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The authors show how muttimarket data can be used to make predic-
tions about brand performance in markets for which no or poor data exist.
To obtain these predictions, the authors propose a model for market sim-
ilarity that incorporates the structure of the U.S. retailing industry and the
geographic location of markets. The model makes use of the idea that if
two markets have the same retailers or are located close to each other,
then branded goods in these markets should have similar sales perform-
ance (other factors being held constant). In holdout samples, the pro-
posed spatial prediction method improves greatly on naive predictors
such as global-market averages, nearest neighbor predictors, or local
averages. In addition, the authors show that the spatial mode! gives more
plausible estimates of price elasticities. It does so for two reasons. First,
the spatial model helps solve an omitted variables problem by allowing for
unobserved factors with a cross-market structure. An example of such
unobserved factors is the shelf-space allocations made at the retail-chain
level. Second, the model deals with uninformative estimates of price elas-
ticities by drawing them toward their local averages. The authors discuss

other substantive issues as well as future research.

Using Multimarket Data to Predict Brand
Performance in Markets for Which No or
Poor Data Exist

Most large consumer goods manufacturers wish to moni-
tor sales performance of their brands in a variety of regional
markets. To accommodate this desire, the leading market
research providers, such as Informalion Resources Inc. (IRI)
or ACNielsen. collect multimarket time-series data of brand
performance through complex data-collection systems.
These rnullimarket data are now widely available to both
practitioners and academicians, but they pose several new
challenges.

First, in the United States, many locations are left unsam-
pled because of obvious economic constraints in collecting
and handling complete time-by-market data. The exclusion
of many locations from the spatial sample poses a missing
data problem for managers of national brands who fre-
qucnily make decisions on the basis of local demand condi-
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tions (Hocb et al. 1995). We propose to solve this problem
through spatial prediction.

Second, and not unrelated, strong dependencies across the
sampled markets can and do occur. These dependencies
raise new issues about how to model multimarket data. At
least in marketing, modeling approaches rarely broach on
the subject of cross-sectional or spatial dependencies oi data
from multiple locations.

Perhaps as a result, and despite the familiarity of market-
ing practitioners and academicians with the extrapolation of
stochastic processes in time, spatial prediction has remained
unstudied in our field. Both prediction problems share tbe
same underlying philosophy: The goal is lo determine ihe
sample points that are most informative about the behavior
of tbe process at prediction points. The main distinction is
that slocbastic processes in space are multidimensional and
do not bave a clear or particular ordering. In contrast, sto-
cbastic processes in time are defined over one single dimen-
sion of interest—time itself—wilh a natural and clear direc-
tional ordering. Because of these differences, the spatial
prediction problem is nonstandard.

In this article, we demonstrate bow to model spatial
dependence across markets, and we offer a perspective on
how to make spatial predictions. Our contribution is
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intended to be botb metbodological and substantive.
Methodologically, we first make an existing spatial predic-
tion method, called kriging {pronounced KREE-ging). oper-
ational in marketing and test its performance. Our spatial
prediction approacb is based on a model tbat can be cali-
brated on spatiotemporal data. It is estimated using Markov
Chain Monte Carlo (MCMC) methods.

Second, we also contribute metbodologically to the spa-
tial prediction problem by using the presence of the same
retailers in multiple markets to construct a measure of mar-
ket similarity. In other words, whereas traditional spatial
prediction methods use purely distance-based metrics, we
develop a model that also captures the impact of retailer ter-
ritories on the muilimarket data. In the process, we (I)
obtain a cross-market covariation structure that is more flex-
ible and provides a better representation of the data than
purely distance-based approaches and (2) offer a measure of
the importance of the U.S. retail structure in explaining the
cross-sectional variation in the data, while controlling for
purely spatial (i.e.. distance-based) effects in a variance
decomposition model.

Substaniively, we aim to shed some light on the determi-
nants of the cross-sectional differences in sales performance
for nationally distributed brands. For tbe brands considered,
market performance measures, such as market shares and
sales velocity, differ greatly across the 64 markets sampled
by IRI. despite the product homogeneity that characterizes
the categories under analysis. To investigate possible
sources for these cross-sectional differences, we allow for
distance effects and retailer effects on (1) model constants.
(2) observed dynamie effects (e.g.. due to price), and (3)
unobserved dynamic effects (e.g.. due to unobserved retailer
behavior).

Our analysis offers the following conclusions: First, the
territories of retailers in tbe U.S. are "shingled" in tbe sense
that retailers' territories neither perfectly overlap nor are
completely separated. There are, in other words, no truly
isolated markets in the network of U.S. retailers. Second, the
structure of the U.S. retail industry accounts for a large por-
tion of the cross-market variance of the data, even in the
presence of competing distance-based spatial structures.
Third, estimates of price elasticities are more efficient (and
more reasonable) when the spatial nature of the data is
accounted for. Finally, for both performance measures, krig-
ing methods outperform naive predictors, such as local aver-
ages, across holdout samples of various sizes and spatial
structures (e.g., geographic region versus random locations).
This result appears especially true when the holdout sample
is large and the estimation sample is small, which demon-
strates tbe usefulness and power of these new approaches.

The remainder of this article is structured as follows: In
the next section, we discuss a set of marketing problems that

researchers may fruitfully address through spatial predic-
tion. Then, we develop our model for spaliotempora! data
and formalize the spatial predictor. In the following section,
we focus on spatial covariance models and a model of the
U.S. retailing industry. We then provide the empirical analy-
sis and conclude with future research and managerial
implications.

MULTIMARKET DATA

Temporal and Spatial Components in Multimarket Data

Syndicated market data for the grocery industry are col-
lected in the United States for a multitude of geographic
markets, often defined as a metropolitan area or a part of a
state. These data are generally correlated across both time
and locations. Time dependence can be caused by brand loy-
alty, inertia wilbin the distribution channel, the use of
heuristic decision rules (e.g.. history based pricing), or the
seasonal nature of some products. Spatial dependence, in
contrast, can be caused by the economic agents in the distri-
bution channel (e.g.. retailers) that are common to multiple
markets, by climate-dependent demand of some product
categories, or by a nonrandom distribution of consumer
types.

Given the pervasiveness of these three factors, correlation
of demand across geographic markets is likely to be the
norm and not the exception in multimarket data. Yet not
much academic work has explicitly accounted for these
dependencies and their effects on inference. To fill this hia-
tus in the literature, we classify spatial dependence into dif-
ferent types on the basis of the duration and the reach of the
spatial effects (see Table I). First, in terms of duration, spa-
tial dependence may apply to either constant or dynamic
data components.

Second, spatial dependencies may die out over a short
(e.g.. local market), a medium (e.g.. retailer trade area), or a
long range in space (e.g.. the domestic U.S. market). The
spatial dependencies induced by the distribution of con-
sumer types and the behavior of independent retailers are
both short-range dependencies, though one type of depend-
ency is constant whereas the other changes over time.

At the medium-range level, the effects of retailer-level
pricing and promotion decisions are an example of dynamic
effects with a regional character. The effects of retailer-level
distribution decisions (adoption)—which are made less fre-
quently than promotion decisions—cause a more constant
component with regional structure.

Finally, manufacturer supply constraints, climate varia-
tions, and order-of-entry effects may also lead to spatial
dependencies that hold over longer ranges (such as the entire
domestic U.S. market). For example, order-of-entry deci-
sions by manufacturers reflect unobserved market condi-

Table 1
EXAMPLES OF EFFECTS ON BRAND PERFORMANCE IN MULTIMARKET DATA

Time Effects

Spatial Effects Dynamic Constant

Shod range (e.g.. local market)
Medium range (e.g.. retailer trade area)
Long range (e.g.. national market)

Behavior of independent stores
Relailer-level pricing decisions

Manufacturer supply constraints
Climate

Consumer type distributions
Retailer-level distribution decisions

Order-of-entry effects
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tions and transportation and distribution costs, among other
factors, at thc time of the product launch. To the extent that
such order-of-entry effects have permanent effects on the
data, they may give rise to larger-share •'home-markets" and
lower-share "distant markets"; that is, such order-of-entry
effects may cause a long-range spatial dependence in the
data thai is more or less constant. In contrast, supply con-
straints and climate variations give rise to spatial dependen-
cies Ihat vary over time.

This classification of the spatial dependencies provides
the hasic framework we use to both understand and model
spatial phenomena. Next, we present some marketing appli-
cations that can benefit from the modeling of these spatial
phenomena and intrtxlucc our modeling and prediction
approaches.

