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Resonancelike responses of autonomous nonlinear systems to white noise
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Responses of two models of autonomous nonlinear systems, one bistable and the other monostable in
certain parameter regions, to additive white noise are investigated numerically. We show that the addi-
tive white noise can induce coherent oscillations, and both autonomous systems show optimum
responses, represented by the maximum signal-to-noise ratio of the output for certain noise strengths.
This phenomenon is thus termed as stochastic resonance without external periodic force.

PACS number(s): 05.40.+j, 05.20.—y

1. INTRODUCTION

The interplay among nonlinearity (usually bistability),
periodicity, and randomness displays certain very in-
teresting phenomena and has attracted the interest of
many researchers recently. A recent example is the so-
called stochastic resonance (SR) [1-11]. Here the three
important ingredients, namely, bistability of the deter-
ministic system, periodic modulation through an external
signal, and randomness through stochastic force, join to-
gether and induce an enhancement in the signal-to-noise
ratio (SNR) through their interplay. Natural extensions
or variations of this study are to reduce some ingredients,
or replace one or two of the three ingredients by some
other similar mechanism. In this aspect, some examples
have already been considered by a number of scientists:
Benzi and co-workers [1] substituted noise by the deter-
ministic stochasticity displayed by the Lorenz model,;
Stocks, Stein, and McClintock [12] replaced the bistable
system by a monostable one; and we considered the SR-
like phenomenon in autonomous bistable systems without
adding a periodic signal [13].

In this paper we will further develop the idea in [13]
and make a detailed investigation of SR without periodic
force. In Sec. II we present two models of Langevin
equations. The deterministic part of model 1 shows bista-
bility while that of model 2 shows monostable behavior in
certain parameter regions. In both models the systems
are subjected to white noise but not to a periodic force.
Since the models are too complicated for an explicit
analytical solution, numerical simulation is used to study
the system dynamics. In Sec. III we present and analyze
the numerical results. There we will see how noise plays
an active constructive role in stimulating coherent oscil-
lations and how the noise-induced oscillation displays a
resonancelike behavior so-called SR without periodic
forcing. This SR exists for both bistable and monostable
autonomous nonlinear systems.
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II. MODELS AND SIMULATIONS

Both models consist of a set of two Langevin equa-
tions,

dx=f,(x,y)dt +dw, , (1)

dy = f,(x,y)dt +dw, , (2)

where dw, and dw, are the uncorrelated Wiener process
with the following moments:

(w;)=0, (3)
(dw,dw;)=dt D;§;;, i,j=1,2. 4)

For simplicity, we choose D=D,=D,. For the deter-
ministic drift forces we focus on two models.

A. Model 1
f16p)=x(1—x*—yH)+y(x*—y*—b), (5)
Fr0p)=y(1—x*—p?)—x(x*—y?—b) . (6)

This model was analyzed in Ref. [14]. If we ignore the
noise, the two deterministic equations can be rewritten in
the form

F=r(1—r?),
(7N
é=b—r*cos2¢ ,
where we alternatively use a complex variable
u=r exp(i@) or the corresponding polar coordinates 7, ¢.
They are related to the old coordinates by
x +iy=rexp(i¢). The system has one unstable solution
at the origin (0,0). Considering the asymptotic dynamics

around the circle r =1, one can find three different types
of trajectories.

1.b>1

A limit cycle on the circle r =1 exists, denoted by I in
Fig. 1(a).
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FIG. 1. Deterministic behavior of model 1. (a) b > 1, the case
of the limit cycle. (b) b=1, two fixed points M with marginal
stability. Two heteroclinic orbits exist as indicated by the ar-
rows. (c) b <1, two stable fixed points S and two unstable fixed
points U on the circle r=1. The location of the fixed points is
given by the intersections of the circle I (r=1) and the curves
II, defined by b =x2—y2.

2. b=1

As b decreases from b > 1, the period T of the limit cy-
cle increases monotonically; in the limit 5—1 we have
T— . The limit cycle of the system vanishes at b=1,
and two fixed points with marginal stability appear via a
saddle-node bifurcation, denoted by M in Fig. 1(b). The
two arcs and the two stationary solutions on the circle
r=1 in Fig. 1(b) form two heteroclinic orbits, the upper
one and the lower one.

