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We investigate the normal form of a subcritical Hopf bifurcation subjected to time-delayed feedback control.
Bifurcation diagrams which cover time-dependent states as well are obtained by analytical means. The com-
putations show that unstable limit cycles with an odd number of positive Floquet exponents can be stabilized
by time-delayed feedback control, contrary to incorrect claims in the literature. The model system constitutes
one of the few examples where a nonlinear time delay system can be treated entirely by analytical means.
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I. INTRODUCTION

Time-delayed feedback schemes are a simple but efficient
tool to control unstable time-periodic target states in nonlin-
ear dynamical systems �1�. Such methods have proven their
experimental relevance in quite diverse contexts �cf., e.g., �2�
and references therein�. Various forms of the feedback con-
trol including multiple delay times �3� and applications to
spatially extended systems, e.g. �4–7�, have been considered.
However, a deeper theoretical analysis of the control scheme
was hampered for quite a while since time delay causes the
corresponding phase space to become infinite dimensional
�8,9�. At least from the point of view of linear stability analy-
sis, there is nowadays quite a substantial analytical knowl-
edge about time-delayed feedback schemes available �10,11�.
In that context, it has been claimed that time-delayed feed-
back schemes suffer from the so-called odd number limita-
tion �12�, i.e., unstable periodic orbits with an odd number of
unstable positive Floquet multipliers cannot be stabilized by
time-delayed feedback control. This claim has been refuted
recently �13�. Actually, the results in �13� have been based on
a simple model system, a normal form for a subcritical Hopf
bifurcation, which can be solved essentially in analytical
terms even when the time-delayed feedback control force has
been applied. Thus, such a model is one of the few time-
delay systems that allow for deeper analytical insight beyond
the linear regime. It thus fills the gap between abstract theo-
retical results about time-delay dynamics and numerical
simulations of time-delayed feedback control.

These types of mathematical models are quite common in
nonlinear dynamics, as they capture generic features of real
physical systems. Actually, their origin dates back at least
one century when van der Pol investigated the properties of
nonlinear electronic circuits �14�. Nowadays, these ap-
proaches are used in such diverse contexts as laser dynamics
�15�, hydrodynamics and pattern formation �16�, or bio-

science �17�. Whenever the dynamical system undergoes an
instability and develops an oscillating state, the essential fea-
tures of the motion can be captured, by virtue of an appro-
priate coordinate transformation, by a complex-valued coor-
dinate, and the corresponding equation of motion reduces to
a normal form �18�. Here, we present a fairly complete bi-
furcation analysis of this kind of model. The model will be
introduced in Sec. II, and the main results are briefly de-
scribed in terms of bifurcation diagrams. The main control
mechanism consists in the occurrence of transcritical bifur-
cations when the control amplitude is increased. Sections
III–V are devoted to the analytical computation of the differ-
ent elements in the bifurcation diagrams. Further conse-
quences for the control performance will be pointed out as
well. To keep the presentation self-contained, some standard
analytical tools are summarized in Appendixes A and B. A
brief summary from a mathematical viewpoint is contained
in Appendix C, which puts the analysis in a broader context.

II. MODEL SYSTEM AND BIFURCATION DIAGRAMS

As a generic model system for time-delayed feedback
control of periodic orbits, we consider the normal form of the
subcritical Hopf bifurcation. In terms of the complex-valued
coordinate z�t� the equation of motion with time-delayed
feedback control reads �13�

ż�t� = �� + i�z�t� + �1 + i���z�t��2z�t�

− K exp�i���z�t� − z�t − ��� , �1�

where � and � are real parameters, � determines the distance
from the Hopf bifurcation point of the uncontrolled system,
and the Hopf frequency is normalized to unity. The param-
eter � governs the dependence of the oscillation frequency
on the amplitude, an effect which is often called detuning in
the context of nonlinear oscillators. Actually, this feature
turns out to be quite important in the mathematical context of
twist maps, and plays a prominent role for pattern formation
as well when nonlinear dispersion relations become relevant.*w.just@qmul.ac.uk
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Thus, it is not surprising that the parameter � will become an
important quantity for our investigations as well. Finally,
control is governed by the real-valued control amplitude K
and a phase �, which will turn out to be a crucial quantity in
our context. The delay time is denoted by ��0. The system
without control, K=0, has a stable or unstable trivial fixed
point z*=0 for ��0 or ��0, respectively. For simplicity, let
us assume throughout our analysis that ���1 holds. An un-
stable periodic orbit z�t�=RP exp�i�Pt� with minimal period
and amplitude

TP =
2	

�P
=

2	

1 − ��
, �2a�

RP = �− � �2b�

then exists for ��0. This particular orbit is the target state
that we want to stabilize by time-delayed feedback control. A
noninvasive control scheme requires the delay � to be an
integer multiple of the minimal period TP, and we will
mainly concentrate here on the simplest choice

� = TP �� � 0� . �3�

For some parts of the analysis it turns out to be useful to
rewrite Eq. �1� in terms of real valued coordinates x1+ ix2
=z,

�ẋ1�t�
ẋ2�t�

� = �� − 1

1 �
��x1�t�

x2�t�
�

+ �x1
2�t� + x2

2�t���1 − �

� 1
��x1�t�

x2�t�
�

− K�cos � − sin �

sin � cos �
��x1�t� − x1�t − ��

x2�t� − x2�t − ��
� . �4�

Since the linear part of the model without control commutes
with the control matrix, the dynamics still shares the nice
properties of diagonal control schemes as far as analytic lin-
ear stability analysis is concerned. The two-dimensional rep-
resentation �4� is equivalent to the complex representation
�1�.

The model, Eq. �1� or �4�, has five parameters, �, K, �, �,
and �. The phase angle � may be confined to an interval of
length 	 if the control amplitude K is allowed to take both
positive and negative values. Throughout our numerical dia-
grams we will usually fix the two parameters �=−10 and
�=	 /4, and we will consider two-dimensional cross sec-
tions in the remaining three-dimensional parameter space,
although our analysis will cover more general cases as well.
Since we will not impose the constraint �3� on the delay from
the very beginning, we gain additional insight into the struc-
ture of the dynamics. Specifically, Eq. �3� determines a sur-
face in the three-dimensional parameter space which we call
the Pyragas manifold.