Applications of Spatial Analysis to Marketing

Collecting, handling, and mainlaining full time-by-space
data over all relevant cross-sectiunal units is both cost pro-
hibitive and likely subject to diminisbing marginal returns in
information content, Tberefore, we believe tbat spatial pre-
diction methods may provide great benefits to market
researchers in situations in which detailed knowledge exists
on selected cross-sectional units and information is required
about other cross-sectional units. Store audits and shelf-
space audits, market tests of new products, hit rate predic-
tions for direct marketing companies, and micromarketing
studies are some examples of possible applications in which
we may observe sucb benefits. The only difference between
these examples is how we defme the cross-sectional units.

For example, store audits or shelf-space audits give
detailed information about merchandizing activity or shelf-
space allocation for a subset of stores. Spatial prediction can
then help predict store execution of promotions or shelf-
space allocations for unsaniplcd stores.

Customer records, which include Zip code information,
owned by catalog, Internet, or direct-marketing companies
represent anotber example of a sparsely sampled cross-
section of data. Tbese companies have an interest in know-
Ing, for example, the a priori hit rate of mailings to potential
customers in certain Zip code areas (see. e.g., Steenburgb.
Ainslie, and Engebretson 2001). By means of spatial meth-
ods, it is generally possible lo interpolate sucb information
from bit rate data of current customers given their location.

Micromarketing. the fine-tuning of the marketing mix lo
local markets (see Hoch et al. 1995). provides yel another
example. Spatial prediction can be helpful in forecasting,
say. thc responses to price promotions in unsampled markets
from the corresponding responses in sampled markets.
These forecasts are fundamental input to any micromarket-
ing decision process.

Finally, the proposed spatial prediction methods are also
bencllcial when a given market, though sampled, provides
"poor" (i.e., imprecise) information. This is because we use
a Bayesian approacb tbai allows for tbe influence of precise
information from close markets during estimation.

MODELING AND PREDICTION APPROACH

A Model of Market-by-Time Panel Data

Thc purpose of our modeling work is to investigate spa-
tial dependence of brand perlbrniance across regional mar-
kets. It is our goal to capture the impact of spatial variables
that are either time-invariant, as in the case of demand con-

stants, or dynamic, as in the case of price effects. To do so,
we allow demand intercepts, prices, and price responses to
be spatially distributed. We also allow for a stochastic term
that is both spatially and time dependent to capture other
unobserved spatial effects. We have adopted a log-log for-
mulation for the demand model because such a formulation
provides direct estimates of price elasticities, which may be
compared across markets.

Assume that we sample N locations, for T time'^eriods.
Our basic demand model is ^

(1) y, = a -i-diag(p,)P+e,. t = 1 T

' t - 1

where y, is an N x I vector of log-demands for all the
markets at time period t, p, is an N x I vector of log-
prices, and diag( ) represents the operator that transforms
a vector into a diagonal matrix (i.e.. diag(p,) is an N x N
diagonal matrix of log-prices). Thc element a is an N x I
vector of intercepts, and p Is an N x I vector of price elas-
ticities. The scalar Py is an autoregression effect for the
N X 1 vector of demand error terms, e,, and iwjs an N x I
vector of zero-mean time-independent stochastic terms.
The autocorrelation in e[ can be due to inertia of manufac-
turers, retailers, consumers, or any other channel
participant.

Using the within-market means pj of the log-prices, p;,,
we orthogonalize the demand system by rewriting it as
follows:

(2) y, = a + [diag(p,) - diag(p) + diag(p)Jp + e,

= (a + diag(p)p] + diag(p, - p)P + e,

= a + diag(p,)p + e,,

where p is an N x 1 vector containing the means of log-
prices for all markets, and Pi is an N x 1 vector of demeaned
log-prices.

As a result, the transformed model factors the data into
three separate "bins," each of which may be subject lo spa-
tial dependencies: (I) constant demand effects, a; (2)
observed time-varying price effects. diag(Pf)p; and (3)
unobserved time-varying effects, e,, wbich are autoregrcs-
sive transient sbocks. If so desired, tbe original demand con-
stants, a, can be easily recovered using the estimated values
oi CL, p, and the means of log-price.

If we had access lo the actual market prices for all markets,
sampled and unsampled, spatial predictions would require
only the estimates of the unknowns in Equation 2 and the
variance-covariance structures of all spatial variables. In gen-
eral, however, price knowledge is absent for unsampled loca-
tions. In such cases, before we predict demand, we must first
predict prices or, more specifically, demeaned log-prices.
Tberefore, we specify the following model for the demeaned
log-prices (making use of the mean of P[ being zero)

Pt = 0 + V,(3)

where the scalaflPp is an autoregression effect for the N x 1
vector of price error terms, v,. and ̂  is an N x I vector of
zero-mean time-independent stochastic terms. Although this
model appears rudimentary, it is necessary for ihe spatial
prediction of prices.
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Spatial Processes

To predict brand performance for M unsampled locations,
we now allow some components of our model to be spatially
distributed and specify their spatial processes. In Equation
2, we allow for three potential sources of spatial structure:
(1) the demand constants, a; (2) the price-elasticities, p; and
(3) the random shocks, e,, through the time-independent
shocks J|f. We also allow the demeaned log-prices in Equa-
tion 3 lo be spatially distributed through the time-
independent random shocks ^ , We assume that these spatial
variables follow (different) second-order stationary spatial
processes in (R̂ , that is, spatial processes that satisfy the fol-
lowing two properties (using a to illustrate):

(4) i) = Z^i(p^,Vi and

wbere i and i' designate markets, Z t̂i is a vector of covari-
ates, and (p« is the corresponding vector of parameters. The
notation Aa(d,j', QQ) reflects that the covariance is a function
of a parameter vector, Q^, and of location differentials, djj-,
such as the distance or the direction between location pairs.'
Therefore, the covariance function does not depend on
absolute location of i or i'. If this function depends only on
distance, it is called "isotropic." If it also depends on the
direction of the vector connecting the location pair {i, i'}. it
is called "anisotropic." We abbreviate the notation for the
full variance-covariance matrix \^(d, 9̂ ,) by A^.

As a result of the second-order stationarity assumption,
the cross-sectional structure—which is measurable tbrougb
the N sample points—will hold over all N -i- M locations.
For each of the spatial components in the model, we use a
joint Normal distribution over N -h M variates. That is, we
posit the following:

(5) (a' a*')' ~

(6)

(7)

(8)

). and

where a*, P*, Ti,*, and ^ * are M x I vectors of the demand
constants, price elasticities, demand shocks, and price
shocks for the unsampled markets, respectively. Elements
Z(x and Zp are covariates, and (p^ and cpp are vectors of cor-
responding parameters. We assume that the unobserved
components of the spatial variables are conditionally inde-
pendent from one another. This implies the assumption that
the unobserved components of one spatial variable are con-
ditionally uninformative about the unobserved components
of other spatial variables.

The variance-covariance structure of the stacked stochas-
tic terms from Equation I, e = [e'j ... e'j]' for all sampled
and unsampled markets, is a (M + N)T square matrix equal
to NKy ® An (for a brief overview of some proofs, see also
Appendix A). The element Ty Is the standard variance-
covariance matrix for an AR(1) process with autoregressive
parameter Py and with unit variance in the innovation terms
(see Judge et al. 1985. p. 284). Similarly, the variance-

'The saiTie principle is used frequently in lemporal dependence. For
example. Ihe standard AR(I) process has a variance-covariance function
that is dependent on time differences (the equivalent to A^j•) and on an auto-
correlation parameter (the equivalent to 9),

covariance matrix of the corresponding stacked price error
terms, v, is Tp ® A ,̂ where M'p is the variance-covariance
matrix of an AR(I) process with autoregressive parameter
Pp and unit variance in the innovation terms. The exact mod-
eling of the variance-covariance matrices A^, Ap, A ,̂, and
Af is discussed subsequently.

Spatial Prediction or Kriging

Assuming that estimates for tbe model exist, we now
address how these can be used for spatial prediction. We
assume that we want to predict the process for some market
j , where j = N + 1. ..., N + M, at a time period t, for t = I,
..., T.2 We need to spatially predict four (conditionally)
independent components of the model: the constants a.*,
the price elasticities Pj*, the random components ej,*, and
the random components Vj,*. The method of spatial predic-
tion is identical for a^* and p|* on the one hand, and for ej,*
and Vj,* on the other.