3. b<l1

The two fixed points in Fig. 1(b) separate to two pairs
of stationary solutions, which are given by

r=1, b=cos2¢ , (8)

as can be seen in Fig. 1(c). In each pair one solution is
stable and the other unstable, denoted in Fig. 1(c) by S
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and U, respectively. At this parameter value the system
shows a typical bistability.

B. Model 2
f1x,»)=x(1—x2—y?)+y(x —b), 9)
f2069)=y(1—x2—y?)—x(x —b) . (10)

This can be written in the polar coordinate system as
F=r(1—r?),
(11
éd=b—rcoss .
For model 2 there exist three different cases, too.

1. b>1

In Fig. 2(a) a limit cycle exists on the circle r=1
(denoted by I) as in the case of model 1.
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FIG. 2. Deterministic behavior of model 2. (a) b > 1, the case
of the limit cycle. (b) b=1, one fixed point with marginal stabil-
ity. A homoclinic orbit exists as indicated by the arrows. (c)
b < 1, one stable and one unstable fixed point on the circle r=1.
The location of the fixed points is again given by the intersec-
tions of the circle I (r =1) and the line II, defined by b =x.
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2. b=1

The dynamics is similar to that of model 1 for the same
b. The two fixed points and the two heteroclinic orbits of
model 1 in Fig. 1(b) are replaced by one fixed point and a
homoclinic orbit running anticlockwise in Fig. 2 (b).

3. b<l1

Instead of the four fixed points for model 1 there are
two stationary solutions on the circle r =1,

r=1, b=cos¢ , (12)

one stable and the other unstable, denoted again by S and
U in Fig. 2(c), respectively.

The essential difference between the models 1 and 2 is
that in the case 3 the former is bistable (or marginally
bistable in the case 2) while the latter is monostable (or
marginally monostable in the case 2). With model 2 we
want to emphasize in the following that bistability is not
a necessary ingredient for the SR effect. This agrees with
the conclusion in [12], though the mechanism of the SR
in our model 2 is essentially different from that of the sys-
tem in Ref. [12]. The advantage of our two models is
that they manifest successively a number of typical dis-
tinctive deterministic behaviors, namely, bistability,
heteroclinic orbits, and limit cycle solution for model 1,
and monostability, homoclinic orbit, and limit cycle for
model 2, by changing only a single parameter b.

In the following we will consider the influence of white
noise on the above deterministic pictures. By including
noise, one can no longer provide an exact solution to ei-
ther model 1 or model 2. It is necessary to invoke numer-
ical simulation to investigate the behavior of the
Langevin equations (1) and (2).

An important quantity we use is the power spectrum
which is defined in the following way. For a given set of
parameters (b,D) we consider 500 independent time
series [x (k,t),y(k,t) for k=1,...,500] obtained from
Egs. (1) and (2) and calculate the corresponding Fourier
transformations [X(k,w),y(k,®)]. The spectrum is then
defined as

500
(S (@)= |x(k,w)|*/500 . (13)
k=1

For y we have the same definition. This is the so-called
consensus spectrum. To further describe the quality of
the output spectrum quantitatively we define a ‘“quality
factor” B of the spectrum of a time series as

B=w,,W . (14)
Thereby h is the maximum peak height of the spectrum
and W the width of the spectrum peak defined at the
height of h /Ve. o, is the peak frequency of the spec-
trum. Then B is nothing but the quality factor with its
conventional meaning. With finite 4 and w,, we have
B— x as W—0, namely, we get a pure signal coming
from the inner system dynamics. With noise we certainly
have no zero W and reduced B, and the signal becomes
ambiguous. Thus, the quantity S may well represent the
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FIG. 3. Spectra of y(t) for b=1.05 and D=3.0X10"° (a),
D =0.05 (b), and D=0.9 (c). (All the figures from Fig. 3 to Fig.
10 are obtained by numerically simulating the Langevin equa-
tions of model 1.)

quality of the signal, i.e., it shows how well we can obtain
the coherent oscillation of the system. We then term S
the signal-to-noise ratio.

