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We refute an often invoked theorem which claims that a periodic orbit with an odd number of real
Floquet multipliers greater than unity can never be stabilized by time-delayed feedback control in the form
proposed by Pyragas. Using a generic normal form, we demonstrate that the unstable periodic orbit
generated by a subcritical Hopf bifurcation, which has a single real unstable Floquet multiplier, can in fact
be stabilized. We derive explicit analytical conditions for the control matrix in terms of the amplitude and
the phase of the feedback control gain, and present a numerical example. Our results are of relevance for a
wide range of systems in physics, chemistry, technology, and life sciences, where subcritical Hopf
bifurcations occur.

DOI: 10.1103/PhysRevLett.98.114101 PACS numbers: 05.45.Gg, 02.30.Ks

The stabilization of unstable and chaotic systems is a
central issue in applied nonlinear science [1–3]. Starting
with the work of Ott, Grebogi, and Yorke [4], a variety of
methods have been developed in order to stabilize unstable
periodic orbits (UPOs) embedded in a chaotic attractor by
employing tiny control forces. A particularly simple and
efficient scheme is time-delayed feedback as suggested by
Pyragas [5]. It is an attempt to stabilize periodic orbits of
minimal period T by a feedback control which involves a
time delay � � nT, for suitable positive integer n. A linear
feedback example is

 _z�t� � f��; z�t��� B�z�t� �� � z�t��; (1)

where _z�t� � f��; z�t�� describes a d-dimensional nonlin-
ear dynamical system with bifurcation parameter � and an
unstable orbit of period T. B is a suitably chosen constant
feedback control matrix. Typical choices are multiples of
the identity or of rotations, or matrices of low rank. More
general nonlinear feedbacks are conceivable, of course.
The main point, however, is that the Pyragas choice �P �
nT of the delay time eliminates the feedback term in case
of successful stabilization and thus recovers the original
T-periodic solution z�t�. In this sense the method is non-
invasive. Although time-delayed feedback control has been
widely used with great success in real world problems in
physics, chemistry, biology, and medicine, e.g., [6–18],
severe limitations are imposed by the common belief that
certain orbits cannot be stabilized for any strength of the
control force. In fact, it has been contended that periodic
orbits with an odd number of real Floquet multipliers
greater than unity cannot be stabilized by the Pyragas
method [19–24], even if the simple scheme (1) is extended
by multiple delays in form of an infinite series [25]. To
circumvent this restriction other, more complicated, con-
trol schemes, like an oscillating feedback [26], or the
introduction of an additional, unstable degree of freedom
[24,27], have been proposed. In this Letter, we claim, and
show by example, that the general limitation for orbits with
an odd number of real unstable Floquet multipliers greater

than unity does not hold, but that stabilization may be
possible for suitable choices of B. We illustrate this with
an example which consists of an unstable periodic orbit
generated by a subcritical Hopf bifurcation, refuting the
theorem in [20].

Consider the normal form of a subcritical Hopf bifurca-
tion, extended by a time-delayed feedback term

 _z�t� � ��� i� �1� i��jz�t�j2�z�t� � b�z�t� �� � z�t��

(2)

with z 2 C and real parameters � and �. Here the Hopf
frequency is normalized to unity. The feedback matrix B
is represented by multiplication with a complex number
b � bR � ibI � b0e

i� with real bR, bI, �, and positive b0.
Note that the nonlinearity f��; z�t�� � ��� i� �1�
i��jz�t�j2�z�t� commutes with complex rotations. Hence
the Hopf bifurcations from the trivial solution z � 0 at
simple imaginary eigenvalue � � i! � 0 produce rotating
wave solutions z�t� � z�0� exp�i 2�

T t� with period T even in
the nonlinear case and with delay terms. This follows from
uniqueness of the emanating Hopf branches.

