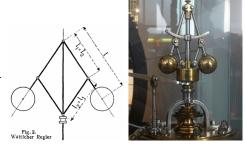

Physique Elémentare - Fiche 4 Besprechung nach 04.12.20

20 Schwer zu Ziehen

Ein Lastkraftwagen zieht eine Betonplatte mit den Abmaßen $(2 \,\mathrm{m} \times 2 \,\mathrm{m} \times 0.5 \,\mathrm{m})$ mit der Dichte $\varrho = 2 \,\mathrm{g/cm^3}$ auf einer horizontalen Straße entlang. Der Gleitreibungskoeffizient ist $\mu = 0.5$.



- a) Welche Masse in Tonnen hat die Platte?
- b) Bestimmen Sie den Winkel α , so dass die aufzuwendende Kraft minimal ist. Wie groß ist die Kraft in diesem Fall?

21 Drehzahlregler

Betrachten Sie rechts stehenden Drehzahlregler mit zwei Massen M an den beweglichen Schenkeln der Länge l. Er wurde benutzt um die Drehzahl von Dampfmaschinen zu regeln.

Berechnen Sie den Auslenkwinkel α der Schenkel als Funktion der Drehzahl ω , vernachlässigen Sie die Masse der Steuerung mit l_1, l_2 . Skizzieren Sie den Verlauf $\alpha(\omega)$ und diskutieren Sie das Verhalten für kleine und sehr große Drehzahlen.

22 Interplanetarer Staub - Verlangsamung des Erdjahres

Die Gesamtmasse der Erde $M_{\circ} = 5.97 \times 10^{24} \,\mathrm{kg}$ ist aus der Gravitationskonstante der Fallbeschleunigung auf der Erdoberfläche und dem Erdradius bekannt. Der Erdradius beträgt $R_{\rm t} = 6378 \, \rm km$. Sie bewegt sich in einem Jahr um die Sonne in einem Abstand von $1 \text{ AE} = 150 \times 10^6 \text{ km}$. Der ruhende interplanetare Staub hat eine Dichte von zirka 3×10^{-22} g/cm³.

- a) Berechnen Sie die Erdmasse $M_{\mbox{\scriptsize δ}}$ aus der Gravitationskonstante, der Fallbeschleunigung auf der Erdoberfläche und dem Erdradius.
- b) Um wie viel nimmt die Masse der Erde durch den Staub in einem Jahr auf?
- c) Um wie viele Sekunden wird das Erdjahr durch diesen Effekt langsamer?
- d) Um wie viel ist das Jahr seit der Entstehung der Erde vor 4.5 Milliarden Jahren länger geworden durch diesen Effekt.

23 Rutschendes Seil - Differentalgleichung lösen

Ein homogenes Seil der Gesamtlänge ℓ und der Gesamtmasse m liege anfänglich ruhend auf einem reibungslosen Tisch, wobei bereits der Teil ℓ_0 des Seiles über die Tischkante hinaus rage. Durch die Erdanziehung wird das Seil beschleunigt.

- a) Wie lange dauert es, bis kein Seil mehr auf dem Tisch ist?
- b) Welche Geschwindigkeit und Beschleunigung hat es zu diesem Zeitpunkt?