III. STOCHASTIC RESONANCE WITHOUT
EXTERNAL PERIODIC FORCE

A. Model 1

1. b > 1, the case of the deterministic limit cycle

First, let us consider the case of a deterministic limit
cycle (b>1), and investigate how the coherent motion
displayed by the limit cycle is influenced by noise.

Figure 3 shows the spectra of time series of y(¢) for
b=1.05 and for three different values of the noise
strength D. The scaling on the w axis is arbitrary. For a
very small noise strength we have very narrow and high
spectrum peaks at the frequency of the deterministic limit
cycle and its odd-order harmonics [curve (a),
D =3.0X10"°]. The absence of even-order harmonics is
due to the symmetry of Egs. (5) and (6), invariant with
respect to the reflection x,y — —x, —y. As we increase
noise the spectrum becomes wider and lower. At the
same time the peak frequency is considerably shifted
[curve (b), D=0.05]. We emphasize that the profile of
Fig. 3(b) is typical for a limit cycle subject to noise. The

<S(w)>

FIG. 4. Spectra of y(t) for the case b=1and D=3.0X10"°
(a), D=0.05 (b), and D=0.9 (c).
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FIG. 5. w, plotted against log;o(D) for
b=1.
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peak is centered at a finite frequency. This indicates the
existence of a coherent motion (signal of the system dy-
namics), while the width of the peak shows the influence
of the random force. For still larger D [Fig. 3 (c),
D =0.9] the maximum of the spectrum is shifted to zero
frequency. The collective oscillation with a preferred
nonzero frequency is thus destroyed by the large noise.
The spectrum is of a purely random nature.

Now one point is worth mentioning. Without noise,
there is a 8 function in the spectrum at the frequency of
the limit cycle. The inclusion of noise reduces the & func-
tion to a spectrum peak of finite height. This point is
essentially different from the behavior of noise-driven and
periodically forced systems. In the latter case, a 6 peak
certainly remains after adding noise.

2. b=1, the case of deterministic heteroclinic orbits

In this case we have an interaction between two hetero-
clinic orbits and the noise. Without any noise the system
will approach one of the two semistable fixed points.

y(t)

wégm<D)

Here the anticlockwise heteroclinic orbits of the deter-
ministic system offer the possibility for anticlockwise ro-
tations. However, without noise the rotation is stopped
by the fixed points, and no persistent oscillation can
occur. The added noise helps to drive the system away
from the fixed points. As a feedback, the resulting small
shift along the unstable manifold of each fixed point will
be amplified by the deterministic dynamics, leading the
system to escape from the fixed points through the unsta-
ble directions and to approach the other fixed points
through the stable manifolds [see Fig. 1(b)], and a com-
plete circulation of coherent motion on the circle r=1
could result, just like the motion in the limit cycle sys-
tem. Thus, it is very interesting to investigate how the
noise-induced coherent motion can be influenced by the
noise strength. Since we have the deterministic station-
ary solutions at x =1, y =0, the state y(¢#)=0 can be
regarded as the absence of coherent motion, and the os-
cillation of y (¢) may serve as the order parameter to mea-
sure the coherence of the system.

Figure 4 shows a set of spectra (Sy(w)) with respect to

0.50]
0.00p
—0.50L

100 200 300 300

FIG. 6. Time series of y(t) for various D.
All the parameters are the same as in Fig. 4.
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FIG. 7. Probability distributions and the level curves of the distributions plotted in the x-y phase plane for b=1. The D values are

the same as those in Fig. 4.
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FIG. 8. Bis plotted vs logo(D) for b=1. A
resonancelike response, i.e., SR, can be clearly
seen.

frequency o for different values of D for the critical pa-
rameter b=1. For small D we find a small spectrum
peak at a very small frequency [Fig. 4(a), D =3.0X1077].
With the increase of D both the position (w,) and the
height (h) of this spectrum peak increase [Fig. 4(b),
D=0.05]. The resemblance of Figs. 4(b) and 3(b) con-
vinces us that there exists indeed a strong coherent
motion which is stimulated purely by noise. For a certain
large D the peak height A starts to decrease. For slightly
larger D, the peak center frequency w, decreases, too.
Finally, for sufficiently large D the maximum of the spec-
trum is shifted to the zero frequency [Fig. 4(c)]. Then the
dynamics is dominated by a random motion.