Results are summarized in bifurcation diagrams. The cor-
responding analytical calculations will be presented in the
subsequent sections. If we fix the control amplitude below a
certain threshold value Kc, then Fig. 1 shows the typical
structure of the bifurcation diagram. It contains a wavy Hopf

bifurcation line with alternating sub- �solid red� and super-
critical �dashed green� behavior. The trivial fixed point z*
=0 is stable to the left of the Hopf bifurcation line and un-
stable on the other side. If the Hopf bifurcation is subcritical,
an unstable periodic orbit is generated on the left-hand side
of the line, whereas in the supercritical case a stable limit
cycle bifurcates to the right of the line. Furthermore, the
diagram contains saddle-node bifurcation lines �dotted black�
which indicate a generation or annihilation of a pair of limit
cycles. Such lines terminate at those points on the Hopf bi-
furcation line that mark the transition between sub- and su-
percritical behavior. If one takes into account that the system
without delay, �=0, has no limit cycle for ��0, then one can
easily reconstruct the number of small limit cycles that occur
in each part of the bifurcation diagram. The curve of param-
eter values that obey the condition �3�, i.e., where the mini-
mal period TP of the unstable orbit �2� matches the delay �, is
indicated as well �solid blue and dashed cyan�. If the control
amplitude is below the threshold value Kc, this Pyragas curve
appears left of the Hopf bifurcation line. For such parameter
values the periodic solution �2�, namely, the periodic orbit of
the system without control, is also a solution of the time-
delay system. Close to the Hopf bifurcation line, this particu-
lar periodic solution has at least one positive Floquet eigen-
value. But for smaller values of � this eigenvalue becomes
negative, i.e., a transcritical bifurcation occurs, and two pe-
riodic solutions interchange their stability. This bifurcation
point can be clearly identified as a tangency between the
Pyragas curve and a saddle-node bifurcation line.

If one increases the control amplitude, the transcritical
bifurcation point moves along the Pyragas curve toward the
Hopf bifurcation line and merges at a critical value with a
transition from sub- to supercritical behavior. When the con-
trol amplitude is increased beyond this critical value, the
Pyragas curve occurs right of the Hopf bifurcation line. The
latter has now become supercritical. The transcritical bifur-
cation has disappeared and the saddle-node bifurcation has
detached from the Pyragas curve �cf. Fig. 2�. In particular,
the periodic orbit on the Pyragas curve is now stable, at least
close to the Hopf bifurcation, according to common wisdom
about supercritical bifurcations.

Thus, the two bifurcation diagrams contain the main
mechanism by which control of the unstable periodic orbit
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FIG. 1. �Color online� Left: Two-dimensional bifurcation dia-
gram of Eq. �1� for �=−10, �=	 /4, and K=0.02: subcritical Hopf
bifurcation �solid red �dark��, supercritical Hopf bifurcation �dashed
green �light��, saddle-node �SN� bifurcation of limit cycles �dotted
black�, transcritical stable Pyragas curve �solid cyan �light��, and
transcritical unstable Pyragas curve �dashed blue �dark��. Right:
Same diagram enlarged close to �=0, �=2	, and displayed in dis-
torted coordinates so that the Pyragas curve is a straight line.
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�2� is achieved. The model �1� has the nice property that all
the details can be computed by analytical means. The explicit
formulas are supplied in the following sections. Furthermore,
we will dwell on a presentation of the data which is better
suited to spot the control performance.

III. BIFURCATION OF THE TRIVIAL SOLUTION

The stability of the trivial fixed point z*=0 is evaluated
straightforwardly by calculating the complex eigenvalue 

from the characteristic equation of the linearized Eq. �1�


 = � + i − K exp�i���1 − exp�− 
��� . �5�

Note that in the real-valued representation �4� the eigenval-
ues appear as complex conjugate pairs. A Hopf bifurcation of
the trivial state occurs for 
= i�H, which gives the condition

i�/� = � + i − K exp�i���1 − exp�− i��� , �6�

where �=�H� denotes the rescaled critical frequency. Split-
ting Eq. �6� into real and imaginary parts yields the Hopf
curve in the �� ,�� parameter plane, or a surface in the
�� ,� ,K� parameter space, with parametric representation

� = K�cos � − cos�� − ��� , �7a�

� =
�

1 − K�sin � − sin�� − ���
, �7b�

which is equivalent to the explicit form �H��� derived in
�13�. The behavior of the bifurcation curve becomes quite
intricate for large values of � but here we mainly focus on
values of the delay in a neighborhood of the Pyragas mani-
fold, i.e., values of order O�1�. By construction, the Hopf
bifurcation is subcritical for K=0, i.e., in the singular limit
�=0. Thus subcritical behavior prevails for small values of K
and �. To uncover the nature of the Hopf bifurcation for
general parameter values a normal form reduction of Eq. �4�
can be performed �see Appendix A for details�. Super- and
subcritical behavior is then distinguished by the sign of the
coefficient of the cubic nonlinearity and yields the criterion

1 + K��cos�� − �� + � sin�� − ���	�0, supercritical,

�0, subcritical,


�8�

where the control amplitude K and the delay time � are de-
termined by Eqs. �7�. Equations �7� with condition �8� define
the sub- and supercritical Hopf curves displayed in Figs. 1
and 2. A codimension-2 bifurcation, i.e., a transition from
sub- to supercritical behavior, occurs when the expression
given in Eq. �8� vanishes.

