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The cubic complex Ginzburg-Landau equation is one of the most-studied nonlinear equations in the
physics community. It describes a vast variety of phenomena from nonlinear waves to second-order
phase transitions, from superconductivity, superfluidity, and Bose-Einstein condensation to liquid
crystals and strings in field theory. The authors give an overview of various phenomena described by
the complex Ginzburg-Landau equation in one, two, and three dimensions from the point of view of
condensed-matter physicists. Their aim is to study the relevant solutions in order to gain insight into
nonequilibrium phenomena in spatially extended systems.
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I. PRELIMINARY REMARKS

A. The equation

The cubic complex Ginzburg-Landau equation
(CGLE) is one of the most-studied nonlinear equations
in the physics community. It describes on a qualitative,
and often even on a quantitative, level a vast variety of
phenomena from nonlinear waves to second-order
phase transitions, from superconductivity, superfluidity,
and Bose-Einstein condensation to liquid crystals and
strings in field theory (Kuramoto, 1984; Cross and Ho-
henberg, 1993; Newell et al., 1993; Bohr et al., 1998;
Dangelmayr and Kramer, 1998; Pismen, 1999).

Our goal is to give an overview of various phenomena
described by the CGLE from the point of view of
condensed-matter physicists. Our approach is to study
the relevant solutions to gain insight into nonequilib-
rium phenomena in spatially extended systems. More el-
ementary and detailed introductions to the concepts un-
derlying the equation can be found in Manneville
(1990), van Saarloos (1995), van Hecke et al. (1994),
Nicolis (1995), and Walgraaf (1997).

The equation is given by

dA=A+(1+ib)AA—(1+ic)|A|*A, (1)

where A is a complex function of (scaled) time ¢ and
space X (often in reduced dimension D =1 or 2) and the
real parameters b and ¢ characterize linear and nonlin-
ear dispersion. The equation arises in physics in particu-
lar as a “modulational” (or “envelope” or “amplitude”)
equation. It provides a reduced, universal description of
weakly nonlinear spatio-temporal phenomena in ex-
tended (in X) continuous media whose linear dispersion
is of a very general type (see below) and that are invari-
ant under a global change of gauge [multiplication of A
by exp(i®)]. This symmetry typically arises when A is
the (slowly varying) amplitude of a phenomenon that is
periodic in at least one variable (space and/or time) as a
consequence of translational invariance of the system.

The assumptions of slow variation and weak nonlin-
earity are valid in particular near the instability of a ho-
mogeneous (in X) basic state, and Eq. (1) can be viewed
as a (generalized) normal form of the resulting primary
bifurcation. In analogy with phase transitions, A is often
called an order parameter.

To see more clearly the analogy with the order-
parameter concept, we write the equation in the un-
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scaled form,! as derived, for example, from the underly-
ing set of basic (i.e., hydrodynamic) equations for a
definite physical situation,

H(GA—-3,-VA)=e(1+ia)A+ & (1+ib)AA
—g(1+ic)|A|PA. ()
Equation (1) is obtained from Eq. (2) by the transfor-
mations A =(e/g)"A exp[—i(ealn)t], T=(7/€)t, and ¥
—Jg7=(§/61/2))?. The case €>0 and g>0 was assumed.
Otherwise the signs in front of the first and/or last term
on the right-hand side of Eq. (1) have to be reversed.

The physical quantities u(7,7) (temperature, velocities,
densities, electric field, etc.) are given in the form

u=Ae'@c T 9NU,(7)+ c.c.+ hoo.t. 3)

(c.c.=complex conjugate, h.o.t.=higher-order terms). If
the phenomena occur in (thin) layers, on surfaces, or in
(narrow) channels, then U;, derived from the linear
problem, describes the spatial dependence of the physi-
cal quantities in the transverse Z direction(s). U; is a
linear eigenvector and w.,g. the corresponding eigen-
values. In the case of periodically driven systems, U,
would include a periodic time dependence.

In order to identify the character of the various terms
in the linear part of Eq. (2), one may also consider the
dispersion relation obtained from Egs. (2) and (3) for
small harmonic perturbations of the basic state A =0,

TN=—iTw.+iU, (§—q.)+e(1+ia)

—&(1+ib)(G—q.)*. 4)
Here 4G is the wave vector in the physical system and
=0 —iw is the complex growth rate of the perturbation.
7 is a characteristic time, ¢ the coherence length, Jg a
linear group velocity, and ea/7 a correction to the Hopf
frequency w,.. € measures in a dimensionless scale the
distance from the threshold of the instability, i.e., €
=(R—R.)/R,, with R the control parameter that car-
ries the system through the threshold at R.. Note that
there is an arbitrary overall factor in Egs. (2) and (4)
which is fixed by the ultimately arbitrary choice of the
definition of e. The value of the nonlinear coefficient g
in Eq. (2) depends on the choice of the normalization of
the linear eigenvector U;.

Now we can proceed to summarize the conditions for
validity of the CGLE. The following four points are to
some extent interrelated.