In Fig. 5 w, is plotted against log,o(D). w, increases as
D increases for low values of D until a maximum is
reached. If we increase D further @, decreases again.
After a certain critical value D w,=0 is reached identi-
cally. The disappearance of the preferred finite frequency
indicates the complete control over the system by the
strong noise.

The behaviors shown in Figs. 4 and 5 can be under-
stood more clearly by looking at Figs. 6 and 7. Figure 6
shows the time series of y(¢) for the three different pa-
rameter values of D as in Fig. 4. For very small D [Fig.
6(a)] the system can hardly escape from the deterministic
fixed points; thus we have y (¢)=0 for almost all the time.
This fact is reflected by the small h and small o, in Fig.
4(a). As D increases the system has more and more
chances to run along the heteroclinic orbits. Thereby up-
ward and downward pulses in Fig. 6 occur. At a certain
value of D the noise-generated pulses form a coherent os-
cillation with its frequency fluctuating around a finite
value @,. At the same the noise level is still quite low
[see Fig. 6(b)]. This particular noise strength, which
seems to be an optimum for the noise-induced oscillation,
will be analyzed later on. For very large D [e.g., Fig.
6(c)], the time series consists of completely random data,
from which one can hardly see any trace of coherent
motion. This agrees with the spectrum Fig. 4(c).

In Fig. 7 we plot the probability distributions of the
system in the x-y phase space and the corresponding level
curves, for the same D values as in Fig. 4. These figures

show three kinds of typical distinctive behavior again. In
Fig. 7(a) the probability concentrates, for very small D, at
the fixed points and the coherent oscillation is extremely
weak. In Fig. 7(b), at the optimum D, a considerable
amount of probability distributes along the circle r =1
which leads to a limit-cycle-like motion. As the noise in-
creases further, the distribution hump on the circle r =1
becomes wider. For sufficiently large noise, as in Fig.
7(c), the probability distribution has a topological change.
The circle hump disappears and a saddle point of the dis-
tribution appears at the origin. In this case the probabili-
ty exchanges between the two basins mainly occur
through the center saddle point rather than the circle,
and a rotation with a characteristic frequency can no
longer be observed. This explains the destruction of the
coherent oscillation in Figs. 3(c) and 4 with 0, —0 for
large D.

Figures 4-7 imply the existence of an optimum noise
strength which produces the ‘best” oscillation. Either
too small or too large noise will definitely destroy the
coherent motion of the system. This fact and the overall
response of the system to the noise can be well represent-
ed and quantitatively measured by the quality factor (or
the SNR) B. In Fig. 8 B is plotted versus log,o(D). We
see an unambiguous maximum of B at a certain D. This
maximum clearly confirms the existence of the optimum

T
0.250 0.500

FIG. 9. Spectra of y’(t) for b=0.95 and for D=0.004 (a),
D=0.05 (b), and D=0.9 (c).



3514

T. DITZINGER, C. Z. NING, AND G. HU 50

0.150 [ _
0.100[_

0.050 |

s 1)

T

FIG. 10. B against log,o(D) for b=0.95.
One can see the SR effect below the saddle-
node bifurcation threshold.
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response of the system to the noise added. This behavior
very much resembles the usual SR phenomenon. Thus,
we call this optimum response “SR without periodic
force.”

However, there is an incompleteness in this analogy.
In the usual SR case, there is a predefined frequency of
the periodic signal. The peak of the power spectrum for
the output is not shifted if one changes the noise strength.
In our system there is no such predefined external signal
and the preferred periodicity is induced by noise. The
peak frequency can be considerably shifted by the noise
strength. The noise-induced coherent oscillation and fre-
quency shift have been well investigated in the past (e.g.,
[15] and references therein). Here our emphasis focuses
on the existence of the optimal noise strength for such a
noise-induced oscillation.

