée
LASER
» Normalement, la lumiére » Simodifiée par une onde gravitationnelle,
rewentmchangee la lumiére parcourt une distance
la fréquence de chaque différente dans un tube par rapport alautre
faisceau annule 'autre De la lumiére s'échappe du séparateur

«Séparateur»  Détecteur et percute un détecteur
# O oAFP

https://wuw.sciencesetavenir.fr/sciences/les-detecteurs-d-ondes-gravitationnelles-qui-revolutionnent
-la-physique_117440

Source : Nobelprize.org



the fIrSt Observed event presented the 11%h of February 2016

simultaneously observed by LIGO Hanford & Livingston

LIGO Hanford Data  Predicted

=
n

Strain (107)
z °
5

Strain (10%)

| LIGO Hanford Data (shifte
0.5
[Lico megston Data

030 0.3 040 045
Time (sec)

Strain (107
: °
>

essential: equal & simultaneous signal form at two different places
notice the characteristic ‘chirp’

https://www.ligo.org/detections/GW150914.php



can be produced through fusion of compact objects

here: fusion of 2 black holes

RINGDOWN

INSPIR AL ™"

Source: https://www.pigeonroost.net/gravitational-waves-a-new-window-to-the-universe/