(a) Correct choice of order-parameter space, i.e., a
single complex scalar: First of all, this necessitates that
w, and/or . be nonzero, because otherwise one would
expect a real order parameter, as in simple phase transi-
tions. An exception is the transition to superconductivity
and superfluidity, in which the order parameter is com-
plex for quantum-mechanical reasons (see below).

! An exception might be a simple rescaling and rotation of the
coordinate system; see below.
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Moreover, if g,=0, one may run into problems with con-
servation laws which frequently exclude a homogeneous
change of the system. In this case of long-wavelength
instabilities, somewhat different order-parameter equa-
tions often arise (see, for example, Nepomnyashchii,
1995a). Second, a discrete degeneracy (or near degen-
eracy) of neutral modes is excluded, which may arise by
symmetry (see below for an example) or by accident. If
the eigenvectors of the different modes were different,
one would need several order parameters and a set of
coupled equations. If the eigenvectors coincide (or
nearly coincide), which may happen at (or near) a
codimension-2 point, one can again use one equation,
which would now contain higher space or time
derivatives.

(b) Validity of the dispersion relation (4): Since there
is no real contribution linear in §— g, and since & is a
positive quantity, the real growth rate o has a minimum
at ¢, . In more than one dimension this excludes an im-
portant class of systems, namely, isotropic ones with ¢,
#0 like Rayleigh-Bénard convection in simple 2D fluid
layers. There one has a continuous degeneracy of neu-
tral linear modes. The neglect of terms of higher order
in € and in g — ¢ is usually justified near the bifurcation.

(c) Symmetries: translation invariance in X and . Ac-
tually the CGLE incorporates translational invariance
with respect to space and/or time on two levels. One is
expressed by the global gauge invariance, which in the
CGLE can be absorbed in a shift of X and/or time t.
Note that this invariance excludes terms that are qua-
dratic in A. The other is expressed by the autonomy of
the CGLE (no explicit dependence on space and time).
The two invariances reflect the fact that the fast and
slow space and time scales are not coupled in this de-
scription. This is an approximation that cannot be over-
come by going to higher order in the expansion in terms
of amplitude and gradients. The coupling effects are in
fact nonanalytic in € (nonadiabatic effects; see, for ex-
ample, Pomeau, 1984; Kramer and Zimmermann, 1985;
Bensimon ef al., 1988).

(d) Validity of the (lowest-order) weakly nonlinear
approximation: We shall deal mostly with the case of a
supercritical (forward or normal) bifurcation where g
>0; higher-order nonlinearities in Eq. (1) can then be
neglected sufficiently near threshold. If the nonlinear
term in Eq. (1) has the opposite sign, which corresponds
to a subcritical (backward or inverse) bifurcation,
higher-order nonlinear terms are usually essential. How-
ever, even in this case, there exist for sufficiently large
values of |c| relevant solutions that bifurcate supercriti-
cally, which will be discussed in Sec. VI.A.1.

From the linear theory we can now distinguish three
classes of primary bifurcations in which Eq. (1) arises:

(i) w.=0,G.#0: for such stationary periodic instabili-
ties \ is real, and in fact all the imaginary coefficients
(including the group velocity v,) vanish. Generically, re-
flection symmetry is needed (see below). Equation (1)
then reduces to the “real” Ginzburg-Landau equation,

aA=A+AA—|A|*A, Q)
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which one might also call the “complex nonlinear diffu-
sion equation” in analogy with the nonlinear Schro-
dinger equation (see below). Examples that display such
an instability are Rayleigh-Bénard convection in simple
and complex fluids, Taylor-Couette flow, electroconvec-
tion in liquid crystals, and many others. In more than
one dimension there is the restriction mentioned under
(b). Thus in isotropic 2D systems the dispersion relation
is changed and the Laplacian in Eq. (5) has to be re-
placed by a different differential operator. The corre-
sponding equation derived by Newell and Whitehead
(1969) and by Segel (1969) was in fact the first amplitude
equation that included spatial degrees of freedom. It is
applicable only for situations with nearly parallel rolls,
which is in isotropic systems an important restriction.

In more than one dimension, therefore, the system
must be anisotropic, which is the case in particular for
convective instabilities in liquid crystals (Kramer and
Pesch, 1995), but also holds for Rayleigh-Bénard con-
vection in an inclined layer (Daniels et al., 2000) or in a
conducting fluid in the presence of a magnetic field with
an axial component (Eltayeb, 1971). The Taylor-Couette
instability in the small-gap limit can also be viewed as an
anisotropic quasi-2D system. In two dimensions Eq. (5)
was first considered in the context of electrohydrody-
namic convection in a planarly aligned nematic liquid-
crystal layer (Pesch and Kramer, 1986; Bodenschatz,
Zimmermam, and Kramer, 1988; Kramer and Pesch,
1995; for a review see Buka and Kramer, 1996). The
Laplacian in Eq. (2) is obtained after a linear coordinate
transformation.