3. b <1, bistable stationary solutions

Without noise the system will asymptotically approach
one of the two stable points, depending on the initial con-
dition. By rotating the coordinates according to

x'= xcos¢y+y singd, (15)
y'=—xsing,+y cosdy, ¢o=—larccos(b), (16)

we set the stable points on the x’ axis, namely, at
x'==1, y’=0. The x' and y’ axes are denoted by dotted
lines in Fig. 1. Now we can take y’ as order parameter.
We asymptotically have y’(¢)=0, corresponding to no
coherent motion in the deterministic system. Any
coherent motion or any oscillation of nonzero y‘(t)
should be stimulated by adding noise. Figure 9 shows the
spectra with respect to frequency for b =0.95 and various
D values. For very small D, we only find a nearly straight
line spectrum at =0 [Fig. 9(a)], indicating that the sys-
tem is attracted to the close vicinity of one of the fixed
points. With the increase of D the spectrum is deformed
to a peak with the center w, located at a small nonzero
frequency, showing the presence of occasional switchings

between two basins. Both the center frequency w, and

loge(D)

the height A of the peak increase with increasing D in the
first stage [see Fig. 9(b)]. For a certain value of D, A
starts to decrease, and then w, decreases subsequently,
too. Finally, for sufficiently large D the center frequency
moves to zero; then the coherent oscillation stimulated by
the noise is destroyed by the noise itself almost complete-
ly. In Fig. 10 B is plotted against D for b =0.95. A reso-
nance peak is also apparent. Hence the SR without
external periodic force can be observed as well below the
saddle-node bifurcation threshold.

Comparing Figs. 9, 10 with 4, 8 it is clear that, when
the parameter is below the critical value (b < 1), the SR
effect is less effective than that for the critical parameter
b=1. We also considered the case of even smaller b’s.
The general tendency is that the smaller b is (the deeper
the system sinks to the attracting basin of stable points),
the more difficult it is for the system to have an optimum
response. This effect can be interpreted as follows. The
barrier between the stable and the unstable points which
the system has to overcome with the help of noise in-
creases with the decrease of b. Then we can easily imag-
ine that for sufficiently small b the required D value for
the system to overcome the barrier becomes so large that
any coherent oscillation of the system, which might be

J
0.250 0.500

w

FIG. 11. Spectra of y(¢) in model 2 for b=1 and
D=3.0X1077 (a), D=0.05 (b), and D=0.9 (c). (All the figures
from Fig. 11 to Fig. 13 are obtained by numerically simulating
the Langevin equations of model 2.)
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activated by noise, could be well destroyed by such a
large noise. As a result there is no optimum response of
the system for sufficiently small b.

B. Model 2

In model 1 we have two asymptotic stationary solu-
tions for b <1, i.e., we are dealing with the case of bista-
bility. The problem arises whether bistability is a neces-
sary condition for SR in autonomous systems. We try to
deal with this problem by investigating model 2. The fol-
lowing numerical results give a definite negative answer
to this question.

We focus on the parameter value b =1, i.e., on the crit-
ical condition. In Fig. 11 the spectra are plotted against
o for various D. The behavior is rather similar to that in
Fig. 4. For very small D [Fig. 11(a), D=3.0X107°], we
find a very low peak with a very small center frequency.
Corresponding to that the system spends a major portion
of time in the vicinity of the fixed point x =1, y =0.
There are very seldom such events that the system is
driven by small noise away from the fixed point along the
unstable manifold. Then it is driven by the deterministic
force to travel along the homoclinic circle. As D in-

creases, the events of the circulation along the loop r=1
happen more and more frequently. Consequently we get
a stronger and stronger coherent oscillation. However,
the situation is essentially changed for sufficiently large
D. After a certain D [Fig. 11(b), =0.05] the peak height
and the peak frequency start to decrease on further in-
creasing D. In Fig. 11(c), at D =0.9, the spectrum peak
approaches zero. This indicates the domination of noise
over the motion of the system.