IV. STABILITY PROPERTIES ON THE PYRAGAS
MANIFOLD

Let us now consider values for the delay that coincide
with the period of the target state, i.e., let us constrain the
analysis to the Pyragas manifold, which is determined by the
condition �2a� and �3�,

� = �P��� =
2	

1 − ��
, � � 0 �9�

By construction, the nonlinear equation �1� admits the peri-
odic orbit �2� as a solution for all parameter values on this
manifold. The boundary of this manifold, i.e., its end point in
the two-dimensional �� ,�� parameter plane, is given by
�� ,��= �0,2	�. Thus the Pyragas manifold terminates at the
Hopf bifurcation line, since the end point satisfies Eqs. �7�
with the particular choice �=2	. We first concentrate on the
orientation of the Pyragas manifold with respect to the Hopf
bifurcation line by computing the gradient of both curves at
�� ,��= �0,2	�. Equation �9� yields for the slope of the Pyra-
gas curve

�d�P

d�
�

�=0
= 2	� , �10�

while the slope of the Hopf bifurcation line �H��� at the same
point is evaluated implicitly from Eqs. �7� to be

�d�H

d�
�

�=0
= −

2	

tan �
−

1

K sin �
. �11�

Both gradients coincide at the critical point

Kc = −
1

2	�cos � + � sin ��
, �c = 2	, �c = 0. �12�

If K sin ��Kc sin �, that means K�Kc if we confine the
phase � to the interval �0,	�, then the Hopf bifurcation line
is steeper than the Pyragas curve and the latter is locally to
the left of the Hopf bifurcation line. For control parameter
values larger than the critical value, the orientation of both
lines is interchanged, i.e., the periodic orbit �2� appears to the
right of the Hopf bifurcation line �cf. Figs. 1 and 2�. Further-
more, such a geometry implies that at that stage the Hopf
bifurcation has become supercritical. In fact, the
codimension-3 point �12� necessarily obeys the analytical
conditions for the codimension-2 Hopf bifurcation with de-
generate cubic coefficient �cf. Eqs. �7� and �8� with �=2	�.
Such arguments have already been used in �13� to determine
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FIG. 2. �Color online� Left: Two-dimensional bifurcation dia-
gram of Eq. �1� for �=−10, �=	 /4, and K=0.045: subcritical Hopf
bifurcation �solid red �dark��, supercritical Hopf bifurcation �dashed
green �light��, saddle-node bifurcation of limit cycles �dotted black�,
and transcritical stable Pyragas curve �solid cyan �light��. Right:
Same diagram enlarged close to �=0, �=2	, displayed in distorted
coordinates so that the Pyragas curve is a straight line.
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the regime of stabilization of the Pyragas orbit in the com-
plex plane of the control parameter Kei�.

In order to complete this picture let us investigate the
stability of the periodic orbit �2� on the Pyragas manifold �9�.
Using the ansatz z�t�=RP exp�i�Pt��1+�r�t�+ i�
�t�� and
expanding the equation of motion �1� to linear order in the
small deviations �r ,�
 around the periodic orbit we obtain

� �ṙ�t�

�
̇�t�
� = � − 2� 0

− 2�� 0
�� �r�t�

�
�t�
� − K�cos � − sin �

sin � cos �
�

�� �r�t� − �r�t − ��
�
�t� − �
�t − ��

� . �13�

Since in the amplitude and phase variables �r ,�
 the Jaco-
bian matrix does not depend on time, the Floquet exponents
of the periodic orbit are simply given by the eigenvalues 

of the characteristic equation,

0 = �2� + 
 + K cos ��1 − exp�− 
���


��
 + K cos ��1 − exp�− 
���


+ �2�� + K sin ��1 − exp�− 
���


�K sin ��1 − exp�− 
���

= �
 + K exp�i���1 − exp�− 
���


��
 + K exp�− i���1 − exp�− 
���


+ 2��
 + �cos � + � sin ��K�1 − exp�− 
���
 .

�14�

Obviously, the characteristic equation admits the solution

=0, which corresponds to the Goldstone mode of the limit
cycle, i.e., the trivial Floquet mode with Floquet multiplier 1.
Let us first study stability changes caused by real eigenval-
ues. Expansion of Eq. �14� up to second order yields

0 = 2�
�1 + �cos � + � sin ��K�� + 
2��1 + K� exp�i���2

− ��K��cos � + � sin ��� + O�
3� . �15�

A second nontrivial vanishing eigenvalue occurs if the linear
part vanishes, i.e.,

K� = −
1

cos � + � sin �
. �16�

Such a condition marks the occurrence of a transcritical bi-
furcation since the Goldstone mode supplies the necessary
symmetry to the system. If we consider, for instance, cases
such that the coefficient of the second-order term in the ex-
pansion �15� is positive, i.e., �1+K� exp�i���2+���0, then
the condition for stability and instability with respect to this
transcritical mode is easily written down:

1 + �cos � + � sin ��K�	�0, transcritical stable,

�0, transcritical unstable.


�17�

Such a criterion is, of course, only a necessary condition
since, on the one hand, it does not take into account complex
conjugate eigenvalues, and, on the other hand, it holds only

in a neighborhood of the transcritical point. But a closer
inspection reveals that the condition for a transcritical un-
stable mode is actually a sufficient criterion for an unstable
periodic orbit. The right-hand side of the characteristic equa-
tion �14� grows quadratically when considered for real values
of 
, while a transcritical unstable mode tells us that its
gradient is negative at 
=0. Thus, there is at least one real
positive solution in such a case. We therefore apply Eq. �17�
as a global criterion along the Pyragas curve, keeping in
mind that stability may require additional conditions caused
by complex solutions of the characteristic equation.

If the parameters approach the critical point �12�, then the
transcritical point tends toward the critical point as well,
since the constraint �12� obeys Eq. �16�. Thus, at the critical
point, the transcritical bifurcation on the Pyragas manifold
and the transition from sub- to supercritical on the Hopf bi-
furcation line merge and both manifolds, the Pyragas and the
Hopf line, exchange their mutual orientation �cf. Figs. 1 and
2�.