(il) w.#0,5.=0: The prime example of such oscilla-
tory uniform instabilities are oscillatory chemical reac-
tions (see, for example, de Wit, 1999). In lasers (or pas-
sive nonlinear optical systems) this type may also arise
(Newell and Moloney, 1992). In hydrodynamic systems
such instabilities are often suppressed by mass conserva-
tion (see, however, Borzsonyi et al., 2000). Isotropy does
not cause any problems here, and the Laplacian applies
directly. In the presence of reflection symmetry the
group velocity term in Eq. (2) is absent. The spatial pat-
terns obtained from A directly reflect those of the physi-
cal system. The imaginary parts proportional to b and ¢
pertain to linear and nonlinear frequency changes
(renormalization) of the oscillations, respectively. In
most systems the nonlinear frequency change is negative
(frequency decreases with amplitude), so that ¢<<0 with
our choice of signs. Coefficients for the CGLE have
been determined, for example, from experiments on the
Belousov-Zhabotinsky reaction (Hynne etal, 1993;
Kramer et al., 1995).

(iii)) w.#0,q.#0: This oscillatory periodic instability
occurs in hydrodynamic and optical systems. The best-
studied example is Rayleigh-Bénard convection in bi-
nary mixtures, although here the bifurcation is mostly
subcritical in the accessible parameter range (Schopf
and Zimmermann, 1990; Lucke et al., 1992). Also, in two
dimensions the system is isotropic, so that the simple
complex GLE (2) is not applicable. Other 1D examples
are the oscillatory instability in Rayleigh-Bénard con-
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vection in low-Prandtl-number fluids, which in two di-
mensions occurs as a secondary instability of stationary
rolls. In a 1D geometry with just one longitudinal roll it
can be treated as a primary bifurcation (Janiaud et al.,
1992). Other examples include the wall instability in ro-
tating Rayleigh-Bénard convection (Tu and Cross, 1992;
van Hecke and van Saarloos, 1997; Yuanming and Ecke,
1999) and hydrothermal waves, where the coefficients of
the CGLE were determined from experiment (Bur-
guette et al, 1999). In two dimensions the prime ex-
ample is the electrohydrodynamic instability in nematic
liquid crystals in thin and clean cells (otherwise one has
the more common stationary rolls; Treiber and Kramer,
1998). Actually in such an anisotropic 2D system one is
led to a generalization of Eq. (1) in which the term
ibAA is replaced by a more general bilinear form
i(blai+b2¢9§); see Sec. VL.D.

Most of the oscillatory periodic systems just men-
tioned have reflection symmetry, and one then has to
allow for the possibility of counterpropagating waves,
which makes a description in terms of two coupled
CGLE’s necessary (see Cross and Hohenberg, 1993).
The degeneracy between left- and right-traveling waves
can be lifted by breaking the reflection symmetry by ap-
plying additional fields or an additional flow. In this situ-
ation one roll system is favored over the other and, if the
effect is strong enough, a single CGLE can be used. By
breaking reflection symmetry in stationary periodic in-
stabilities [case (i)], one causes the rolls generically to
start to travel, and one indeed, arrives at an oscillatory
periodic instability [case (iii)]. This has been studied ex-
perimentally by applying a through flow in thermal con-
vection (Pocheau and Croquette, 1984) or in the Taylor-
Couette system (Babcock, Ahlers, and Cannell, 1991;
Tsameret and Steinberg, 1994;) or by nonsymmetric sur-
face alignment in the electroconvection of nematics
(pretilt or hybrid alignment; see, for example, Krekhov
and Kramer, 1996).

Since the drift introduces a frequency, for sufficiently
strongly broken reflection symmetry the distinction be-
tween cases (i) and (iii) is lost, as is obvious in open-flow
systems (Leweke and Provansal, 1994, 1995; Roussopou-
los and Monkewitz, 1996). Actually, with broken reflec-
tion symmetry also case (ii) transforms generically into
(iii), i.e., the homogeheous Hopf bifurcation is in gen-
eral preempted by a periodic one (Rovinksy and Menz-
inger, 1992, 1993).

The CGLE may also be viewed as a dissipative exten-
sion of the conservative nonlinear Schrodinger equation,

i0,A=AA+|APA, (6)

which describes weakly nonlinear wave phenomena
(Newell, 1974). The prime examples are waves on deep
water (Dias and Kharif, 1999) and nonlinear optics
(Newell and Moloney, 1992). The conservative limit of
Eq. (1) is obtained in Eq. (2) by letting v,, €,£, g—0
with &b, gc remaining nonzero, so that b, c¢—; one
then rescales space and the amplitude.
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B. Historical remarks

Four key concepts come together in the CGLE phi-
losophy:

