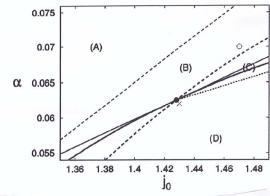
4.4 Bréspiele voin mléche Mus fen Wiecholog: - Turing: Zeiblich Kon fantes tearfu - Hopf! homogene Os zillæfikeen

Frage: Frelet das auch gleile Zatig? G W. Jut et al PRE 64, 0262-13 (2001) 2 Variables Hodell: $\frac{\partial u}{\partial t} = \alpha \left[\left\{ j_0 - \left[u - \alpha \right] \right\} + D \left[\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right]$ 2a = u-a -Ta+ 2a + 22a + 27a + 212

a: Spany, a: Ladeystra judichte, 7: Treunelvate

W. JUST, M. BOSE, S. BOSE, H. ENGEL, AND E. SCHÖLL

PHYSICAL REVIEW E 64 026219



t = 200t = 250t = 150t = 300

FIG. 5. Coexistence pattern between Turing and Hopf state at $j_0 = 1.43$ and $\alpha = 0.045$. The density plots show the current density $j(\mathbf{r},t)$ at four different times. The time labels refer to Fig. 6.

FIG. 3. Different stability regimes in the vicinity of the Turing-Hopf point (full circle) in the (j_0, α) parameter plane. Gray: Turing (broken) and Hopf (full) bifurcation line (see Fig. 1). Existence of Hopf mode [full line, see Eq. (33)], stability of Hopf mode [dotted line, see Eq. (34)], and saddle-node bifurcation of Turing patterns [broken line, see Eq. (60)]. Region (A): trivial solution, region (B): coexistence between trivial solution and Turing pattern, region (C): Turing pattern, region (D): coexistence between Hopf mode and Turing pattern. \times and \bigcirc mark the parameter settings used in Figs. 4 and 7, respectively.

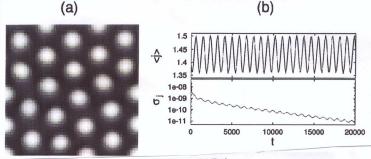


FIG. 4. (a) Density plot of stationary Turing pattern for the current density j(r,t) = u(r,t) $-a(\mathbf{r},t)$. (b) Relaxation of a Hopf mode. Time dependence of the spatial average $\langle j \rangle$ of the current and the corresponding variance $\sigma_i = \langle j^2 \rangle$ $\langle j \rangle^2$. Parameter settings for both parts are the same $(j_0=1.43, \alpha=0.062, D=5, \text{ and } T=0.05,$ see Fig. 3), but different initial conditions had been chosen

PHYSICAL REVIEW E 64 026219

SPATIOTEMPORAL DYNAMICS NEAR A . . .

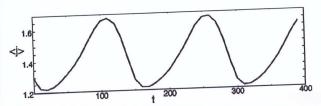


FIG. 6. Time dependence of the spatial average of the current

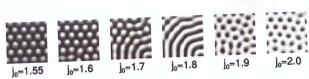


FIG. 8. Time independent patterns appearing for different values of the total current j_0 at $\alpha = 0.075$, T = 0.05, and D = 5: Transition from hot spots (left) to cold spots (right). Simulations have been performed on a system of size 200×200 with Neumann boundary

Bemely 24 Front-Loscens:

2 = f(u) +0 2 = = xct Du" + Cu' + f(u)=0 Bostone Calljani: I de les Maltipliziens unif le uncl l'atopraire:

 $\int \int d^{3}y \, d^{3}y \, dy + C \int d^{3}y \, d^{3}y \, dy + \int d^{3}y \, d^{3}y \, dy = 0$ $= \frac{1}{2} \int \frac{|du|^{2}}{|ds|^{2}} = 0$ $= \int du \, f(u) = A$

Justant (lu)

Solution (lu)

Solution (lu)

Solution (lu)

Color (lu)

Solution (

Apriorienten des Fifelfige Megceno Model

 $0 \in \mathcal{J}_{\mathcal{A}} = u - \frac{u^3}{3} - v + \frac{3u}{3x}$ $0 \in \mathcal{J}_{\mathcal{A}} = u - \frac{u^3}{3} - v + \frac{3u}{3x}$ $0 \in \mathcal{J}_{\mathcal{A}} = u - \frac{u^3}{3} - v + \frac{3u}{3x}$ $0 \in \mathcal{J}_{\mathcal{A}} = u - \frac{u^3}{3} - v + \frac{3u}{3x}$ $0 \in \mathcal{J}_{\mathcal{A}} = u - \frac{u^3}{3} - v + \frac{3u}{3x}$ $0 \in \mathcal{J}_{\mathcal{A}} = u - \frac{u^3}{3} - v + \frac{3u}{3x}$ $0 \in \mathcal{J}_{\mathcal{A}} = u - \frac{u^3}{3} - v + \frac{3u}{3x}$ $0 \in \mathcal{J}_{\mathcal{A}} = u - \frac{u^3}{3} - v + \frac{3u}{3x}$ $0 \in \mathcal{J}_{\mathcal{A}} = u + a$ $0 \in \mathcal{J}_{\mathcal{A}} = u + a$