Case I: Prediction of the demand constants aj* and the
price elasticities j3j*. Consider the case of the demand con-
stants (similar results hold for the price elasticities). For spa-
tial prediction, partition Equation 5 into

(9)

then (Searle, Casella, and McCulloch 1992) [a*|a] is multi-
variate Normal with

(10) E(a*|a) =

and

( I I )

regression mean adjusimeni for spaiial dependence

A(a*ia) =

If we estimate tp« using (pĝ -S = [Z;( A i , ) Z « l Z ; ( A
then the mean of the conditional distribution in Equation 10
is called the "universal kriging predictor" (see Cressie
1993). The first term of this predictor, Zo;.(p '̂"^ , is the stan-
dard generalized regression result. This term ignores the
unobserved spatial covariation, A^, in (a - Z^^u). The sec-
ond term in the predictor corrects for this correlation and is
the conditional expectation of the unobserved stochastic
terms, (a* - Z^*(p^), given the observed differences (a -
Zc(tpo(). Therefore, we can interpret the kriging predictor as
an adjusted generalized least squares predictor. Cressie
(1993) shows that this predictor has the additional benefit of
minimizing tbe squared prediction error; that is, it is the best
linear unbiased predictor.

Case 2: prediction of the stochastic terms e^,* and Vj,*. As
an example, consider tbe prediction of ej,* (j = N + 1, ...,
N + M, t = 1, ..., T). This case proceeds in a similar fashion
as in the previous case. The main difference is that, given the
temporal structure of the stochastic terms, we need to con-
dition our predictions on all NT stochastic terms from our
sample, as opposed to only the N contemporaneous stochas-
tic terms, e,= [e|,, . . . .e^,]. In Appendix A, we prove that for
the prediction of the M x I vector e,* conditional on the full
NT X I vector e, only the subvector e, matters, so tbat

2We do not consider here the case of predicting out of both the spatial
sample and the titne sample. However, such a case is easy to develop.
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E(e;|e) =

and

(13)

Simiiar results hold for the prediction of Vf* (t = 1, ..., T).

Some Differences with the Classic Kriging Predictor

Kriging methods require knowledge of the spatial (co)vari-
anccslruclureofthedalu. ascanbeseen from Equation 10. In
practice, researchers using the classic kriging predictor esti-
mate the cross-sectional covariance using actual observations
of. say, Oj fori= I,..., N.'After the parameters on which the
covariance A^ depends, here denoted as Q .̂ are estimated, it
issimpic to estimate the variance-covariance matrix A(j(d. B )̂
of Ihc (N + M) random vector | a ' a*']'. Researchers can then
predict the mean and the variance of the process for the M
unobserved markets using Equations 10 and 11.

Despite their intuitive appeal, classic kriging methods
have some drawbacks that we seek to address with the
approach presented in this article. First, although classic
kriging infers A(, from sampled data, the fmal predictor does
not account for the sampling error in O .̂ This is a general
problem affecting any classic kriging application. In con-
trast, our prediction approach relies on Bayesian methods
and constructs a marginal predictive distribution that inte-
grates over the density of all unknown model parameters.

Second, classic kriging models the covariance structure
solely on the basis of distance. In marketing contexts, this
method is. at hesl, a reduced-form approach. Instead, in the
next section, we derive the spatial structure of the data from
firsi principles. Specifically, we incorporate the spatial
organization and an aspect of the behavior of retailers in the
variance-covariance model. Doing so, we obtain direction-
sensitive patterns of covariation that cannot be represented
even with very flexible anisotropic covariance functions.

Finally, in a marketing context, not all variables of mana-
gerial interest arc directly ohservable (e.g.. a is estimated,
not observed). Therefore, cross-sectional prediction of these
measures requires the construction of both a measurement
and a prediction model. Classic kriging addresses the pre-
diction problem but does not address the issue of measure-
ment. In contrast, our model incorporates both.

SPECIFIC MODELS OF COVARIATION

Components of the Covariance Structure

We model the variance-covariance structure of the unob-
served components of the demand constants, A^; of price
elasticities. AH; of temporary demand shocks. A^; and of
temporary price sht>cks, A ,̂ as mixtures of three independ-
ent variance structures that are, respectively, distance based,
retailer based, and purely random. Therefore, we postulate
that the variance-covariance structure for each spatial vari-
able can be factored into three components such that (using
the demand intercepts a as an illustration)

•'For allernaiivc empirical methods to estimate the covariogram or covari-
ance t'lKiLtion. SCO Crcssie (1993, Cti. 2j.

where Sf̂ ĵ . 6a4. and GoL-i are all positive unknown parame-
ters. The term 0^3lRa(6o(i) represents the retailer compo-
nent, G^4lsa(ent2) represents the distance-hased component,
and OEL-̂ IIN + MI represents a spatially uncorrelated variance
component. Similar expressions hold for the remaining spa-
tial variables P, r),, and ^,.

The distance-based component of the spatial variance-
covariance serves as an approximation to several unob-
served variables (e.g., taste, culture, climate) that can he cor-
related across neighboring markets and can affect the spatial
variables.

The retailer-based component accounts for the effects of
retailer structure and conduct on the spatial variables. Dif-
ferent mechanisms exist that justify the presence of these
retailer-based effects. For example, retailers have control of
shelt-space policies and other forms of brand support.
Therefore, we expect retailers to affect the baseline sales of
the brand (captured in demand constants a or the dynamic
sales effects T|,). Retailers also influence the cotnposition of
their clientele in terms of price .sensitivity with store-format
choice and private-label program decisions. Consequently,
observed price responses may vary with retailer structure
and conduct. Finally, prices themselves are often set at the
account level, so we also expect price effects, ^,. to have a
retailer structure. Next, we describe in more detail both the
spatial and the retailer model of covariation and provide an
interpretation for different possible patterns.

Distance-Based Model of Covariation

The typical procedure in selecting a functional form for a
distance-based covariogram is to plot the empirical covari-
ogram and choose a valid covariance function that allows for
the type of patterns actually encountered in the data (e.g..
whether spatial correlations die out, whether tliere are posi-
tive and/or negative correlations, whether there is a need to
account for measurement error). Both Cressie (1993) and
Journel and Huijbregts(iy7S) offer an overview of the effects
that are usually considered part of the spatial covariance func-
tion. In our application, we found that positive correlations
dominate between observations that are close together hut
that negative spatial correlations may occur between observa-
tions that are separated by larger distances in space. This
would happen when the observations have a tendency (as they
do in our data) to he below average on one coast and above
average on the other. As a result, we use a eovariogram in iR-
that allows for negative correlations across larger distances.

The choice of a specific functional form that is valid for
use as a covariance function is not trivial and depends on the
number of spatial dimensions used. For example, lor any
n-dimensional process, the spatial autocorrelations cannot be
less than -l/n (see, e.g.. Christakos 1984). Therefore, not all
models of covariation in IRi are valid in U'\ for n > I. Valid
models in R" are, however, valid in spaces with less than n
dimensions. Other requirements on valid covariograms exist,
and the literature on valid eovariograms in IR" has received
much attention in spatial analysis (see. e.g., Christakos 1984;
Mantoglou and Wilson l982;Vecehia 1988; Whittle 1954).

For our empirical analysis, we selected a iunctit)n that is
often used in the spatial sciences as a correlation function in
U~ and allows lor negative correlations. This function is the
Bessel function of the first kind and order 0 (sec, e.g., Chris-
takos 1984; Mantoglou and Wilson 1982; Matern 1986).
This correlation function is parameterized by a single
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Figure 1
TWO PATTERNS OF DISTANCE-BASED CORRELATIONS GENERATED BY THE BESSEL FUNCTION
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parameter that controls the range of going from positive to
negative correlation and looks like a dampened oscillation in
distance. It is also a simple and standard function in most
econometric software.

Formally, each (i, i') element of the matrix Isa(®a2)'
which forms the distance-based variance-covariance matrix,
is defined as follows: ' i

(15)

Vi.l ' = 1 N + > 0).

where 8ii' is the distance between location i and location i',
and Jo is the Besse! function of the first kind and order 0. In
Figure 1, we illustrate the shapes of the Bessel function for
two representative values of Q^. Distance is expressed in
rads (see also the empirical section) spanning the distance
between the East Coast and the West Coast.