® Weak nonlinearity, which amounts to an expansion in

terms of the order parameter |71| This concept goes
back to Landau’s theory of second-order phase transi-
tions (Landau, 1937a). Landau also employed this
type of expansion in his attempt to explain the transi-
tion to turbulence (Landau, 1944). In the context of
stationary, pattern-forming, hydrodynamic instabili-
ties, the weakly nonlinear expansion leading to a solv-
ability condition at third order was introduced by
Gorkov (1957) and Malkus and Veronis (1958). In the
1957 work of Abrikosov (for a review see Abrikosov,
1988), he presents the theory of the mixed state of
type-1I superconductors in a magnetic field based on
the Ginzburg-Landau theory of superconductivity.
The mixed state is a periodic array of flux lines (or
vortices) corresponding to topological defects (see be-
low). Abrikosov introduced a weakly nonlinear ex-
pansion to describe this state, which is valid near the
upper critical field.

e Slow relaxation time dependence was first used by
Landau in the above-mentioned 1944 paper on turbu-
lence. In the context of pattern-forming instabilities
this concept goes back to Stuart (1960).

e Slow nonrelaxation time dependence with nonlinear
frequency renormalization in the complex-amplitude
formulation was introduced by Stuart in 1960 using
multiscale analysis. Of course perturbation theory for
periodic orbits (in particular, conservative Hamil-
tonian systems) is a classical subject that was treated
by Bogoliubov, Krylov, and Mitropolskii in 1937 (for a
review, see Bogoliubov and Mitropolskii, 1961).

e Slow spatial dependence was included by Landau
(1937b) in the context of x-ray scattering by crystals in
the neighborhood of the Curie point. However, the
concept became known with the success of the (sta-
tionary) phenomenological Ginzburg-Landau theory
of superconductivity (Ginzburg and Landau, 1950).

The stationary Ginzburg-Landau theory for supercon-
ductivity has a particular resemblance to the modula-
tional theories of pattern-forming systems because the
order parameter is complex, although for a very differ-
ent reason. Superconductivity being a macroscopic
quantum state, an order parameter is required that has
the symmetries of a wave function. In spite of the differ-
ent origin there are many analogies. However, in super-
conductors the time dependence is rendered nonvaria-
tional primarily through the coupling to the electric field
due to local gauge invariance (see, for example, Abriko-
sov, 1988), a mechanism that has no analog in pattern-
forming systems.

The time-dependent Ginzburg-Landau theory for su-
perconductors was presented (phenomenologically) only
in 1968 by Schmid (and derived from microscopic theory
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shortly afterwards by Gorkov and Eliashberg, 1968),
when the first modulational theory was derived in the
context of Rayleigh-Bénard convection by Newell and
Whitehead (1969) and Segel (1969). Equation (5) with
an additional noise term has been studied intensively as
a model of phase transitions in equilibrium systems; see,
for example, Hohenberg and Halperin (1977).

The full CGLE was introduced phenomenologically
by Newell and Whitehead (1971). It was derived by
Stewartson and Stuart (1971) and DiPrima, Eckhaus,
and Segel (1971) in the context of the destabilization of
plane shear flow, where its applicability is limited by the
fact that a strongly subcritical bifurcation is involved. In
the context of chemical systems the CGLE was intro-
duced by Kuramoto and Tsuzuki (1976).

There is an extensive mathematical literature on the
CGLE, which we shall only touch upon; see, for ex-
ample, Doering et al. (1987, 1988); van Harten (1991);
Schneider (1994); Doelman (1995); Mielke and
Schneider (1996); Levermore and Stark (1997); Mel-
bourne (1998); Mielke (1998).

C. Simple model—vast variety of effects

Clearly the CGLE (1) may be viewed as a very gen-
eral normal-form type of equation for a large class of
bifurcations and nonlinear wave phenomena in spatially
extended systems, so a detailed investigation of its prop-
erties is well justified. The equation interpolates be-
tween the two opposing limits of the conservative non-
linear Schrodinger equation and the purely relaxative
GLE. The world of the CGLE lies between these limits
where new phenomena and scenarios arise, such as sink
and source solutions (spirals in two dimensions and fila-
ments in three dimensions), various core and wave insta-
bilities, nonlinear convective versus absolute instability,
interaction screening and competition between sources,
various types of spatio-temporal chaos, and glassy states.

Il. GENERAL CONSIDERATIONS

In this section we shall study general properties of Eq.
(1) that are relevant in all dimensions.

A. Variational case

For the case of h=c it is useful to transform into a
rotating frame A — A exp(ibt). Then Eq. (1) changes to

9,A=(1+ib)(A+AA—|A|?A). (7)
Equation (7) can be obtained by variation of the func-
tional

1

v:f UdPr, U=—|A]P+3|A[*+|VAP, (8)

leading to 9,A=—(1+ib)S8VISA* and

2 24D
3IV=—W |(9,A| d“r. 9)
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One sees that for all noninfinite b the value of V de-
creases, so the functional (8) plays the role of a global
Lyapunov functional or generalized free energy (V is
bounded from below). The system then relaxes towards
local minima of the functional. In particular, the station-
ary solutions A (7) of the GLE (b=0) correspond in the
more general case to Ae* with corresponding stability
properties.