Transforming Eq. (2) to amplitude and phase variables r,
� using z�t� � r�t�ei��t�, we obtain at b � 0

 _r�t� � ��� r2�r; (3)

 

_��t� � 1� �r2: (4)

A UPO with r2 � �� and period T � 2�=�1� ��� exists
for � < 0. At � � 0 a subcritical Hopf bifurcation occurs.
The Pyragas control method chooses delays as �P � nT.
This defines the local Pyragas curve in the (�, �) plane for
any n 2 N

 �P��� �
2�n

1� ��
� 2�n�1� ��� 	 	 	�; (5)

which emanates from the Hopf bifurcation point � � 0.
Under further nondegeneracy conditions, the Hopf point
� � 0, � � nT (n 2 N0) continues to a Hopf bifurcation
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curve �H��� for � < 0. We determine this Hopf curve next.
It is characterized by purely imaginary eigenvalues � �
i! of the transcendental characteristic equation

 � � �� i� b�e��� � 1� (6)

which results from the linearization at the steady state z �
0 of the delayed system (2).

Separating Eq. (6) into real and imaginary parts

 0 � �� b0�cos���!�� � cos��; (7)

 !� 1 � b0�sin���!�� � sin��; (8)

and using trigonometric identities to eliminate !��� yields
an explicit expression for the multivalued Hopf curve
�H��� for given control amplitude b0 and phase �:

 �H �

 arccos�b0 cos���

b0
� � �� 2�n

1� b0 sin�

����������������������������������������������������������
��2b0 cos�� �� � b2

0sin2�
q : (9)

Note that �H is not defined in case of � � 0 and � < 0.
Thus complex b is a necessary condition for the existence
of the Hopf curve in the subcritical regime � < 0. Figure 1
displays the family of Hopf curves, n 2 N0, Eq. (9), and
the Pyragas curve n � 1, Eq. (5), in the (�, �) plane. In
Fig. 1(b) the domains of instability of the trivial steady
state z � 0, bounded by the Hopf curves, are marked by
light gray shading (yellow online). The dimensions of the
unstable manifold of z � 0 are given in parentheses along
the � axis in Fig. 1(b). By construction, the period of the
bifurcating periodic orbits becomes equal to �P � nT
along the Pyragas curve, since the time-delayed feedback
term vanishes. Standard exchange of stability results [28],
which hold verbatim for delay equations, then assert that
the bifurcating branch of periodic solutions locally inherits
linear asymptotic (in)stability from the trivial steady
state; i.e., it consists of stable periodic orbits on the
Pyragas curve �P��� inside the yellow domains for small
j�j. Note that an unstable trivial steady state is not a
sufficient condition for stabilization of the subcritical orbit,
but other (e.g., global) bifurcations at � < 0 must be
considered as well. More precisely, for small j�j unstable
periodic orbits possess a single Floquet multiplier � �
exp���� 2 �1;1�, near unity, which is simple. All other

nontrivial Floquet multipliers lie strictly inside the com-
plex unit circle. In particular, the (strong) unstable dimen-
sion of these periodic orbits is odd, here 1, and their
unstable manifold is two dimensional. This is shown in
Fig. 2, which depicts solutions � of the characteristic
equation of the periodic solution on the Pyragas curve.
Panel (a) (top) shows the dependence of the real part of
the critical Floquet exponent � on the amplitude of the
feedback gain b0. The largest real part is positive for b0 �
0. Thus the periodic orbit is unstable. As the amplitude of
the feedback gain increases, the largest real part of the
eigenvalue becomes smaller and eventually changes sign.
Hence the periodic orbit is stabilized. Note that an infinite
number of Floquet exponents are created by the control
scheme; their real parts tend to �1 in the limit b0 ! 0,
and some of them may cross over to positive real parts for
larger b0 (blue dashed curve), terminating the stability of
the periodic orbit. Panel (b) of Fig. 2 shows the behavior of
the Floquet multipliers � � exp���� in the complex plane
with the increasing amplitude of the feedback gain b0 as a
parameter (marked by arrows). There is an isolated real
multiplier crossing the unit circle at � � 1, in contrast to
the result stated in [20]. This is caused by a transcritical
bifurcation (TC) in which the subcritical Pyragas orbit
[whose radius is given by r � ����1=2 independently of
the control amplitude b0] collides with a delay-induced
periodic orbit, as shown in Fig. 2(c). This delay-induced
orbit is generated at a finite value of the control amplitude
b0 (SN) by a saddle-node bifurcation (collision with an-
other unstable delay-induced periodic orbit). At TC, the
subcritical orbit and the delay-induced orbit exchange
stability. The latter vanishes at a subcritical Hopf (subH)
bifurcation at which the trivial steady state becomes un-
stable. Except at TC, the delay-induced orbit has a period
T � �. Note that for small b0 the subcritical orbit is
unstable, while z � 0 is stable, but the respective ex-
changes of stability occur at slightly different values of
b0, corresponding to TC and subH. This is also corrobo-
rated by Fig. 2(a) (bottom), which displays the largest real
part of the eigenvalues � of the steady state z � 0. The
possible existence of such delay-induced periodic orbits
with T � �, which results in a Floquet multiplier � � 1 of
multiplicity two at TC, was overlooked in [20].