Retailer Model of Covariation

To model the covariation structure across markets due to
retailer location and conduct, we assume that a component of

retailer policies is common to the level of a retail account. The
retail account is generally the unit at which retailers make deci-
sions. It is either a portion of the retail chain—typically if the
retailer is spread over multiple states—or the entire retailer.

Defme a K x (N + M) matrix H of retail structure con-
taining the share of all-comniodily volume (ACV) for each
retailer account r (r = I K) in each sampled and unsam-
pled market i (i = I, .... N -I- M). Columns in H sum to one.
and a typical element H(r, i) is a number from 0 to I that
indicates the relative size of retailer r in market i.

In addition, we construct an asymmetric retailer intluence
matrix W of size K x K. This matrix lists in each row, that
is, for each retailer, the relative size of all other retailers it
competes with directly. Defme [C^] as the set of markets in
which retailer r is present; that is. {Cj) is the territory of
retailer r. Then, a typical element of W is computed as
follows:

(16)W(r.r') =
ACV(r', i)

ACV{r".i)
and W{r, r) = 0.
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In other words. W contains, in each row r, the normalized
ACV share oi each of the other retailers in r's retail territory.
Rows of W add to one, and its diagonal is zero. Note that W
accounts for differences in market size. For example,
W(r, r') will be higher if the competing retailer r' is large in
big markets than if it is large in small markets.

We assume that the elements in the rth row of W capture
the relative competitive influence on r. We illustrate the
effect of this influence for the spatial variable a. Suppose a
retailer r has an effect on the demand intercepts equal to S^p
Although this effect is unobservable to the analyst, it is pos-
sible to make inferences about the structure that such unob-
servahle effects would cause across space, given the struc-
ture of retail territories and retailer conduct. For this
purpose, we model the retailer effect on demand intercepts
S(jŷ  as a combination of retailer r's idiosyncratic actions and
of the competitive influence from the other retailers in r*s
territory. Vectorizing the retailers' effects S r̂ into a K x I
vector Sy, we then have

The K X 1 stochastic vector u is assumed independent, with
mean 0 and variance 9^IIK> and reflects the idiosyncratic
actions of the retailers to support one brand over another. The
term O î WS^ represents a local interaction effect reflecting
the competitive interaction of retailers. A short way of defin-
ing this relation is simply to point out that we allow the spa-
tial variables to be autoregressive across retail territories.
The parameter S î controls the strength and direction of the
interaction among retailers in supporting one brand versus
another. The strongest form of interaction occurs when Q̂ d
approaches I or - 1 . In the first case, retailers locally imitate
one another. In the second case, retailers tend not to follow
one another. Thi.s may happen when retailers vie for locally
exclusive distribution of nationally available brands.

We can convert the retailer-level effects on intercepts, S^,
lo market-level etlects by taking their weighted average,
where the weights are the relative size of each retailer in mar-
ket i. In mathematical notation, the market-level effects due
lo retailers correspond to the ith element of the vector H'S(,,
where H is the matrix of relative size of each retailer in each
market (as defmed previously). Therefore, the implied
variance-covariance structure across markets due lo retail
structure and conduct is equal to 6^IZRCI(9^|). such that

where 8^i is the scale parameter or the variance of the inno-
vations V. We discuss the different patterns of spatial corre-
lation that ihis function generates subsequently.

Covariation Patterns

Our parsimonious variance model can capture a wide
variety of covariation patterns, depending on alternative
mixtures of retailer- and distance-based spatial components.
This flexibility results from the distinct features of each
component. For example, distance-based spatial effects in
ttur data are long-range, direction independent, and smooth,
wliereas retailer based covariation patterns are direction
sensitive and show ridges and discontinuities according to

the shapes of retail territories. With mixtures of these differ-
ent components, the model is flexible enougb lo accommo-
date the intricate patterns of covariation that can be expected
in market performance data.

We consider two specific patterns from the retailer
model. First, when there is no retailer interaction but only
retailer structure effects (i.e., G.| = 0 and 9,3 > 0) cross-
market dependence is local (see also the next section) and
direction dependent. Mathematically, we obtain from
Equation 18 that I R = H'H = M, where 'M has market-
specific Herfmdahl indices of retailer concentration on the
diagonal and cross-products of the retail shares in two mar-
kets on the off-diagonals. If this cross-product is zero, no
retailer serves both markets, whereas if this product is
high, few retailers have high share in both markets. There-
fore, cross-market correlation will he present simply
because an unobserved component of the spatial variables
in retailer-specidc and retailer territories spans multiple
markets.

Second, when retail interaction and retail structure effects
exist (i.e., 9 | ?i0and9;^>0}, both retailer multimarket pres-
ence and the interaction among competing retailers explain
cross-sectional variability. In addition, retailers indirectly
influence one another even when their territories do not
overlap, simply because retailers interact with one another.
For example. Retailers A and C may not compete head-to-
head, because their territories do not overlap. However. A
may indirectly inlluence C, and vice versa, if they have
Retailer B as a common competitor. As 0,| increases in
absolute value, the indirect influence of A on C becomes
more important, and retailer dependence extends over larger
areas.

EMPIRICAL ANALYSIS

Data

In our empirical application, we combine four different
data sets. First, we apply the proposed spatial prediction
methods to INFOSCAN sales and price data for Mexican
salsa and tortilla chips. The raw data, collected by IRI over
two years (May 1994 to April 1996) from its sample of
approximately 3000 stores in 64 domestic U.S. markets, are
at the local market level.

Second, to operationalize the retail structure model, we
obtained U.S. retail data from TradeDimension. These data
are at the designated market area (DMA) level. A DMA is a
geographic area that designates a single advertising market.
The continental U.S. market is divided into 205 DMAs, and
every county in the United States is a member of one and
only one DMA. The retail structure data include account-hy-
market ACV for all retailer accounts with more than .1%
market share. TradeDimension also has the same data at the
IRI market level. From these data, we retained the retailers
present in more than two markets and with no less than 10%
market share in at least one of the markets in which they
operate. Thus, we removed from the data retailers that are
too small to play a major role in the spatial structure of
demand. We also removed the so-called independent retail-
ers. These retailers share the same label but do not corre-
spond to the same decision makers across the markets. In
total, this left us with 185 retail chains. These include
national discounters such as Wai Mart and Kiiiarl and
retailer chains such as Albertsons, H-E-B, and Vons.
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Third, to compute distances, we collected location data
for all DMAs and all IRI markets. We computed the location
of each DMA from the latitude and longitude coordinates of
Zip code centroids and a mapping of Zip codes into DMAs.
(The necessary data to make this computation are available
from http.7/www.zipinfo.com.) For the 64 IRI markets, we
collected longitude and latitude data using an Internet map-
ping service (available at http://www.indo.conti/dislance).
Most IRI markets are associated with a single city. In some
cases, a single IRI market is defmed as either a part ofa state
or a set of multiple cities. In these cases, we approximated
the location of these IRI markets by an interior point. We
used the latitude and longitude data (in rads) to compute
pairwise market distances (1 rad ~ 4000 miles at the
equator).

Fourth, we collected demographic information for each
county in the United States from the Census Bureau's 1994
County and City Data Book. We aggregated these data to the
DMA and IRI market level.

Estimation

The combination of the temporal Equations 2 and 3 with
the four cross-sectional Equations 5-8 forms a hierarchical
model, which we estimate using Bayesian methods. Given
the complexity of the model, an MCMC approach is neces-
sary to simulate the posterior and predictive distributions of
the variables of interest.

The specification of the priors and the full conditional dis-
tributions used in the MCMC algorithm appear in Appendix
B. An important feature of this MCMC algorithm pertains to
the full conditional distributions of the spatial variables ot;
and Pj, for each market i. These conditional distributions
combine two sources of relevant information: (I) the time-
series data of market i and (2) the values of the spatial vari-
ables for the remaining markets. The mixing of these two
types of information will depend on the data itself For
example, if the ajS and p,s are spatially dependent, the time
series estimates for these parameters will be shrunk to their
local averages. This shrinkage is stronger when the within-
market data are less informative about the a,s and pjS. If,
instead, the data are not spatially dependent, the time-series
estimates for the parameters will be shrunk toward the over-
all average.

The MCMC algorithm contains a Metropolis-Hastings
step for the variance-covariance parameters and conjugate
steps for all others. Appendix C lists the complete algorithm.