In Fig. 12 the peak frequency w, is plotted against
log,o(D). The behavior is again similar to that of Fig. 5.
For sufficiently large D, w, approaches zero.

The SR phenomenon can be seen in Fig. 13, where the
B-D curve is plotted for model 2. We have therefore
identified the existence of SR for monostable autonomous
systems. All the figures from Fig. 11 to Fig. 13 for the
monostable system are similar to those from Fig. 4 to Fig.
8 for the bistable systems, apart from one difference: The
two deterministic fixed points and two heteroclinic orbits
seen in Fig. 6 and 7 are replaced by one deterministic
fixed point and a single homoclinic orbit. We have also
examined the cases of b>1 and b <1 for model 2. The
general features are similar to those in Figs. 3, 9, and 10.
We will not present them further here.

040 [
0.30 [
020 [

0.10 [

T

4 FIG. 13. B against log,o(D) for b=1. The

] SR effect can be observed equally as well in the
] monostable system as in the bistable system
] (Fig. 8).
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IV. CONCLUDING REMARKS

To conclude this paper we would like to make the fol-
lowing remarks.

First, some noise-induced oscillations have been ob-
served in various systems due to different mechanisms
and have been reported in a number of papers [15-17].
Here we consider more general two-dimensional auto-
nomous systems. As b <1 the asymptotic states of both
models 1 and 2 are steady solutions which do not display
any coherent oscillation. Nevertheless, coherent rota-
tions do exist in the transient processes when the systems
are away from the fixed points. Precisely speaking, the
deterministic systems intrinsically include a symmetry
breaking in favor of the anticlockwise rotations in both
models even for b <1. However, these coherent oscilla-
tions cannot be observed in the asymptotic states due to
the attracting property of the fixed points. In this case
noise may play an active role in inducing coherent oscil-
lation. In particular, the response of the autonomous sys-
tem to the noise can show a resonancelike behavior, the
SR without external periodic force.

Second, the reason for the SR peaks in Figs. 8, 10, and
13 is physically clear. In these models noise plays a two-
fold role. On the one hand, it activates coherent motion
by driving the systems away from the asymptotic fixed
points and by transferring the transient circulations of
the deterministic systems to asymptotic collective oscilla-
tions. On the other hand, the noise naturally spoils the
coherent motion stimulated by itself. In the positive
slope regions of Figs. 8, 10, and 13 the former tendency
dominates and we have monotonically increasing
B-log,o(D) curves. In the regions of negative slope, the
latter tendency dominates and the curves go down.

Third, we realize that bistability is not a necessary in-
gredient for the SR in our autonomous systems. This
conclusion agrees with that in Ref. [12]. Our model 2 has
only a single asymptotic steady solution for b =1, in
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which the SR effect can be observed equally well as in the
bistability case. Nevertheless, the mechanism of SR in
our monostable system is essentially different from that in
Ref. [12]. In the latter case, the optimum noise plays a
role in driving the system to the deterministic trajectories
which have frequencies close to the frequency of the
external periodic force. Then the input force can be
amplified by the resonance. Driven by smaller or larger
noises, the system may have more probability to stay in
the trajectories far away from the deterministic resonance
condition with the external force, and then the output
signal amplitude is much smaller. Therefore the SR in
Ref. [12] is very similar to the deterministic resonance in
mechanics and other fields, as the authors correctly con-
cluded. In our model 2, no external frequency exists.
The SR-like behavior is due to a mechanism exactly the
same as that for bistable systems, i.e., the competition of
the twofold roles played by noise, stimulating coherent
motion on one hand and spoiling the coherent oscillation
stimulated by itself on the other hand. Then the SR in
our monostable system has a meaning similar to the con-
ventional meaning of SR.

Finally, the same behavior as in our model can be easi-
ly found in many systems displaying self-organization
structures [18], for example, in biology or psychology
[19]. Therefore the effects revealed in this paper are ex-
pected to have wide applications in various nonlinear sys-
tems subject to stochastic forces.
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FIG. 7. Probability distributions and the level curves of the distributions plotted in the x -y phase plane for b=1. The D values are
the same as those in Fig. 4.