In the limit b—oo of the nonlinear Schrodinger ap-
proximation, the functional becomes a Hamiltonian,
which is conserved. More generally, the nonlinear Schro-
dinger equation is obtained from the CGLE by taking
the limit b,c—c without further restrictions. After res-
caling one obtains Eq. (6). One sees that the equation
comes in two variants, the focusing (+ sign) and defo-
cusing (— sign) cases (the notation comes from nonlin-
ear optics). In one dimension it is completely integrable
(Zakharov and Shabat, 1971). In the focusing case it has
a two-parameter family of “bright” solitons (irrespective
of space translations and gauge transformation). In D
>1, solutions typically exhibit finite-time singularities
(collapse; Zakharov, 1984; for a recent review see Rob-
inson, 1997). In the defocusing case one has in one di-
mension a three-parameter family of “dark solitons”
that connect asymptotically to plane waves and vortices
in two and three dimensions. We shall not discuss the
equation here since there is a vast literature on it (see,
for example, the Proceedings of the Conference on the
Nonlinear Schrodinger Equation, 1994). It is useful to
treat the CGLE in the limit of large b and ¢ from the
point of view of a perturbed nonlinear Schrodinger
equation.

B. The amplitude-phase representation

It is often useful to represent the complex function A
by its real amplitude and phase in the form A
=R exp(if). Then Eq. (1) becomes

d,R=[A—(V0)>]R—b(2VH-VR+RA0)
+(1—R?)R, (10)
R3,0=b[A—(V6)’]R+2VH-VR+RAO—cR>.

For =0 this corresponds to a class of reaction-diffusion
equations called A —w systems, which are generally of
the form

d,R=[A—(V8)?]R+R\(R),
R9,0=2V0-VR+RAO+Rw(R). (11)

Such equations have been extensively studied in the past
by applied mathematicians (see Hagan, 1982 and refer-
ences therein). Clearly one can combine Egs. (10) in
such a way that the right-hand sides are those of a \
— w system.

C. Transformations, coherent structures, similarity

The obvious symmetries of the CGLE are time and
space translations, spatial reflections and rotation, and
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global gauge (or phase) symmetry A— Ae'®. The trans-
formation A,b,c—A*,—b,—c leaves the equation in-
variant so that only a half plane within the b,c param-
eter space has to be considered.

Other transformations hold only for particular classes
of solutions. To see this it is useful to consider the fol-
lowing transformation:

A(F,0) =" QN B(F—51,1), (12)
leading to
dB=[o+Ww-V+(1+ib)A—(1+ic)|B|*]1B,  (13)

with o=1+iw—(1+ib)Q? Ww=0—i(1+ib)Q. Most
known solutions are either of the coherent-structure
type, where B depends only on its first argument (i.e.,
with properly chosen w it is time independent in a mov-
ing frame), or are disordered in the sense of spatio-
temporal chaos. Coherent structures can be localized or

extended. The outer wave vector Q could be absorbed
in B (in which case w would be replaced by w—Quv). It

may be useful to introduce O when the gradient of the
phase of B, integrated over the system, is zero (or at
least small).

With a little bit of algebra one can now derive a useful
similarity transformation that connects coherent struc-
tures along the lines (b—c)/(1+bc)=const in param-
eter space. Defining

F=pgi', |B|=v|B'l, (14)
we can write the transformation relations between

unprimed and primed quantities as

1+bb"+(b—b")(w—Qv)

B‘2=—1
1+b2

1
- N2, 2
—|—4(b b')v

b

L 5 b/Z - 1+b/2
w —b +ﬁ W(w—b), U —B1+—1320,

, 1b=b’
Q=805 17Y) (15)
b—c B b'—c’ B 1+be 1+c¢'2]12 16
T+bc 1+b'c P |1+b'¢c 1+2 (16)

The relations (15) are independent of the nonlinear
part of Eq. (1) and therefore survive generalizations. So-
lutions with v =0 remain stationary (for b<<e0), and that
transformation was given by Hagan (1982). Clearly one
can very generally transform to b =0, where the CGLE
represents a A — w system. Note that for v #0 one cannot
have Q=0 and Q' =0. The similarity line »=c¢ (vanish-
ing group velocity; see below) includes the real case.

Note that the stability limits of coherent states are in
general not expected to conform with the similarity
transform. By taking the limit b—o in Egs. (16), one
finds ¢’=c. Then the 1 in the factor 1+ib can be
dropped and changes in b can be absorbed in a rescaling
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of length. The similarity transformation then connects
solutions with arbitrary velocity, which is a manifestation
of a type of Galilean invariance (van Saarloos and Ho-
henberg, 1992). Thus in this limit solutions appear as
continuous families moving at arbitrary velocity.

Similarly, when ¢—oe, b tends to a constant. Then, in
addition to the 1 in the factor 1+ic, the linear growth
term can be dropped, and changes in ¢ can be absorbed
in a rescaling of B as well as length and time. The simi-
larity transformation then turns into a scaling transfor-
mation. Thus in this limit solutions appear as continuous
families of rescaled functions.