We ran the algorithm for 40,0(K) draws. We discarded the
first 10,000 draws for burn-in and used the remaining
30,000 in the analysis. Specifically, to eliminate the auto-
regression in the samples, we sampled each 25th draw for a
total of 1200 draws from the results to make predictions.
Also, we confirmed the stability of the Markov Chains
using t-tesls on the split-half samples of these 1200 draws.

Ope rationalizations and Model Testing

We analyzed two measures of brand performance: sales
velocities and market shares. Sales velocity is defined as the
brand weekly sales (in pounds) divided by the total market
ACV (measured in millions of dollars per year). For space
reasons, we report only on the analysis of sales velocity as
the dependent variable in Equation I. We defined the price
in Equation I as the ratio of dollar sales and sales in pounds.

Functional form. We estimated a log-log specification.
With such a specification, price responses are interpretahle
as scale-free elasticities that can be compared meaningfully
across markets. However, the iog-log specification is not
without problems. Because we make predictions of the log
of sales velocity rather than of the sales velocity itself, the
log-log model implies log-normal prediction errors upon
exponentiation of the predictions. Such prediction errors
have a mean that increases in the variance of the errors.
Therefore, as we predict farther away from actual sample
points, the prediction mean increases because prediction
error will increase. This is not the case with, for example,
the linear model. The drawback with the linear model is that
price effects lack economic interpretation and cannot be
meaningfully compared across markets.

We therefore report on the re.sults for the log-log formu-
lation, which provides a good compromise between predic-
tive accuracy and model interpretation. We evaluate thc pre-
dictive ability of this model using the units in which the
model is estimated.** Therefore, we evaluate predictive abil-
ity in logs. We note that the ability of the linear model to
predict the sales velocities is substantively identical to that
of the log-log model in predicting the log of sales velocity.

The between-market model for intercepts. We used an
intercept-only model for net demands (denoted tpĵ ). For the
variance structure of net demands, we used a full spatial
covariance structure as in Equation 14.

The between-market model for price responses. We spec-
ified the model for price elasticities to depend on demo-
graphic variables, as do Hocb and colleagues (1995). How-
ever, in our data, demographic variables did nol help explain
the cross-market patterns of price elasticities. Therefore, we
removed the demographics from the model.^ The final spec-
ification for the mean of price responses includes only an
intercept (denoted tpp).

For the covariance structure of price responses, we allow
for only two covariance components: a retailer-based and an
independent component. In other words, we set 9[j4 = 0 in
Equation 14. We did this because the empirical covariogram
of the estimated price elasticities reveals no long-range spa-
tial dependence among price elasticities.

The models for the spatiotemporal components in the
data. For identification purposes, ê , and Vj, are zero-mean
error components. No mean specification is therefore
needed. For the spatial covariance structure of those compo-
nents, we used the full model of Equation 14.

RESULTS

Although results are available for multiple brands, for
conciseness, we report only the results of a single brand.
Pace Salsa. This brand is the market leader in the Mexican
salsa category in the United States.

We focus our discussion of the results around three areas:
(I) the differences in inference of the price elasticities
between our spatial model and other frequently used
approaches, (2) the estimates of the parameters 9 that gov-

**We thank an anonymous reviewer for suggesting this approach as a way
to reconcile demands on interpretation and prediciion.

^A possible ditTercnce thai may help explain this discrepancy is that the
level of geographic aggregation used here is dilTereni Trom the one used in
Hoch and colleagues' (1995) analysis.
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ern the spatial variance decomposition of Equation 14. and
(3) ihc cross-sectional sales velocity and price elasticity
predictions.

Inferences About Price Elasticities

There are several different approaches lo estimate market-
specific price elasticities from multimarket data. The first
logical approach is lo take ordinary least squares (OLS) esti-
mates of price elasticities from the time series of each mar-
ket. A second approach is to compute an estimated general-
ized least squares (EGLS) estimate of price elasticities for
each of the 64 markets and account al least for a temporal
dependence in the data using an AR(1) model. A third
approach is the one we present in this article. This approach
accounts for both the temporal and the spatial structure of
the data, through T^ and A,,, respectively. Our approach
goes even further, as it also accounts for the possibility of
spatial structure in the price elasticities themselves, through
A|5. The finiil estimates are then influenced by these two dis-
tinct layers of spatial information.

To show that we obtain better estimates of market-specific
price elasticities, by taking into account the spatial nature of
the data, we present some summary statistics for the three
approaches. First, the average of the 64 market-specific OLS
estimates of price elasticity is -.46, and the average standard
error for these estimates is I.I I. In addition, 19 of these 64
elasticity estimates are positive. Boatwright. McCulloch.
and Rossi (1999. p. 1065) find a similar fraction of wrongly
signed estimates in their analysis of promotion effects in
multiaccount data.

Second, the average of the 64 market-specific EGLS esti-
mates of price elasticities is -1.31. with an average standard
error of .70, and S of the 64 elasticity estimates are positive.

Third, from our proposed model, the average of the pos-
terior means for the market-specific p̂ s (i = I, .... 64) is
-1.79, with an average standard error of .39. With our
approach, only 2 of the 19 original positive price elasticities
remain positive. These belong to "spatial edge" locations
(Miami in the South and Syracuse in the North) that have
fewer neighbors trtim which they draw intbrniation. In sum-
mary, most of the 19 positive OLS estimates of price elas-
ticities are replaced by negative and significant estimates
when the spatial nature of the data is accounted for.

These results suggest that accounting for the spatial
nature of the data (and of the parameters themselves) pro-
vides a more efficient and, prima facie, more plausible set of
estimates of price elasticities in U.S. markets. These results
also make our approach relevant to the methodology devel-
oped by Boatwright, McCutloch, and Rossi (1999). These
authors use theoretically motivated truncated priors to obtain
more reasonable estimates of price and promotion eftective-
ness. In contrast, we do not use such priors but rather let the
data speak after allowing the estimation to borrow informa-
tion from neighboring markets. Our approach can perhaps
be thought of as a useful alternative to the approach devel-
oped by Boatwright, McCulloch. and Rossi (1999).

The Spatial Variance Structures

!n this section, we analyze in more detail the results of the
posterior distributions for tbe bierarchical spatial parameters of
a. PI- iiid 1̂ (see Equations 5, 7. and 8). We further discuss the
results for the price elasticities p in the "Predictions" section.

The spatial structure of the demand constants. Figure 2
presents the posterior distributions obtained for the hierar-
chical model of the demand constants, a. Using the draws
for 9a, we can compute that approximately 69% of the cross-
sectional variance in a is distance based. 25% is related to
retail structure and conduct, and 6% has no cross-sectional
structure.

The retailer autoregression parameter, Qf^], bas a mode al
approximately .5, and more than 95% of its probability
mass is in positive territory. Tberefore, with some degree of
confidence, we conclude that the interaction of retailers—
net of other spatial influences—is one of local imitation.
This may be of some importance to brand managers,
because it suggests that the influence of any given retailer
extends beyond its own retail lerritory. For example, with-
out retailer autoregression (i.e., with e ^ = 0). the average
area over which there is retailer-based spatial correlation of
at least ,2 has a radius of 240 miles, However, if GQI = .3.
then on average, the same level of spatial correlation
extends to an area with a 320-mile radius. As 6«| increases,
so will the area in which retailer-based spatial correlation is
at least .2. We note that because of tbe structure of tbe retail
industry, these patterns of spatial correlation are highly
anisotropic.

The distribution of the distance-based covariation param-
eters provides additional insights into tbe covariation pat-
terns. The Bessel parameter G^T has a mean of approxi-
mately 5.5 (for an interpretation, see the top graph in Figure
1). This means that from a purely distance-based perspec-
tive, the demand constants are positively correlated (locally
similar) over a long range of distances. However, as we
move even farther away (roughly 1600 miles, e.g., Los
Angeles, Calif., to Saint Louis, Mo.), the correlation
becomes negative. This result is consistent with the data
(sales velocity data for Pace Salsa tend to be above the U.S.
mean on the West Coast and below tbe U.S. mean on tbe
East Coast).

A final aspect of tbe demand constant parameters involves
the large right tail of the posterior distribution for %4 (the
standard deviation in the spatial component) and the large
left tail of the posterior distribution (or (^^ (tbe mean of the
demand constants). There are two reasons for these long
tails.