To evaluate the stability of the periodic orbit �2� on the
Pyragas manifold one has to address all complex-valued so-
lutions of Eq. �14�. There is apparently no simple way to
develop necessary and sufficient conditions. A brief discus-
sion is given in Appendix B, which shows that for values of
� close to zero large parts of the transcritical stable branch
are actually stable. But, if ��� exceeds a certain threshold
value, stabilization cannot be achieved any longer. Such a
feature seems to be quite common among time-delayed feed-
back schemes �19�, since strongly unstable orbits are notori-
ously difficult to tackle by such control schemes.

V. DELAY-INDUCED PERIODIC ORBITS

In the previous section, we analyzed the Pyragas orbit of
the delay system, which is also an unstable periodic orbit of
the system without control, K=0. Of course, the delay may
induce other periodic orbits as well, and the analysis of such
states will elucidate the mechanism of the transcritical bifur-
cation. General bifurcation theory already predicts that a
saddle-node bifurcation line of limit cycles starts at each
codimension-2 Hopf bifurcation point. Furthermore, a
saddle-node bifurcation line of limit cycles touches the Pyra-
gas manifold at the transcritical bifurcation point. Thus, the
investigation of delay-induced periodic orbits yields addi-
tional essential details of the bifurcations that trigger control
of the Pyragas orbit �2�.

Computing the general periodic solutions of Eq. �1� is, of
course, a difficult problem. Here, we focus on harmonic so-
lutions �rotating waves� z�t�=R exp�i�t�, which can be com-
puted straightforwardly by analytical means thanks to the
rotational symmetry of the system. Equation �1� yields

R2 = − � + K�cos � − cos�� − 
�� � 0, �18a�


 = ��1 − ��� + K��� cos � − sin � − � cos�� − 
�

+ sin�� − 
�� , �18b�

where 
=�� abbreviates the normalized frequency of the
orbit. Condition �18� determines harmonic orbits which oc-
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cur in pairs, since the equation results in the intersection
between a harmonic function and the diagonal �see Fig. 3�.

Whenever the diagonal touches the graph generated by
the right-hand side of Eq. �18b�, a saddle-node bifurcation
takes place, provided that the inequality �18a� is satisfied.
Thus, the condition for a saddle-node bifurcation of limit
cycles reads

K� = −
1

� sin�� − 
� + cos�� − 
�
, �19a�

��1 − ��� = 
 − K��� cos � − sin � − � cos�� − 
�

+ sin�� − 
�� , �19b�

� � K�cos��� − cos�� − 
�� . �19c�

The constraint �19c� ensures that the saddle-node bifurcation
line terminates at the sub-supercritical Hopf transition since
the corresponding parameters �cf. Eqs. �7� and �8�� satisfy
Eqs. �19� with 
=� and equality in Eq. �19c�. Furthermore,
a saddle-node line passes through the transcritical point since
the corresponding conditions, Eqs. �9� and �16�, are satisfied
by Eqs. �19� with the choice 
=2	. The bifurcation diagram
shows these features as well �see Fig. 1�. If the control am-
plitude passes through the codimension-3 point �12�, the
saddle-node line detaches from the Pyragas manifold �see
Fig. 2�. Furthermore, on changing the control amplitude,
sub-supercritical Hopf transitions may collide. In such cases,
the corresponding two saddle-node bifurcation lines merge,
detach from the Hopf line, and a cusp point is generated �see
Fig. 4�.

Alternatively, we may think of Fig. 4 as a projection of a
higher-dimensional bifurcation diagram, including the phase
space coordinates as well, onto the two-dimensional param-
eter plane (� ,��1−���). If we plot instead of the infinite-
dimensional phase space just a single component, e.g., the
radius of the periodic orbit, then Fig. 5 shows how pairs of
periodic orbits coalesce and disappear as we decrease �
through the saddle-node curve. Along this fold surface of
periodic orbits, the tangent Pyragas curve distinguishes two
curves of periodic orbits which intersect the saddle-node
curve transversely, and mutually transversely, at what ap-

pears as a tangency in the parameter projection of Fig. 4. In
particular, the bifurcation of periodic orbits is transcritical
when restricted to the Pyragas curve.

So far we have considered bifurcation diagrams as two-
dimensional slices in a �� ,�� parameter plane. From the con-
trol perspective it seems, however, more appropriate to focus
on other cross sections, e.g., a �K ,�� control parameter plane
for fixed values of �. Such diagrams are of course easily
produced using Eqs. �7� and �8� for the Hopf bifurcation line
of the trivial fixed point, Eqs. �9� and �17� for the properties
of the Pyragas curve, and Eqs. �19� for the saddle-node bi-
furcation lines of rotating waves. Figure 6 contains data for
�=−0.02. The Pyragas orbit �2� becomes stable through a
transcritical bifurcation when increasing the control ampli-
tude K, and it stays stable throughout the displayed range of
control amplitudes, as the analysis in Appendix B shows �cf.
Fig. 9�. Furthermore, quite a large number of delay-induced
limit cycles are generated for large values of the control am-
plitude �see also Eq. �19b� and Fig. 3�.