Next we analyze the conditions under which stabiliza-
tion of the subcritical periodic orbit is possible. From
Fig. 1(b) it is evident that the Pyragas curve must lie inside
the yellow region; i.e., the Pyragas and Hopf curves ema-
nating from the point ��; �� � �0; 2�� must locally satisfy
the inequality �H���< �P��� for � < 0. More generally,
let us investigate the eigenvalue crossings of the Hopf
eigenvalues � � i! along the � axis of Fig. 1. In particu-
lar, we derive conditions for the unstable dimensions of the
trivial steady state near the Hopf bifurcation point � � 0 in
our model Eq. (2). On the � axis (� � 0), the characteristic
Eq. (6) for � � i! is reduced to

 � � i� b�e��� � 1�; (10)

 

/ /

FIG. 1 (color online). Pyragas (red dashed) and Hopf (black
solid) curves in the (�, �) plane: (a) Hopf bifurcation curves n �
0; . . . ; 10, (b) Hopf bifurcation curves n � 0, 1 in an enlarged
scale. Yellow (light gray) shading marks the domains of unstable
z � 0 and numbers in parentheses denote the dimension of the
unstable manifold of z � 0 (� � �10, b0 � 0:3, and � � �=4).
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and we obtain two series of Hopf points given by

 0 � �An � 2�n; (11)

 0< �Bn �
2�� 2�n

1� 2b0 sin�
�n � 0; 1; 2; . . .�: (12)

The corresponding Hopf frequencies are !A � 1 and
!B � 1� 2b0 sin�, respectively. Note that series A con-
sists of all Pyragas points, since �An � nT � 2�n

!A . In the
series B the integers n have to be chosen such that the delay
�Bn � 0. The case b0 sin� � 1

2 , only, corresponds to !B �

0 and does not occur for finite delays �.
We evaluate the crossing directions of the critical Hopf

eigenvalues next, along the positive � axis and for both
series. Abbreviating @

@� � by �� the crossing direction is
given by sgn�Re���. Implicit differentiation of (10) with
respect to � at � � i! implies

 sgn �Re��� � �sgn�!�sgn� sin�!�� ���: (13)

We are interested specifically in the Pyragas-Hopf points of
series A (marked by red dots in Fig. 1) where � � �An �
2�n and ! � !A � 1. Indeed sgn�Re��� � sgn�sin��>
0 holds, provided we assume 0<�<�, i.e., bI > 0 for
the feedback gain. This condition alone, however, is not
sufficient to guarantee stability of the steady state for � <
2n�. We also have to consider the crossing direction
sgn�Re��� along series B, !B � 1� 2b0 sin�, !B�Bn �
2�� 2�n, for 0<�<�. Equation (13) now implies
sgn�Re��� � sgn��2b0 sin�� 1� sin��.

To compensate for the destabilization of z � 0 upon
each crossing of any point �An � 2�n, we must require
stabilization [sgn�Re���< 0] at each point �Bn of series
B. This requires 0<�< arcsin�1=�2b0�� or ��
arcsin�1=�2b0��<�<�. The distance between two suc-
cessive points �Bn and �Bn�1 is 2�=!B > 2�. Therefore,
there is at most one �Bn between any two successive Hopf
points of series A. Stabilization requires exactly one such
�Bn , specifically: �Ak�1 < �Bk�1 < �Ak for all k � 1; 2; . . . ; n.
This condition is satisfied if, and only if,

 0<�<�
n; (14)

where 0<�
n < � is the unique solution of the transcen-
dental equation

 

1

�
�
n � 2nb0 sin�
n � 1: (15)

This holds because the condition �Ak�1 < �Bk�1 < �Ak first
fails when �Bk�1 � �Ak . Equation (14) represents a neces-
sary but not sufficient condition that the Pyragas choice
�P � nT for the delay time will stabilize the periodic orbit.