First, precise estimates of (p^ are difficult to obtain
because of tbe predominantly positive correlation across
space. The impact of strong spatial correlations on the esti-
mation of (po( can be observed as follows: If we knew tbe
spatial covariance structure. A,,, and if we had observed the
constants a, (p^ would be tbe usual generalized least squares
estimate with variance (I'A^'i)*'. where i is an N x 1 vector
of ones. The question now is. "Why is this variance large
with positive spatial dependence?" Suppose, for ease of
exposition, that the diagonal of the covariance matrix con-
tains equal elements. Factoring out the diagonal, we obtain
a^(i 'r^'i)- ' as tbe samphng variance of (p .̂ where r,^ is the
correlation matrix and a^ is the corresponding scale. The
term (iT^iU) is known in the decision sciences as the
Clemen-Winkler measure (Clemen and Winkler 1985) and
expresses the number of independent observations con-
tained in N dependent observations. Write this number as
N'. Tbis number will become very low as the spatial depend-
ence increases. In the specific case of the local demand con-
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Figure 2
POSTERIOR DISTRIBUTIONS FOR THE PARAMETERS OF THE CROSS-SECTIONAL MODEL FOR a
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stants, oq, for the Pace brand, this number is approximately
ten. This means that our 64 spatially dependent demand con-
stants are "worth" only ten independent observations. It is
this lack of independent observations that underlies the large
posterior variance in the (ps.

Second, the lower the draw of the mean, the higher is the
likely corresponding draw of the variance conditional on
that mean. Because of this correlation, the variance of the
posterior distribution of 6^4 will also be large.

The spatial structure of the demand residuals. Table 2
presents the percentiles and mean for the posterior distribu-
tion of 0r|. Because there are NT observations of ejj, these
posterior distributions are much tighter than those for the
demand constants (for which we only had N observations).
Computations on the draws for 0,̂  suggest that approxi-
mately 68% of the cross-sectional variance in the dynamic
demand shocks is either retailer related (31%) or distance
based (37%), whereas only 32% of the cross-sectional vari-
ance in the dynamic demand shocks is independent across
markets.

This spatial dependence of the dynamic demand shocks
may indicate that these tend to be common to (multiple co-
located) retailers. An example of retailer-based time-varying
factors is the effect of unobserved trade promotions to (a
geographic segment of) retailers. Although these trade pro-
motions are not directly observed (and may not be observ-
able at all), it is possible to account for their influence
through A^.

The spatial dependence in e, underscores once more that
we should expect significant efficiency losses if we treat the
multimarket data as cross-sectionally independent (see the
previous discussion on price elasticities). In the context of
prediction, this result also suggests that local residuals wil l
be informative about the residuals in other nearby markets,
even after we account for price effects.

The .spatial structure of the price residuals. Table 2 also
presents the posterior distributions for 0t. These suggest that
for the dynamic effects in prices, similar results hold as for
the demand residuals. The retailer component in cros.i-
sectional covariation of dynamic price shocks is larger than
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Table 2
CREDIBILITY INTERVALS FOR SELECTED MODEL PARAMETERS

Pen entiles and Mean

Parameler .025 .050 Mean .950 .975

Inlercepfs
Auioregrcssion across retailers
Bessel tunction parainelcr
S.D. rtiailer component
S.D. spatial component
S.D. independent component
Mean intercept

Price Ela.\ticifies
Autoregression across retailers
S.D. retailer component
S.D. independent component
Mean price elasticity

Conipiment in Sates Velocity
Autiiregrcssion aeross retailers
Spatial depcndenee
S.D. retailer compoiK-ni
S.D. spaiial compoiienl
S.D. independent component
Auloregression across lime

Dynamic Component in Prices
Aiiioregression across retailers
Spatial dependence
S.D. retailer eomponent
S.D. spatial component
S.D. independent coniponents
Autoregression across time

^^3

Pp

-.066
2.390

.447

.512

.008
-1.732

-.933
.401
.144

-2.323

.254
1.899
.141
.072m
.004
.IK
JD3S
.008
.018
.661

3.061
.472
.554
.018

- M 3

-.864
.542
.212

-2.229

.267
1.980

. 1 ^

.074

.067

.687

.345

.038

.008

.018

.664

.450
5.593

.623
1.322
.102

1.868

.082
1.251
.514

-1.873

.328
2.414

.149

.083

.069

.703

.088
1.864
.040
.009
.019
.680

.765
7.834

.785
2.899

.191
1.812

.729
1.925
.825

1.540

.386
2.861

.156

.092

.071

.719

.155
3.179

.042

.Oil

.019

.696

.807
8.287

.826
3.792

.211
1.953

.807
2.051

.884
-1.462

.395
2.939

.157

.094

.071

.722

.168
3.371

.042

.Oil

.020

.700

Notes: S.D- = standard deviation.

the disiance-based component, as would be expected if
prices are sel al the account level.

Predictions

In this section, we present and analyze the prediction
results for demand and price elasticities. We predict these
variables for a regularly spaced grid of locations, con-
slrucled using a spatial resolution of .02 rads (approximately
SO tniles) and spanning the entire continental United States.
Predictions in this section are for the la.st time period of our
data set (Tpr,d = 104).

We evaluate demand predictions using the units in which
the model is estimated, as explained previously. Therefore,
in Figure 3, we present prediction results for the log of sales
velocities. Figure 3. Panel A, shows the posterior means of
the predictive distribution at each prediction location, Frotn
this graph, we can observe that sales velocities differ greatly
across the various regions in the United States. This spatial
variation is surprising for a product category {Mexican
salsa) with litiiitcd or no degree of product differentiation (at
least among the nationally available brands). The terraced
appearance of the prediction surface, especially in the West,
rellects the DMA structure of the data. These plateaus are
not completely Hat but slightly curved. This is a conse-
quence of the concurrent presence of the distance-based
variance component in the tnodel.

Figure 3. Panel B, shows the standard errors of the pre-
dictions. From this graph, we observe that the standard
errors of the predictive distribution have the intuitively cor-

rect pattern: Prediction variance is higher for prediction
locations farther away from sample points. This is exactly
the same as in temporal predictions: The longer the predic-
tion horizon, the larger is the prediction error.

Figure 4 details the predictions for price elasticities. Fig-
ure 4, Panel A, presents the predictions of price elasticities.
Figure 4, Panel B, presents the standard errors in these pre-
dictions. Price elasticities tend to become more pronounced
going west. For example, the price elasticity in the western-
most states averages -1.94, whereas in the easternmost
states it averages -1.42. Also, the procedure predicts that in
almost all locations, price effects are significant. We believe
that this is a strong point of the analysis.

OUTOF-SAMPLE VALIDATION

We establish the predictive power of the proposed kriging
method using out-of-sample tests. Because our application is
spatial, we generated fourdifferent types of holdout samples:
(1) random removal of IRI markets from our original sample.
(2) removal of IRI markets contained in a circle with a ran-
dom center and a given radius, (3) removal of IRI markets
contained in an East-West band with a random location and
fixed width, and (4) removal of the IRI markets contained in
a North-South band with a random location and fixed width.
For each sample pattern, we used three different sample-
generation values. For exatnple, we removed 10, 15, and 20
markets frotn ihe 64 IRI sample points, and we retnoved
markets located in randomly positioned circles with a radius
of .05,. 10, and . 15 ruds (for other values, see Table 3).
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Figure 3
PREDICTIONS OF SALES VELOCITY OF PACE SALSA IN THE UNITED STATES

A: Sales Velocity

B: Standard Errors
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It is computationally not feasible to generate many hold-
out samples and then execute an MCMC approach for each
of these. In addition, we believe that there is more value in
establishing the approxitnate predictive accuracy of the spa-
tial interpolation method for many different types of holdout
samples than there is in knowing the exact predictive accu-
racy for one or two of these. Therefore, we estimate the
approximate accuracy of the kriging predictor by setting the
covariance parameters, 6, to reasonable values. This
amounts to using a classic kriging predictor with exogenous
6. We chose two sets of parameters for the Gs. The first is
simply the mean of the posteriors reported in Table 2. The
second set of parameters used was intentionally set away
from the corresponding posterior means or modes. We did
this to prevent the influence of "hindsight wisdom."

We evaluated three distinct prediction models. In the ftrst
model, DIRECT, we use a kriging predictor directly on the
log of sales velocity, without price effects. In this model, we

directly use Equation 10 to compute yjiKyj,} for some loca-
tion j that is in the holdout sample and all locations i that are
in the estimation sample. The second model, FULL, uses the
full hierarchical model (see also the subsequent discussion).
The third and fourth models are identical to FULL, except
that we suppressed retailer interaction (0| = 0) and retailer
structure (83 = 0), respectively.6 The fifth model. KPRICE,
is the same as FULL but assumes that prices in the holdout
markets are known.