Finally, one may have a closer look at the transcritical
bifurcation and at the periodic orbits that are involved in the
exchange of stability. The amplitude of the rotating wave in
dependence on, say, the control amplitude is easily evaluated
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FIG. 3. �Color online� Graphical solution of the condition �18b�
for �=−10, �=	 /4, �=−0.02, �=8, and different values of the
control amplitude: K= �a� 0.04, �b� 0.0604, and �c� 0.08. Dotted
blue, left-hand side of Eq. �18b�; dashed green �solid red�, right-
hand side of Eq. �18b� such that the inequality �18a� is valid �in-
valid� �cf. Fig. 6�.
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FIG. 4. �Color online� Bifurcation diagram of Eq. �1� for �
=−10, �=	 /4 in distorted coordinates �see Fig. 1� for different
values of the control amplitude K= �a� 0.019 and �b� 0.016. Sub-
critical Hopf bifurcation �solid red �dark��, supercritical Hopf bifur-
cation �dashed green �light��, saddle-node bifurcation of limit cycles
�dotted black�, transcritical stable Pyragas curve �solid cyan �light��,
and transcritical unstable Pyragas curve �dashed blue �dark��.
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�black �dark�� surface: parameter dependence of the periodic orbits
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from Eq. �18�. If we confine the analysis to the Pyragas
manifold, i.e., if we consider delays that obey the constraint
�9� and consider the same parameter values used in Fig. 6,
we obtain the diagram displayed in Fig. 7. Clearly, this slice
shows that the transcritical bifurcation is caused by the stable
limit cycle generated in the saddle-node bifurcation. The re-
maining unstable periodic orbit disappears at larger values of
the control amplitude in the subcritical Hopf bifurcation of
the trivial fixed point. It is expected, and can be shown by
arguments involving two-dimensional center manifolds, that
this unstable periodic orbit generates the basin boundary be-
tween the still stable trivial solution and the stabilized Pyra-
gas orbit �cf. �20��. Furthermore, if we decrease the control
amplitude adiabatically and cross the control threshold, we
will still observe a periodic motion but with a nonvanishing
control signal, and with a period that now changes with the
control amplitude, i.e., the stable delay-induced periodic
orbit.

VI. CONCLUSION

We have analytically studied the bifurcations in a nonlin-
ear model system subjected to time-delayed feedback con-

trol. Such a model can be viewed as a paradigm for nonlinear
time-delay dynamics near a subcritical Hopf bifurcation. It
has recently been used �13� to show that the widely accepted
odd number limitation theorem �12�, which states that peri-
odic orbits with an odd number of positive Floquet expo-
nents cannot be stabilized by time-delayed feedback control,
is incorrect. As was demonstrated �13�, the unstable periodic
orbit which emerges from a subcritical Hopf bifurcation and
which has a single positive Floquet exponent can indeed be
stabilized by time-delayed feedback control if the control
force is coupled with a nondiagonal control matrix, param-
etrized, e.g., by a phase �. The proof of the odd number
limitation theorem fails because of the occurrence of a tran-
scritical bifurcation, involving an exchange of stability with
other, delay-induced periodic orbits that have previously
been overlooked. Technically, the proof of the odd number
limitation theorem in �12� fails for autonomous systems be-
cause the trivial Floquet multiplier �Goldstone mode� was
neglected there �38�. At the transcritical bifurcation, besides
the Goldstone mode of the Pyragas orbit, a second Floquet
exponent becomes zero. Hence, there exists a Floquet expo-
nent 
=0 of algebraic multiplicity 2 but geometric multi-
plicity 1.

For the subcritical Hopf normal form studied here, the
Floquet mode problem can be solved analytically because
the delay-differential equation linearized around the periodic
orbit gives rise to an autonomous linear system. Thus, the
eigenvalues of the Jacobian matrix coincide with the Floquet
exponents. In this way, the problem becomes tractable on the
same footing as time-delayed feedback control of steady
states, where full analytical solutions are available �21,22�.
We have derived analytical expressions for the control
thresholds and for the bifurcation manifolds, including the
analysis of delay-induced periodic orbits. Thus, the present
analysis opens the possibility of studying the influence of
delay mismatch on time-delayed feedback control beyond
the perturbative regime �23�. This is in contrast, for instance,
to the Rössler system, where only a numerical bifurcation
analysis of time-delayed feedback control has been per-
formed �24�. Even global features like basins of attraction
become accessible for our normal form model, beyond what
is already known from direct bifurcation analysis �20�. Since
the Hopf bifurcations of limit cycles can be dealt with in an
analytical way, the model offers promising perspectives from
the point of view of numerical continuation tools, as well
�25–28�. Torus solutions, which are notoriously difficult to
analyze, are here accessible for a time-delay system, al-
though mode-locking structures would not show up in our
model because of the rotational symmetry of the system.

We have not discussed in full detail the eigenvalue spectra
that determine the stability of the Pyragas orbit �see Appen-
dix B for some examples�. For the much simpler case of
diagonal control in periodically driven systems, the spectra
can be expressed in analytical terms by the Lambert W func-
tion �29,30�. The more sophisticated characteristic equation
�14� may be viewed as the natural extension of such an ap-
proach, and it would be promising to study the full analytical
structure of its solutions.

From the point of view of applications, it is useful to
determine the shape of the control domain in the �K ,�� con-
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FIG. 6. �Color online� Left: Two-dimensional bifurcation dia-
gram of Eq. �1� for �=−10, �=	 /4, and �=−0.02 in the control
parameter plane: subcritical Hopf bifurcation �solid red �dark��, su-
percritical Hopf bifurcation �dashed green �light��, saddle-node bi-
furcation of limit cycles �dotted black�, transcritical stable Pyragas
curve �solid cyan �light��, and transcritical unstable Pyragas curve
�dashed blue �dark��. Right: Enlarged section. Labels indicate the
number of harmonic solutions of the system.
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FIG. 7. �Color online� Dependence of the radius R of the peri-
odic orbits upon the control amplitude K for �=−10, �=	 /4, �=
−0.02, and � according to Eq. �3�, i.e., along the Pyragas curve.
Solid cyan �light�, stable limit cycle; dashed blue �dark�, unstable
periodic orbit; solid red �dark�, stable trivial fixed point; dashed
green �light�, unstable trivial fixed point. Exchange of stability at
the transcritical bifurcation and the subcritical Hopf bifurcation are
clearly visible �cf. Fig. 6�.
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trol parameter plane. Actually, using a reduced Cartesian rep-
resentation �x=K� cos��� and �y =K� sin��� �cf. Eq. �4��,
Eq. �17� yields the simple expression

�x + ��y = − 1 �20�

for the control boundary caused by the transcritical bifurca-
tion. Equation �14� determines the control boundary caused
by the Hopf instability when imaginary eigenvalues are con-
sidered. Although no simple expression is obtained for gen-
eral parameter values, analytical results can be found in the
limiting case ����1 �13�. Neglecting the second contribution
to Eq. �14�, we obtain the parametric representation,

i� + ��x + i�y��1 − exp�− i��� = 0, �21�

where i� denotes the normalized critical eigenvalue. Thus,
the asymptotic boundary caused by the Hopf bifurcation
does not depend on the period parameter �. The correspond-
ing asymptotic control domains are displayed in Fig. 8 for
different values of �. It has been pointed out already in �13�
that the phase � plays a crucial role since control cannot be
achieved with vanishing phase, i.e., �y =0. Furthermore a
large value of ���, i.e., a substantial dispersion is important as
well since otherwise the control domain shrinks consider-
ably. It is tempting to extend these results to finite values of
� and to derive sufficient conditions for successful control in
terms of K, �, and the Floquet exponent of the unstable orbit.