For b and c— one has both transformations to-
gether, so solutions appear generically as two-parameter
families. Indeed, one is then left with the nonlinear
Schrodinger equation.

D. Plane-wave solutions and their stability

The simplest coherent structures are the plane-wave
solutions

A=\1-0%exp{i[Q-r—w,(Q)t+ ¢]},
F2=1_Qza wp(Q)=c(1—Q2)+bQ2, (17)

where ¢ is an arbitrary constant phase. These structures
exist for Q%< 1. To test their stability one considers the
complex growth rate N of the modulational modes. One
seeks the perturbed solution in the form

A=[F+éa, exp(At+ik-r)+ da_exp(A\*t—ik-r)]
Xexpli(Q-r—wt)], (18)

where k is a modulation wave vector and da. are the
amplitudes of the small perturbations. One easily finds
the expression for the growth rate N (Stuart and
DiPrima, 1980):

N2 42(F?+2ibQ-k+ k)N +(1+b%)[k*—4(Q-k)*]
+2F[(1+bc)k*+2i(b—c)Q-k]=0. (19)
By expanding this equation for small k one finds
N=—iV,k—Dyk*+iQk>— D k*+O(k”), (20)
with
Ve=2(b—c)0Qx,
D2=1+bc—2(11—tcgzg—i,

0 2[b(1-0%)=2¢0;](1+cH) 0

g (l_QZ)Z ’
1+c2
DFm[bz(l_Q2)2—12bc(1—Q2)Qi
+4(1+5¢2)0%1, 1)

where Qk=Q~ﬁ is the component of Q parallel to k.
The quantities V,, D,, Q,, and D, for k|Q will be

denoted by V,, Dy, Q,, and Dy . Similarly, for kL Q

gl gl
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FIG. 1. Absolute stability limits Q ,; , for four

cuts in the b,c plane. Also included are the
convective (=Eckhaus) stability limits that

separate the stable (light-shaded) from the
convectively unstable (dark-shaded) regions.

one may use the notation Vi, , Dy, , Q, , and Dy, .
Clearly the longitudinal perturbations with k||Q are the
most dangerous ones. The solutions (17) are long-wave
stable as long as the phase diffusion constant D, is posi-
tive. Thus one has a stable range of wave vectors with
0%?<Q%=(1+bc)/(3+2c*+bc) enclosing the homo-
geneous (Q=0) state as long as the Benjamin-Feir-
Newell criterion, 1+bc>0, holds. This criterion con-
forms with the similarity transform (16). The condition
D, >0 is the (generalized) Eckhaus criterion. For b=c
it reduces to the classical Eckhaus criterion, Q%< Q%
=1/3 for stationary bifurcations. We shall call the quad-
rants in the b,c plane with b¢>0 the “defocusing quad-
rants.” Otherwise we shall speak of the “focusing
quadrants.”

From Egs. (19) and (20) one sees that for b—c¢#0 and
Q #0 the destabilizing modes have a group velocity V,
=VpQ=2(b—c)Q, so the Eckhaus instability is then of
a convective nature and does not necessarily lead to de-
stabilization of the pattern (see the next subsection).

The Eckhaus instability signals bifurcations to quasi-
periodic solutions (including the solitary limit), which
are of the form of Eq. (13) with periodic function B(X
— V). This instability becomes supercritical before the
Benjamin-Feir-Newell criterion is reached (Janiaud
et al., 1992) and remains so in the unstable range. The
bifurcation is captured most easily in the long-wave limit
by phase equations (see below). A general analysis of
the bifurcating solutions has recently been made
(Brusch et al., 2000); see Sec. IIL.C.

It is well known that the Eckhaus instability in the
CGLE is not of the long-wave type in all cases. Clearly,
a necessary condition for this to be the case is that Dy
be positive where D, changes sign.

From the above expressions one deduces that this
condition is not met for |b|>b4(c), where
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by=[2]c|(1-c?)
—V4c*(1—c?)?—
bc>0.

(1=-3cH)(1+5¢2)1/(1-3¢2),
(22)

Thus the range is in the defocusing quadrant, far away
from the Benjamin-Feir-Newell stability limit. We are at
present not aware of effects in which this phenomenon is
of relevance.