Liso V

=) Stachweise liver = Los og constil Fuscum setchan

John Rinzell Joseph B. Keller Brop legs- Journal 13, 1313 (1973)

 $\rho \propto Z$:

$$\dot{\alpha} = s(\eta - \eta\alpha + \alpha - q\alpha^{2}),$$

$$\dot{\eta} = s^{-1}(-\eta - \eta\alpha + f\rho),$$

$$\dot{\rho} = w(\alpha - \rho).$$
(2.5)

The parameters s, w and q are determined from the rates of the reactions, see [29, 25].

Krug et al. introduced in [30] the modified Oregonator model, which describes the light sensitivity of the Belousov-Zhabotinsky reaction. For this purpose, the reaction scheme (2.3) was extended by a simple reaction, corresponding to the light-induced bromide flow

$$\stackrel{\Phi}{\longrightarrow} Y$$
,

which leads to the modified three-component Oregonator model, given by

$$\epsilon \dot{x} = x(1-x) + y(q-x),$$

$$\epsilon' \dot{y} = \phi + fz - y(q+x),$$

$$\dot{z} = x - z.$$
(2.6)

The parameter ϕ accounts for the light intensity. The following parameter values were suggested: $q = 2 \times 10^{-3}$, f = 2.1, $\epsilon = 0.05$, $\epsilon' = \epsilon/8$. With this set of parameters, it was found that for $\phi = 1.762 \times 10^{-3}$ the stable equilibrium in Eq. (2.6) undergoes a Hopf bifurcation, thus giving access to both excitable (monostable) and oscillatory reaction kinetics upon variation of the parameter ϕ near the bifurcation value.

Often, one can exploit the smallness of the parameter ϵ' and set the left-hand side of the second equation in Eq. (2.6) equal zero. In this case the model can be further reduced to the so-called two-component version of Oregonator, which reads

$$\dot{u} = \frac{1}{\epsilon} \left[u - u^2 - (fv + \phi) \frac{u - q}{u + q} \right],$$

$$\dot{v} = u - v.$$
(2.7)

We would like to mention that Eq. (2.7) is qualitatively similar to the FitzHugh-Nagumo equation [9, 10], which describes the propagation of the action potential in the squid axons.

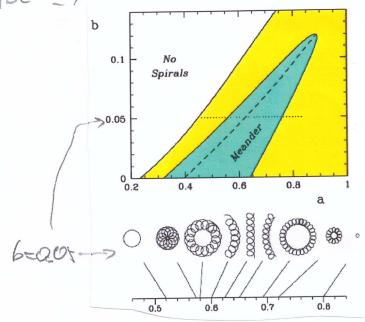
For spatially extended Belousov-Zhabotinsky reaction we must account for diffusion:

$$\partial_t u = \frac{1}{\epsilon} \left[u - u^2 - (fv + \phi) \frac{u - q}{u + q} \right] + D\Delta u,$$

$$\partial_t v = u - v.$$
(2.8)

Borkley-Koolell!
$$\frac{\partial u}{\partial t} = \frac{1}{\epsilon} u((-u)(u - \frac{v+6}{ce}) + 14$$

Durgas Bookleg: Physica D 49,67 (1991) + Dade IJBC I, 2023 (1947)



Ovegander - Hodell: (2D)

$$\frac{\partial u}{\partial t} = \frac{1}{\epsilon} \left[\alpha (1-u) - \left(f \mathbf{V} + \phi \right) \frac{\alpha - q}{u + q} \right] + D \Delta u$$

Disse Freefran Grigary Bordy agos (2006)

V. Zykor ekole: PRL J2, OP 308

PHYSICAL REVIEW LETTERS

week ending 9 JANUARY 2004

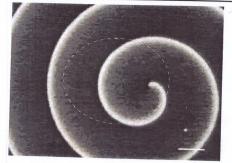


FIG. 1. Snapshot of a spiral wave rotating in a thin layer of the BZ reaction. The dashed line indicate

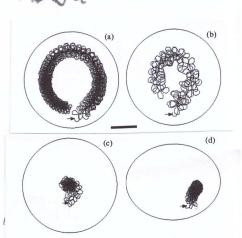


FIG. 2. Resonant drift of a spiral wave induced by a global FIG. 2. Resonant drift of a spiral wave induced by a global feedback with $k_{fb}=-1.5,\, B_0=25,\, {\rm and}\, I_0=70.$ (a)–(c) Circular domain of radius $R=\lambda$; (d) elliptical domain with large axis $a=2\lambda=4$ mm and small axis b=a/1.25. In (a) and (d), the time delay is $\tau=0$, in (b) $\tau/T_\infty=0.32$, and in (c) $\tau/T_\infty=0.5.$ Initial spiral tip locations are marked by arrows. Scale bar: 1 mm.