From the point of view of applications, our result—that
stabilization of unstable periodic orbits generated by a sub-
critical Hopf bifurcation is possible—looks very promising.
For instance, subcritical Hopf bifurcations have been found
in laser experiments, recently �31,32�, and the all-optical re-
alization of time-delayed feedback control via an external
Fabry-Perot resonator has been demonstrated �33�. More-
over, the feedback phase of the control signal, which we
have found to play a crucial role in the stabilization, arises
naturally in laser experiments.
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APPENDIX A: NORMAL FORM ANALYSIS

The equation of motion �4� can be cast into the general
form

ẋ��t� = A= x��t� + B= x��t − �� + C:x��t�:x��t�:x��t�: �A1�

where x� = �x1 ,x2� abbreviates the state vector, the matrices of
the linear part are given by

A= = �� − K cos � − 1 + K sin �

1 − K sin � � − K cos �
�,

B= = K�cos � − sin �

sin � cos �
� , �A2�

and the nonlinearity is determined by the trilinear expression

C:u� :v� :w� ª

1

3
��u1v1 + u2v2��1 − �

� 1
��w1

w2
�

+ cyclic permutations� , �A3�

where the two remaining terms of the sum are obtained by
cyclic permutation of the arguments u ,v ,w. If we consider
parameter values on the Hopf bifurcation line, i.e., Eqs. �7�,
then the equation of motion can be reduced to the normal
form

�̇�t� = i�H��t� + c���t��2��t� �A4�

with complex ��t� and c. The sign of Re�c� determines
whether the bifurcation is super- or subcritical.

Closed analytical expressions for the coefficient c can be
found in the literature �cf., e.g., �8,34,35��. The correspond-
ing formula can be easily derived from Eq. �A1� as well,
since no quadratic nonlinearities are contained in the original
equation of motion. To keep our presentation self-contained
we just recall the essential steps. Thereby, we follow the
approach outlined in �30�, which allows for an elementary
treatment of differential-difference equations.

The equations for the critical eigenvectors are given by

i�Hu� c = �A= + exp�− i�H��B= �u� c, �A5a�

i�Hv� c
* = v� c

*�A= + exp�− i�H��B= � . �A5b�

If x� t���=x��t+�� denotes the state of the delay system where
the variable −����0 takes the history of the dynamics into
account, then the expansion of the center manifold of the
delay system reads

x��t + �� = x� t��� = ��t�exp�i�H��u� c + �*�t�exp�− i�H��u� c
*

+ higher-order terms. �A6�

The higher-order terms can be chosen to be at least of third
order in the small amplitude �. If we introduce eigenfunc-
tions and their dual through

U� c��� = exp�i�H��u� c, �A7a�
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FIG. 8. �Color online� Asymptotic control domain in reduced
Cartesian control amplitudes �x=K� cos���, �y =K� sin��� for dif-
ferent values of �, in the limit ����1. Solid line: upper boundary
caused by Hopf instability �cf. Eq. �21��, dashed lines: lower bound-
ary caused by transcritical instability for different values of � �cf.
Eq. �20��. The different control domains overlap.
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V� c
*��� = v� c

*���� + 0� + B= exp�− i�H�� + ���
 , �A7b�

where � denotes the � distribution, and define the inner prod-
uct to be

�V� c�U� c� = �
−�

0

V� c
*���U� c���d� , �A8�

then orthogonality of the eigenfunctions and Eq. �A6� yield

��t��V� c�U� c� = �V� c�x� t�

= v� c
*x��t� + �

t−�

t

exp�− i�H�� + � − t��v� c
*B= x����d�

�A9�

if the higher-order contributions of the center manifold are
normalized to be orthogonal to the linear eigenspace. Taking
the time derivative of Eq. �A9�, using the equation of motion
�A1�, the eigenvalue condition �A5�, and the definition �A9�,
we get

�̇�t��V� c�U� c� = i�H��t��V� c�U� c� + v� c
*C:x��t�:x��t�:x��t�: .

�A10�

If we now insert for the phase space coordinate x��t� the ex-
pression given by the center manifold, Eq. �A6� with �=0,
and discard the nonresonant cubic contributions, which can
be eliminated by an additional coordinate transformation,
then the cubic coefficient of the normal form �A4� can be
found as

c =
3v� c

*C:u� c:u� c:u� c
*:

�V� c�U� c�
=

3v� c
*C:u� c:u� c:u� c

*:

v� c
*u� c + v� c

*B= u� c exp�− i�H���
.

�A11�

Calculation of the eigenvectors is quite straightforward
with Eqs. �A5�, when using the expressions �A2� and the
characteristic equation �cf. Eq. �6��. We obtain

u� c = � 1

− i
�, v� c

* = �1,i� . �A12�

Taking the definition �A3� into account, the cubic coefficient
evaluates as

c =
4�1 + i��

1 + K� exp�i� − i��
. �A13�

Thus, apart from the complex-valued normalization in the
denominator, the cubic coefficient coincides with the cubic
coefficient of the original equation of motion �1�. But the
denominator turns out to be crucial. The condition on the
sign of the real part, determining the type of Hopf bifurca-
tion, results in Eq. �8�.

