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007} (A e 0, ‘
0. 0.065
0.06 | FIG. 5. Coexistence pattern between Turing and Hopf state at
' Jjo=1.43 and @=0.045. The density plots show the current density
j(r.,t) at four different times. The time labels refer to Fig. 6.
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FIG. 3. Different stability regimes in the vicinity of the Turing-
Hopf point (full circle) in the (jo, @) parameter plane. Gray: Turing
(broken) and Hopf (full) bifurcation line (see Fig. 1). Existence of
Hopf mode [full line, see Eq. (33)], stability of Hopf mode [dotted
line, see Eq. (34)], and saddle-node bifurcation of Turing patterns
[broken line, see Eq. (60)]. Region (A): trivial solution, region (B):
coexistence between trivial solution and Turing pattern, region (C):
Turing pattern, region (D): coexistence between Hopf mode and
Turing pattern. X and O mark the parameter settings used in Figs.
4 and 7, respectively.

FIG. 4. (a) Density plot of stationary Turing

15 pattern for the current density j(r,z)=u(r,t)

A 145 /‘ ‘ —a(r,t). (b) Relaxation of a Hopf mode. Time
Vo4 ' dependence of the spatial average (j) of the cur-
1.35 - : ! rent and the corresponding variance o;=(;*)

_ :x K’»\M —(j)*. Parameter settings for both parts are the
© e o S same (jo=143, «=0.062, D=5, and T=0.05,
1e-11 Bite 2P see Fig. 3), but different initial conditions had

been chosen.
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2.1. REACTION-DIFFUSION SYSTEMS 13

px Z:
a=s(n—na+a-— qa?),
i = sTH—n—ne+fp); (2.5)
p=w(a—p)

The parameters s,w and ¢ are determined from the rates of the reactions, see [29, 25].

Krug et al. introduced in [30] the modified Oregonator model, which describes the
light sensitivity of the Belousov-Zhabotinsky reaction. For this purpose, the reaction
scheme (2.3) was extended by a simple reaction, corresponding to the light-induced
bromide flow

(]
= ¥;

which leads to the modified three-component Oregonator model, given by

et =2(1 —z)+ylg — ),

€y =¢+fz—ylg+2), (2.6)

Zi—= gt =12,

The parameter ¢ accounts for the light intensity. The following parameter values were
suggested: ¢ = 2 X 1073, f = 2.1,e = 0.05, €' = ¢/8. With this set of parameters, it was
found that for ¢ = 1.762 x 103 the stable equilibrium in Eq. (2.6) undergoes a Hopf
bifurcation, thus giving access to both excitable (monostable) and oscillatory reaction
kinetics upon variation of the parameter ¢ near the bifurcation value.

Often, one can exploit the smallness of the parameter ¢ and set the left-hand side
of the second equation in Eq. (2.6) equal zero. In this case the model can be further
reduced to the so-called two-component version of Oregonator, which reads
u— q]
utgq’ 2.7)

1 ;
0= Z[u—uz —(fv+¢)
V=u—".
We would like to mention that Eq. (2.7) is qualitatively similar to the FitzHugh-Nagumo
equation [9, 10], which describes the propagation of the action potential in the squid

axons.

For spatially extended Belousov-Zhabotinsky reaction we must account for diffusion:

S Ll |
8tu—6[u u (_fv+¢)u+q]+DAu, -

Ov =u —v.
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VOLUME 92, NUMBER 1 PHYSICAL

REVIEW LETTERS week ending FIG. 2. Resonant drift of a spiral wave induced by a global
9 JANUARY 2004 feedback with kg, = —1.5, Bo =25, and Io = 70. (a)—(c) Circu-
. lar domain of radms R = A; (d) elliptical domain with large
axis @ = 2A = 4 mm and small axis b = a/1.25. In (a) and
(d), the time delay is 7 =0, in (b) 7/Te =032, and in
(¢) 7/Te =0.5. Initial spiral tip locations are marked by

arrows. Scale bar: 1 mm.
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