E. Absolute versus convective instability of plane waves

For a nonzero group velocity V,=V,Q=2(b—c)Q
the Eckhaus criterion can be taken only as a test for
convective instability. In this case a localized 1D initial
perturbation Sy(x) of the asymptotic plane wave, al-
though amplified in time, drifts away and does not nec-
essarily amplify at a fixed position (Landau and Lifshitz,
1959). For absolute instability localized perturbations
have to amplify at fixed position. The time evolution of a
localized perturbation is in the linear range given by

S(x,t)=f dk/(2m)So(k)explikx+N(k)t],  (23)

where S(k) is the Fourier transform of Sy(x).> The
integral can be deformed into the complex k plane. In
the limit r—o the integral is dominated by the largest
saddle point k, of N(k) (the steepest-descent method,;
see, for example, Morse and Feshbach, 1953), and the
test for absolute instability is

Re[N(ko)]>0 with g\ (ko) = (24)

2It can be strictly shown that the destabilization occurs at first
for purely longitudinal perturbations Q||k.
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FIG. 2. Phase diagram of the 1D CGLE: BFN, Benjamin-Feir-
Newell instability line up to which one has convectively stable
plane-wave solutions; Al, absolute instability line up to which
one has convectively unstable plane-wave solutions; DC,
boundary of existence of DC towards small |c|. The other lines
pertain to standing Nozaki-Bekki hole solutions: CI, core in-
stability line; EH, convective (Eckhaus) instability of the emit-
ted plane waves; AH, absolute instability of the emitted plane
waves; MOH, boundary between monotonic and oscillatory in-
teraction.

The long-wavelength expansion (20) indicates that at the
Eckhaus instability, where D, becomes negative, the sys-
tem remains stable in the above sense. When D, van-
ishes and Q #0 the main contribution comes from the
term linear in k that can then suppress instability.

In the following, results of the analysis are shown in
the b-c¢ plane (Aranson et al., 1992; Weber et al., 1992).
In Fig. 1 the scenario is demonstrated for four cuts in the
b,c,Q space. The stable region (light shading) is limited
by the Eckhaus curve, which terminates at Q=0 on the
curve. To the right of it there exists a convectively un-
stable wave-number band 0<Q,;<|0|<Q,, (dark
shading). Q,; goes to zero on the Benjamin-Feir-Newell
curve as (1+bc)*?, which can be seen from the long-
wavelength expansion (20) with the fourth-order term
included. Moving away from the Benjamin-Feir-Newell
line (into the unstable regime), Q,; increases and Q,,
decreases until they come together in a saddle-node-
type process at a value Q,.. Beyond Q. there are no
convectively unstable plane waves. The saddle nodes
Q.. are shown in the b,c plane in Fig. 2 (curve Al).
Thus convectively unstable waves exist up to this curve.
The Benjamin-Feir-Newell criterion curve, up to which
convectively unstable waves exist, is also included. The
other curves include the Eckhaus instability and the ab-
solute stability limit for waves with wave number se-
lected by the stationary-hole solutions (see Sec. I11.B).

Equation (24) by itself gives only a necessary condi-
tion for absolute stability. However, it is also sufficient,
as long as one of the two roots k;, of the dispersion
relation, which collide at the saddle point when Re[A] is
decreased from positive values to zero (say ki), is the
root that produced the convective instability, and if &k,
does not cross the real k axis before k; does, when
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Re[\] is increased from zero. (Note that k; has to cross
the axis when Re[\] is increased. Note also that, because
of the symmetry \,k=\*,—k* one has parallel pro-
cesses with the opposite sign of Im[A].) For a discussion
of the underlying “pinching condition” see, for example,
Brevdo and Bridges (1996). In the parameter range con-
sidered here the sufficient condition is fulfilled.

Clearly the absolute stability boundary can be reached
only if reflection at the boundaries of the system is suf-
ficiently weak, so in general one should expect the sys-
tem to lose stability before the exact limit is reached. In
many realistic situations in the CGLE the interaction of
the emitted waves with the boundaries leads to sinks
(shocks), analogously to the situation in which different
waves collide. These shocks are strong perturbations of
the plane-wave solutions but they absorb the incoming
perturbations. Thus here, even for periodic boundary
conditions, the absolute stability limit is relevant. More-
over, in infinite systems, states with a cellular structure
made up of sources surrounded by sinks can exist in the
convectively unstable regime. However, the convectively
unstable states are very susceptible to noise, which is
exponentially amplified in space. The amplification rate
goes to zero at the convective stability limit and diverges
at the absolute stability limit.

The concept of absolute stability is relevant in particu-
lar for the waves emitted by sources and possibly also
for some characteristics of spatio-temporally chaotic
states. When boundaries are considered one also has to
allow for a linear group velocity term in the CGLE [see
Eq. (2)]. Such a term does not change the convective
stability threshold, but clearly the absolute stability limit
is altered, and this is important particularly in the con-
text of open-flow systems. The saddle-point condition in
Eq. (24) ensures the existence of bounded solutions of
the linear problem that satisfy nonperiodic boundary
conditions (regardless of their precise form) at well-
separated side walls (sometimes called “global modes”),
because for that purpose one needs to superpose neigh-
boring (extended) eigenmodes, which are available pre-
cisely at the saddle point. This is an alternative view of
the absolute instability (Huerre and Monkowitz, 1990;
Tobias and Knobloch, 1998; Tobias, Proctor, and Knob-
loch, 1998).

Often the condition (24) coincides with the condition
that a front invades the unstable state in the upstream
direction according to the linear front selection criterion
(the marginal stability condition; see, for example, van
Saarloos, 1988).