To evaluate the second condition, �H < �P near ��; �� �
�0; 2��, we expand the exponential in the characteristic
Eq. (6) for !� � 2�n, and obtain the approximate Hopf
curve for small j�j:

 �H��� � 2�n�
1

bI
�2�nbR � 1��: (16)

Recalling (5), the Pyragas stabilization condition �H���<
�P��� is therefore satisfied for � < 0 if, and only if,

 

1

bI

�
bR �

1

2�n

�
<��: (17)

Equation (17) defines a domain in the plane of the complex
feedback gain b � bR � ibI � b0ei� bounded from below
(for � < 0< bI) by the straight line

 bI �
1

��

�
bR �

1

2�n

�
: (18)

 

FIG. 3 (color online). Domain of control in the plane of the
complex feedback gain b � b0ei� for three different values of
the bifurcation parameter �. The black solid curves indicate the
boundary of stability in the limit � % 0; see (18) and (19). The
color-shading shows the magnitude of the largest (negative) real
part of the Floquet exponents of the periodic orbit (� � �10,
� � 2�

1��� ).

 

FIG. 2 (color online). (a) Top: Real part of Floquet exponents � of the periodic orbit vs feedback amplitude b0. Bottom: Real part of
eigenvalue � of the steady state vs feedback amplitude b0. (b) Floquet multipliers � � exp���� in the complex plane with the
feedback amplitude b0 2 �0; 0:3� as a parameter. (c) Radii of periodic orbits. Solid (dashed) lines correspond to stable (unstable)
orbits. (� � �0:005, � � �10, � � 2�

1��� , � � �=4).
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Equation (15) represents a curve b0���, i.e.,

 b0 �
1

2n sin�

�
1�

�
�

�
; (19)

which forms the upper boundary of a domain given by the
inequality (14). Thus (18) and (19) describe the boundaries
of the domain of control in the complex plane of the
feedback gain b in the limit of small �. Figure 3 depicts
this domain of control for n � 1, i.e., a time delay � �

2�
1��� . The lower and upper solid curves correspond to
Eqs. (18) and (19), respectively. The color code displays
the numerical result of the largest real part, wherever <0,
of the Floquet exponent, calculated from linearization of
the amplitude and phase equations around the periodic
orbit. Outside the color shaded areas the periodic orbit is
not stabilized. With increasing j�j the domain of stabiliza-
tion shrinks, as the deviations from the linear approxima-
tion (16) become larger. For sufficiently large j�j
stabilization is no longer possible, in agreement with
Fig. 1(b). Note that for real values of b, i.e., � � 0, no
stabilization occurs at all. Hence, stabilization fails if the
feedback matrix B is a multiple of the identity matrix.

In conclusion, we have refuted a theorem which claims
that a periodic orbit with an odd number of real Floquet
multipliers greater than unity can never be stabilized by
time-delayed feedback control. For this purpose we have
analyzed the generic example of the normal form of a
subcritical Hopf bifurcation, which is paradigmatic for a
large class of nonlinear systems. We have worked out
explicit analytical conditions for stabilization of the peri-
odic orbit generated by a subcritical Hopf bifurcation in
terms of the amplitude and the phase of the feedback
control gain [29]. Our results underline the crucial role of
a nonvanishing phase of the control signal for stabilization
of periodic orbits violating the odd-number limitation. The
feedback phase is readily accessible and can be adjusted,
for instance, in laser systems, where subcritical Hopf bi-
furcation scenarios are abundant and Pyragas control can
be realized via coupling to an external Fabry-Perot reso-
nator [18]. The importance of the feedback phase for the
stabilization of steady states in lasers [18] and neural
systems [30], as well as for stabilization of periodic orbits
by a time-delayed feedback control scheme using spatio-
temporal filtering [31], has been noted recently. Here, we
have shown that the odd-number limitation does not hold in
general, which opens up fundamental questions as well as a
wide range of applications. The result will not only be
important for practical applications in physical sciences,
technology, and life sciences, where one might often desire
to stabilize periodic orbits with an odd number of positive
Floquet exponents, but also for tracking of unstable orbits
and bifurcation analysis using time-delayed feedback con-
trol [32].
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