APPENDIX B: CHARACTERISTIC EQUATION FOR
PERIODIC SOLUTIONS

Let us consider a general system where the linear part has
a vanishing and a positive eigenvalue, ��0, so that the cor-
responding matrix in a diagonal basis reads

A= = �0 0

0 �
� . �B1�

If B= denotes the control matrix, the stability properties of
time-delayed feedback control are determined by the charac-
teristic equation

0 = det�z − A= + B= �1 − exp�− z��


= z�z − �� + z�1 − exp�− z��tr�B= �

− �1 − exp�− z���B11 + �1 − exp�− z��2 det�B= � .

�B2�

If we choose

� = − 2�� � 0, �B3a�

tr�B= � = 2K� cos � , �B3b�

B11 = K��cos � + � sin �� , �B3c�

det�B= � = �K��2 � 0, �B3d�

then the expression �B2� indeed coincides with the charac-
teristic equation �14� governing the stability of the Pyragas
orbit. But it is to some extent simpler to analyze the general
expression �B2�. Of course, Eq. �B2� admits the trivial solu-
tion z=0, which corresponds to the Goldstone mode. We
constrain the three control parameters tr�B= �, det�B= �, and B11

to two independent variables by introducing the condition

B11 = �tr�B= � �B4�

with some fixed parameter �. Then the solutions of Eq. �B2�
can be analyzed in a two-dimensional parameter plane.

In a first step, we concentrate on small real-valued solu-
tions of Eq. �B2�. A Taylor series expansion along the lines
of Sec. IV yields

z =
��

1 − 1/� − �/2 + det�B= �
�tr�B= � + 1/�� + O„�tr�B= � + 1/��2

… .

�B5�

Thus, a real solution triggers a change of stability at

tr�B= � = − 1/� , �B6�

and the coefficient in Eq. �B5� decides on which side of the
bifurcation line the mode is stable or unstable, respectively.

To determine a parametric representation of the Hopf bi-
furcation line, use z= i� and split Eq. �B2� into real and
imaginary parts:

0 = − �2 − tr�B= �� sin � − ��tr�B= ��1 − cos ��

− 2 det�B= ��1 − cos ��cos � , �B7a�

0 = − �� + tr�B= ���1 − cos �� − ��tr�B= �sin �

+ 2 det�B= ��1 − cos ��sin � . �B7b�

Taking linear combinations of both equations with sin � and
cos � the independent variables can be decoupled and we
end up with

JUST et al. PHYSICAL REVIEW E 76, 026210 �2007�

026210-8



tr�B= � = −
�2 sin � + �� cos �

��1 − cos �� + �� sin �
, �B8a�

det�B= � =
− �2 cos � + �� sin � − �� sin � − ���1 − cos ���tr�B= �

2�1 − cos ��
. �B8b�

In addition, by implicit differentiation of Eq. �B2� one can
easily derive the criterion determining on which side of the
bifurcation line �B8� the complex-conjugated pair yields a
stable or unstable eigenmode, respectively.

Both bifurcation lines, Eqs. �B6� and �B8�, can be dis-
played easily in the tr�B= �-det�B= � parameter plane. The yet
undetermined parameter � can be identified from Eqs. �B3b�,
�B3c�, and �B4� to be

� = �1 + � tan ��/2. �B9�

Furthermore, the control scheme implemented in Eq. �1�
yields the conditions �B3b� and �B3d�, i.e., the constraint

det�B= � = �tr�B= �/�2 cos ���2. �B10�

Thus, the particular control scheme traces a path along a
parabola where the parameter tr�B= � is proportional to
the control amplitude. Results for �=−10, �=	 /4, and �
=−0.02 are displayed in Fig. 9. On increasing the control
amplitude, a transcritical bifurcation takes place and an in-
terval of successful control is entered. Its upper bound is
caused by a Hopf bifurcation. In fact, the control path ex-
plores only a tiny region of the full control domain.

If one decreases �, i.e., if one considers unstable orbits
with larger Lyapunov exponent, the control domain shrinks
considerably in size and finally may even disappear com-
pletely. Beyond a certain critical value for � which, in our
case, can be computed from Eqs. �B8� and �B10� to be
−��=� /2=1−1/�+1/ �2� cos ��2, the control path misses

the control domain and stabilization is not possible any more
�see Fig. 10�. Thus the control scheme shows features known
from control of orbits with complex Floquet exponents �19�.

The same features are, of course, visible as well if one
computes numerically the corresponding Floquet spectra,
e.g., the solutions of the characteristic equation �14� in de-
pendence on the control amplitude. Figure 11 shows such
data for the parameter settings used in Fig. 10. Clearly, a
finite but small control interval is visible which is going to
disappear when the parameter � increases in modulus.

APPENDIX C: CENTER MANIFOLDS, S1 SYMMETRY,
AND STABILITY OF ROTATING WAVES

In this appendix we conceptually summarize—from a
mathematical perspective—the above calculations on Pyra-
gas stabilization of the Hopf model �1�. Specifically, we ad-
dress S1 equivariance and corotating coordinates z�t�
=ei�t��t�, rotating waves and their bifurcations, the role of
center manifolds, and bifurcation to nonrotating waves.

For any fixed real �, the transformation z�t�=ei�t��t� to
corotating complex coordinates ��t� transforms Eq. �1� into
the equivalent delay equation

�̇�t� = �� + �1 − ��i���t� + �1 + i�����t��2��t�

− K exp�i�����t� − e−i����t − ��� . �C1�

The corotating equation �C1� is autonomous since ei�z�t�
solves Eq. �1� for any fixed real �, whenever z�t� does.