The prediction procedure for the most general case of the
FULL model works as follows: For each in-sample location,
we obtain EGLS estimates of the unobserved spatial vari-

''For atl idea oC the approximate location of the 0 parameters in ihese var-
ious spatial models, we conducted additional MCMC analyses for (he
DIRECT model and the FULL model with parameter restrictions on 9] and
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Figure 4
PREDICTIONS OF PRICE ELASTICITIES OF PACE SALSA IN THE UNITED STATES

A: Elasticities
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B: Standard Errors
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ables a and |i and compute the residuals e, and Vt, t = I
T. We then predict for an out-of-sample location j . aj|a. and
fjl^ using Equation lOandejJe, and vJv, using Equation 12.
Then we predict y|, with ŷ , = a^ + pjVj, + ê ,. Finally, we
compute the mean squared error of prediction as the mean of

We also evaluate four naive prediction models to serve as
benchmarks. The first model, NEAR3. predicts sales veloc-
ity for holdout locations by averaging over tbe observations
of the nearest three neighbors in the estimation sample. The
second model, NEARI. predicts sales velocity using the
observation of the nearest neighbor. The third model. AVER,
uses the average of the in-sample observations as a predic-
tion for the out-of-sample locations. From Figure 3, we can
easily verify that these three naive predictors are not simply
easy-to-beat straw men. Finally, the fourth naive model,
APRICE. uses the average of the in-sample EGLS estimates
of the intercepts and price effects, assuming an AR(I) tem-

poral structure in the data. Then. APRICE uses these aver-
ages and the actual price data from the unsampled markets
to predict sales velocity. This mtxJel makes use of price
information of unsampled markets but does not use any spa-
tial structure.

Table 3 reports the average mean squared prediction error
(MSE) in log of sales velocity. This table reports the average
MSE for each of the six predictors and for each type of hold-
out sample, computed across 100 randomly drawn holdout
samples and across all 104 time periods. The results for both
sets of parameters 6 are as follows.

First, the FULL model and the KPRICE model are almost
equally good in terms of holdout performance. This suggests
that using the Vj, observed at sample locations, we can accu-
rately predict the price deviations Vj, for out-of-sample
locations j .

Second, the more elaborate models FULL and KPRICE
consistently beat the DIRECT kriging approach across all
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Table 3
MEAN SQUARED ERROR IN 100 RANDOMLY GENERATED HOLDOUT SAMPLES FOR PACE SALSA (LOG OF SALES VELOCITY)

Holdout Generation

Random
(number of cities)
(10)
(15)
(20)

Circle
(radius in rads)
.(.OS)
(.10)
(.15)

Ea.st-We.'!t
(width in radx)
(.05)
(.10)
(.15)

North-Soulh
(widlh in rads)
(.05)
(.10)
(.15)

Means

Percentage difference

DIRECT

.166

.163

.194

.207
Ml
.W3

,196

m.366

.203

.250

.283

.2M

-9%

FULL

.158

.155

.185

.187

.243

.236

.200

.349

.337

.188

.232

.270

.220

-2%

Kriging Methods

FULL
(Qi = 0)

.159

.161

.193

.186

.264

.250

.166

.267

.393

.188

.232

.262

.227

-6%

FULL
(Qj = 0}

.229

.224

.255

.268

.318
,310

.206

.352

.467

.267

.293

.299

.291

-35%

KPRICE

.153

.149

.179

.182

.238

.230

.194

.243

.332

.183

.228

.265

.215

0%

NEARS

.181

.183

.213

.245

.358

.477

.173

.308

.437

.265

.397

.455

.308

Naive Methods

NEAR}

.205

.212

.236

.338

.447

.582

.245

.379

.446

.308

.442

.555

.366

- 7 1 %

AVER

1
1

.949

.937

.974

1.003
1.123
1.342

.975
1.175
1.236

.973
1.200
1.134

1.085

-405%

APR}CE

.963

.950

.988

1.015
1.134
1.351

.985
1.184
1.245

.984
1.211
!.t46

1.096

-411%

Mean
Holdout

10.00
15.00
20.00

3.25
8.54

17.28

11.45
20.88
29.94

5.5
9.51

14.45

types of holdout samples. Although we believe that both the
FULL and the KPRICE model represent a more accurate
description of the data-generating process, it can be argued
that the improvement these models provide over the
DIRECT approach is modest. The reason for this result
resides in the combined nature of the more elaborate fore-
casts, which mitigates their superiority in capturing the
essence of ihe data by leading to higher forecast variability
and therefore higher MSE.

Third, if we restrict the retailers to be independent, 9| =
0, the predictions (measured by the MSE criterion) are 6%
worse than those of KPRICE. Next, by setting 9^ = 0, we
make predictions using only the distance-based component
of the model. Now the drop in prediction accuracy is 35%.
The predictions using only distance-based covariation are
not much different from the naive approach that takes the
average of the nearest three markets.

Fourth, the overwhelming result in Table 3 is that when
taken together, the kriging approaches greatly outperform
the naive predictors such as NEAR3 or NEAR I. If we take
the MSE of the AVER predictor, a measure of variance in
the data,'' we find that the out-of-sample performance of the
FULL model is more than four times better than might be
expected a priori. In addition, the FULL approach is more
than 40% better than NEAR3 and more than 70% better than
NEAR I. Finally, among all candidates, the AVER and
APRICE predictors are the worst predictors. If we focus
momentarily on the relative performance of these two pre-
dictors, it may come as a surprise that a model that uses
price information is worse than the AVER model, which
does not use such information to make predictions. How-

^To illustrate further how well the spatial forecasting method works, the
actual variatice in the log of sales velocities in the data is .92.

ever, it should be recalled that to estimate price effects and
intercepts, we must assume that these are constant over
time. AVER is more flexible because it uses data of period t
only and therefore more accurately tracks temporal shifts in
sales velocity. We conclude that the predictive accuracy of
kriging methods appears to be superior to that of naive
methods.

CONCLUSIONS AND FUTURE RESEARCH

The spatial dimension in U.S. multimarket data on food
categories is likely to be an important source of variation in
the sales performance of nationally distributed brands. As
such, it constitutes an overlooked aspect of the food retail-
ing business in (he marketing literature and has relevant
implications for local marketing policies or micromarkcting.

In the context of analyzing the cross-sectional or spatial
differences in sales performance, we hope this article has
contributed in the following three ways: First, it presents a
general prediction method for spatial problems. It intro-
duces optima! spatial predictors, operationali/.es them in a
marketing context, and reports their performance. The for-
mal prediction methods developed and operationaiized here
outperform naive methods of spatial prediction on holdout
samples.

Second, the article proposes a random effects nmdel of
the U.S. retailing industry that may be useful in accounting
for unobserved retailer effects in multimarket data. This
model captures aspects of both structure and conduct of the
retailers in the fast-moving consumer goods industry.

Third, and relatedly, the article develops a feasible way to
take into account both the temporal and the spatial nature of
the data in the estimation of local marketing-mix effects.
Therefore, we can (I) account for unobserved effects with a
spatial structure and (2) use the results of neighboring mar-
kets to improve tbe estimates for markets in which informa-
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tion is poor. As a consequence of taking spatial dependen-
cies into accouni, we obtain more etf'icient estimates of the
price elasticities in local U.S. markets. To the extent that
including the spatial dimension of the data helps eliminate
model misspecification, we also believe that our estimates
are more reasonable.

In terms of tuture research, spatial analysis can perhaps be
used to study retailer power by investigating the cross-
sectional properties of undifferentiated product-markets across
ditterentiated retail territories. This methcxlology is different
from that employed in the work of Messinger and Narasimhan
{1995) and Lai and Narasimhan (1996), who use historical and
game-theoretic methodologies in assessing retailer power.