Steady states �̇=0 of Eq. �C1� are precisely the rotating
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FIG. 9. �Color online� Bifurcation diagram of the characteristic
equation �B2� in a two-dimensional parameter plane for �=−10,
�=	 /4, and �=−0.02. Solid blue �cyan�: Transcritical bifurcation,
Eq. �B6� �unstable eigenvalue occurs left �right� of the line�. Dashed
red �green�: Hopf bifurcation, Eq. �B8� �unstable eigenvalues occur
above �below� the line�. Dotted black: Bifurcation path traced by
the control scheme �cf. Eq. �B10��. Labels indicate the number of
unstable eigenvalues.
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FIG. 10. �Color online� Bifurcation diagrams for the character-
istic equation �B2� in a two-dimensional parameter plane for �
=−10, �=	 /4, and different values of �= �a� −0.064 and �b�
−0.068. Solid blue �cyan�: transcritical bifurcation, Eq. �B6� �un-
stable eigenvalue occurs left �right� of the line�. Dashed red �green�:
Hopf bifurcation, Eq. �B8� �unstable eigenvalues occur above �be-
low� the line�. Dotted black: bifurcation path traced by the control
scheme �cf. Eq. �B10��. Labels indicate the number of unstable
eigenvalues.
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waves of Eq. �1�, i.e., solutions of the form z�t�=ei�t�0 with
nonzero rotation frequency � and nonzero �0�C. The mini-
mal period of such solutions z�t� is, of course, given by T
=2	 / ���. The Pyragas curves are determined by �=mT
=2	m / ��� for positive integers m=1,2 ,3 , . . ..

Rotating waves are nontrivial steady states ��t�=�0 of Eq.
�C1�, i.e., solutions of

0 = � + �1 − ��i + �1 + i����0�2 − K exp�i���1 − e−i��� .

�C2�

All bifurcation diagrams above are concerned with solutions
�� , ��0�2� of Eq. �C2� only. We can solve this equation for real
parts �cf. Eq. �18a��

��0�2 = − � − K�cos�� − ��� − cos���� �C3�

under the constraint of a positive right-hand side. Substitut-
ing into the imaginary part of Eq. �C2� yields the real equa-
tion �cf. Eq. �18b��

1 − � + K�sin�� − ��� − sin����

− ��� + K�cos�� − ��� − cos����
 = 0. �C4�

We seek solutions �, depending on the five real parameters
� ,� ,K ,� ,�. The degenerate case �=0, which corresponds to
a circle of equilibria, alias a frozen wave of vanishing angu-
lar velocity �, arises only for ��=1 �36�.

Note how the fold description, in two parameters �� ,��, of
the transcritical bifurcation along the Pyragas curve �
=2	 / ��� follows from Eq. �C4� when we plot � �or ��0�2� as
a function of �� ,��, for fixed suitable � ,K ,� �cf. Figs. 1 and
5�. Indeed, all this follows if we explicitly solve Eq. �C4� for
�, as a function of � ,K ,� ,� ,�, and then project the resulting
graph onto whatever parameter plane we desire.

At the Hopf bifurcation, we have a simple pair of purely
imaginary eigenvalues, and no other imaginary eigenvalues.
Therefore, the center manifold is two dimensional at the
Hopf bifurcation �9�. Dimension 2 also holds at the trans-
critical bifurcation of rotating waves. Moreover, the center

manifold can be chosen to be invariant with respect to the S1

action z�ei�z �37�. In polar coordinates the dynamics in any
two-dimensional center manifold is therefore given by a sys-
tem of the general form

ṙ = f�r2,�� �r , �C5a�


̇ = g�r2,�� � �C5b�

with parameter vector �� , i.e., in our case, �� = �� ,� ,K ,� ,��.
Note that 
 does not enter the equation for ṙ or 
̇. Indeed,
�r ,
+�� must be a solution for any fixed �, by S1 equivari-
ance, whenever �r ,
� is. Also note that Eq. �C5� is a system
of differential equations that does not involve time-delayed
arguments. Rather, the original time delay � enters as one
parameter among others.

To determine f we observe that f�r2 ,�� �=0 defines rotat-
ing �or frozen� waves with ��0�=r, and thus must be equiva-
lent to Eq. �C2� with g�r2 ,�� �=�. The solution set �r2 ,� ,�� �
is therefore given by Eqs. �C3� and �C4� again, and defines
the zero set of f . Again, f�r2 ,�� �=0 if, and only if, �� ,�� �
solve Eq. �C4� and r2 is given by Eq. �C3�.

To determine the stability of our rotating waves within the
center manifold, it remains to determine the sign of f outside
the zero set. That sign is known at the trivial equilibrium r
=0, by standard exchange of stability at nondegenerate Hopf
bifurcations. Normally hyperbolic rotating waves correspond
to simple zeros of f in the r direction, i.e., �rg�0. This
allows us to determine the sign of g, and then of f , in all
bifurcation diagrams. The �in�stability properties of all rotat-
ing waves within the two-dimensional center manifold fol-
lows. By spectral analysis at the Hopf bifurcation �or at the
transcritical bifurcation of rotating waves� �in�stability in the
full delay system �1� follows from the center manifold analy-
sis without ever computing the manifold itself.

Rotating waves z�t�=ei�t�0 are periodic solutions of Eq.
�1�. But not all periodic solutions need to be rotating waves.
Any bifurcation from rotating waves, however, must be vis-
ible in corotating coordinates ��t�=e−i�tz�t� as well. Since
rotating waves of Eq. �1� are equilibria of Eq. �C1�, any such
bifurcation must be accompanied by purely imaginary eigen-
values 
 of the characteristic equation associated with �0.
This characteristic equation was derived in Eq. �14�, not only
along the Pyragas curve.

It may be useful to insert 
= i� here and check for the
resulting curve for K ,� such that Eq. �14� holds. Such a
curve would distinguish torus bifurcations from rotating
waves or, equivalently, Hopf bifurcations from �circles of�
nontrivial equilibria �0 of Eq. �C1�. Due to S1 equivariance,
such tori would exhibit neither phase locking nor devil’s
staircases, but smooth dependence of rotation numbers on
parameters.
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FIG. 11. Floquet spectrum �real part of the exponents� in depen-
dence on the control amplitude for �=−10, �=	 /4, and two differ-
ent values of �= �a� −0.064 and �b� −0.068 �cf. Fig. 10�.
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