Through its operationalization of the retailer structure
and conduct, this research also opens a new avenue for sci-
enufiL- inquiry into the spatial implications of new product
introductions. For example, given the location of retailers,
which is truly exogenous for any given product introduc-
tion, the choice for lead markets eould be guided by a tar-
geting of the markets that are central in the "retail" network,
that is. from which most spatial contagion emanates. To
evaluate the etTectiveness of these efTorts, general models of
growth across both lime and spaee need to be developed In
marketing. Future research projects could deal with these
topies,

APPENDIX A: SOME RESULTS FOR THE PREDICTION
STEPS

For the prediction of the random components ej, (and Vj,).
where j = N + 1. ..., N + M and 1 = 1 T, we need to show
that the only observations in e and v that matter for the spa-
tial prediction are e, = le|, ... e|M,l' and v, = [vi, ... Vf̂ ,]',
respectively. It is convenient to use the convention that j ' =
i - N. We recall that the cross sectional structure contains the
following subinatrices:

(Al)
(N X N) (N X M)

JM X N) (M X M)_

Assuming ergodicity and expanding the AR(1) structure.

(A2) = E

= E

= E

s = 0

where A,,,i is the covariation between r|j, and Ti,,. This implies
iluit the covariativ)n between e,, and the I x N vector e', _ f of
stochastic components at sampled markets at t - r is

(A3)

where \^\' is the j'th row of A?̂ ' and is equal to the covari-
ation between the scalar rij, and the 1 x N vector r\\ of tran-
sient spatial effects at the sampled markets and time t. This
finally implies that the covariation between e,, and e' is equal
to the 1 X NT vector 4'y, ® A^j-, where T^, is the tth row of
Ty. Now it is simple to prove (see, e.g., Searle, Casella, and
McCulloch 1992) that

(A4) E(ej,e')[B(ee') r'[
- I

X [e-E(e)l

Similarly.

(A5) V(

where
(M
trihution of [e,Je,

is the jth element on the diagonal of the full
+ N) X {M + N) matrix A,̂ . Given these results, the dis-

, y A,,! does not depend on stochastic
components other than e,, and therefore, even Ibr very large
T and N, these computations can be done eHlciently.

APPENDIX B: PRIORS AND FULL CONDITIONAL
DISTRIBUTIONS

To use tbe Gibbs sampler, we derived the distributions of
ail model parameters conditional on the data at the N sampled
locations and on the remaining parameters. Because all cross-
sectional processes are of size N. during this inference phase
of the analysis, we write the N x N submatrix A|̂ ' in Equation
9 as A^. Similarly A'' will be represented by Ap. and so forth.

Full Conditional Distribution of a or ^

The model from which to estimate the vectors a and P is y, =
a + diag(p[)[3 + e, (see Equation 2). Stacking this system over
time, we obtain the following expression: y = l a + pp + e, with

(BO I =
NTxN

and p =
NTxN

Pll

0

PIT

d

0

PNI

0

PNTJ

1 - p j
Consider first the case of price elasticities, p. and delmc a
new dependent variable y* as follows; y* = y - l a = p[i + e.
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Then, the full conditional distribution for the vector p. given
the time series data and the hierarchical model in Equation
6. is as follows: . .

PIrest -(B2)

where Vp = [p'(S'-' ® A^i)p + Ag'j-' and mp = Vp[p'(T-i ®
A^')y* + Ap'Zp<pp). Although this full conditional appears
computationally burdensome, the MCMC algorithm uses an
exact simplification that makes use of the special form of the
matrices I and p (see the subsequent discussion). The full
conditional for a is derived similarly using y* = y - pp.

Full Conditional Distribution of (p^ and <pp

Consider the ease of (p .̂ We chose a Normal prior with
zero mean (V^Q = 0) and a diagonal variance-eovarianee
matrix. V ^ Q , with variances equal to 10,000. The full con-
ditional distribution is then '

(B3)

Where V ^ = (Z'^A^'Z^ + V-i^)-i and v = V ^ ^ a A ^ ' a -
Similar expressions hold for tne full conditional distribution
of (Pp.

Full Conditional Distribution O/6Q,, Op, 9«. and Qf

Tbe varianee-covarianee matrices A^. Ap, A«, and A?
depend on the parameters O^. Op, 9^, and 0^. respectively.
We use the Metropolis-Hastings algorithm to simulate tbe
distributions of these parameters, which are nonstandard.
Most elements in 6 have feasibility bounds: Standard devia-
tions must be positive, autoregression parameters must be
within - I and +1. and the Bessel-function parameter must
be positive (see the text). As a result, we use multivariate
Normal priors with a variance of 100 that are truncated at
the feasibility bounds. We set the modes of these priors to
values we believe are reasonable. The Metropolis-Hastings
algorithm is explained in more depth subsequently.

APPENDIX C: THE MCMC ALGORITHM
At any stage of the sampler, the conditioning is updated

with the most recent draws of the variables in tbe list of con-
ditionals. We can eross-sectionally vectorize all steps in the
algorithm. Again all cross-sec tional processes are of size N.
Therefore, we again write the N x N leading submatriees
Aj.'j as A(., (for further details, see Appendix B). For each
iteration r of the sampler,

I. Set y* = y - pp. Draw from [a*f'|restl using an expression
equivalent to the one of Equation B2. This equation contains
multiplications using full-rank matrices of dimension NT x
NT {in our case NT = 64 x 104 = 6656). We take advantage of
the special structure of the matrices 1 and p to .simplify these
computations. Specitlcally, we can prove that for any general
column vector Y of size NT. for a matrix X of the same struc-
ture as the matrices 1 and p in Equation Bl, and for symmet-
ric matrices T- ' and Afj', the following equivalences hold:

(CD X'(H'-i 0 A-i)X = A-'

A-')Y = diag(A-"YT-'X').

where ° is the element-by-element multiplier, and X is an N x
T matrix containing the N lime series IXji ... Xjx] as rows.
The element Y is an N x T matrix containing the N time series
[Yji ... Yj-ĵ l. Using these equivalences, we can speed up the
eonditional mean and variance computations.

2. Draw <p*̂ ' using the distribution in Equation B3.
3. Set y* = y - la . Draw from (p'f)|restl using the distribution in

Equation B2.
4. Draw (p'^' using a distribution equivalent to the one in Equa-

tion B3. ^
5. Draw 0*̂ * using the Metropolis-Ha.stings algorithm. First, draw

a candidate 0*'^' from a jumping distribution g(9^''''|0j^^" ' ' ) . To
obey the logical constraints on 9Q,. we use a truncated multi-
variate Normal di.stribution. To draw from thi.s jumping distri-
bution, we u.se rejection sampling to obtain a feasible candidate
Ĝ *""' (in the sense of satisfying all logical eon.straints on G )̂
from a multivariate Normal distribution with mean 9l[ ~ '* and
variance-covariance matrix c^I. where c = 2.4/^d and d i.s the
number of parameters in e {see Gelmanetal. 1995. p. 334). Sec-
ond, the vector 9^''' is probabilistically determined as follows;

_ |6Q'^* with probability

e:( r - l ) else
{C2)

where

(C3)

in which f(0^*^*|(poiZn,a<''') is a multivariaie Normal density
with mean <PaZ,, and a variance-covariance matrix generated
by O^"'. evaluated at the last draw of a. The term 7C(x|m,v) is
a multivariate Normal prior density evaluated at x. The trun-
cation points of the prior do not enter this ratio, because they
are common to 9̂ *"̂ * and Q'^ " ". To compute the truncated
multivariate normal density g(9^*^*|9jj[" " ) . we need to com-
pute the probability mass of the Normal distribution
N(9[^^" ",c-I) that lies within the feasible area for ail param-
eters. We computed this probability mass for every step ot" the
sampler by determining how many of I0{)0 random draws
from N{OJ[- ".c^I) fall inside the feasible area. We did the
same for g{9jĵ  " '*|0^"'). To make the algorithm more effl-
eient, we recomputed the variance-covariance matrix I of the
jumping distribution by exponentially pha.sing in the covari-
ance matrix of the accepted draws over an initialization period
of 10.000 draws.

6. Draw 9'p' using the Metropolis-Hastings algorithm as
explained previously.

7. Draw 0*̂ '̂ using the Metropolis-Hastings algorithm as
explained previously. However, this and the next step in the
algorithm differ slightly from Steps 5 and 6. This is because
we need to compute the likelihood of a lull NT x I vector e
with mean 0 and variance-covariance matrix T . A,,. To do
this eftlciently. we used the following result on determinants
iH'y ® A^j = iTyl^lA^lT and the following result on traces.
Detlne e, = [e,, ... e^,]' and e = [e, ... ey\. Then e'(Ty-" ®
A ' ) ' '

8. Draw 9'̂ * using the Metropolis-Hastings algorithm as
explained previously.
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