F. Collisions of plane waves and effect of localized
disturbances

The nonlinear waves discussed above have very differ-
ent properties from linear waves. In particular, when two
waves collide they almost do not interpenetrate. Instead
a “shock” (sink) is formed along a point (1D), line (2D),
or surface (3D). When the frequency of the two waves
differs, the shock moves with the average phase velocity,
provided there are no phase slips in one dimension, or
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its equivalent in higher dimensions (creation of vortex
pairs in two dimension and inflation of vortex loops in
three dimensions); for a review see Bohr ef al. (1998). A
stationary shock is formed most easily when a wave im-
pinges on an absorbing boundary. Here we shall con-
sider the general situation in which a plane wave is per-
turbed by a stationary, localized disturbance. This
concept will be particularly useful in the context of the
interaction of defects.

Sufficiently upstream (i.e., against the group velocity)
from the disturbance the perturbation will be small and
we can linearize around the plane-wave solution. In gen-
eral we obtain exponential behavior with exponents p
=ik calculated from the dispersion relation (19) with A
=0. This gives

p{(1+b%)(40%+p*)p
—2F[(1+bc)p—2(b—c)Q]}=0. (25)

After separating out the translational mode p =0 we are
left with a cubic polynomial. To discuss the roots
P1,P2.p3 choose the group velocity Vg =2(b—c)0=0
(otherwise all signs must be reversed). For V=0 we
have p;=-—p3<0,p,=0 in the Eckhaus stable range.
For V>0 we find that p, increases with increasing | Q.
Before |Q|=1 is reached p, and p; collide and become
complex conjugate.

The existence of roots with a positive real part is an
indication of the screening of disturbances in the up-
stream direction because one needs the solutions that
grow exponentially to match to the disturbance. The
screening length is given by (Re p,) !, the root with the
smaller real part, so the screening is in general exponen-
tial. The length diverges for V,—0 and then one has a
crossover to a power law.

In the focusing quadrants the root collision always oc-
curs before the Eckhaus instability is reached (except in
the part of the defocusing quadrant away from the origin
and restricted to c¢>>b?). We shall refer to the situation
in which p, are real as the monotonic case and other
situations as the oscillatory case, because this character-
izes the nature of the asymptotic interaction of sources
that emit waves (see Secs. III and IV). In Fig. 2 the
transition from monotonic to oscillatory behavior for the
waves emitted by standing hole solutions is also shown
(curve MOH). A generalization to disturbances that
move with velocity v is straightforward by replacing in
Eq. (19) the growth rate X by —vp.

G. Phase equations

The global phase invariance of the CGLE leads to the
fact that, starting from a coherent state (in particular, a
plane wave), one expects solutions in which the free
phase ¢ becomes a slowly varying function, and one can
construct appropriate equations for these solutions. (In
the case of localized structures one then also has to al-
low for a variation of the velocity.) In the mathematical
literature these phase equations are sometimes called
“modulated modulation equations.” There are several
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ways to proceed technically in their derivation, but the
simplest is to first establish the linear part of the equa-
tion by a standard linear analysis and then construct
nonlinearities by separate reasoning. It is helpful to in-
clude symmetry considerations to exclude terms from
the beginning.

By starting from a plane-wave state (17) with wave
number Q in the x direction one may perform a gradient
expansion of ¢ leading in one dimension to

5:¢:Vg||¢9x¢+D2a§¢_9g|3fc¢_D451¢+h-0-t-( )
26

Note the absence of a term proportional to ¢ which
would violate translation invariance. The prefactors of
the gradient terms have to be chosen according to Eq.
(21) in order to reproduce the linear stability properties
of the plane wave (with the wave number Q, replaced
by Q).

Nonlinearity can be included in Eq. (26) by substitut-
ing in the coefficients of Eq. (21) Q— Q +d,¢. Expand-
ing V,(Q) and D, (Q) one generates the leading non-
linear terms, so that Eq. (26) becomes (Janiaud et al.,
1992)

(9~ Vgllﬂx)fﬁzD2|\3§¢—D4\\5i¢_g1((9x¢)2
- quai(ﬁ_gz&x(ﬁ&id)"' h.o.t. (27)

with the linear parameters from Eq. (21) and
1
81— — E&QVgH=(b —C),

4Q¢(1+c?)

1-0;
Because of translation invariance the lowest relevant
nonlinearities are (d,¢)? and d,¢3d>¢ (Kuramoto, 1984).

In the stationary case (c=b) one has Vg, =Q,=g;
=0. The remaining nonlinearity &Xg{)aigb does not satu-
rate the linear instability and one recovers the results for
the nonlinear Eckhaus instability (Kramer and Zimmer-
mann, 1985). For b#c¢ and Q=0 the dominant nonlin-
earity is (d,¢)%, which does saturate the linear instabil-
ity. The resulting equation with Q4 =g,=0,

dip— Dy Trp+ Dy dydp+g1(3,$)>=0, (29)

describes the (supercritical) bifurcation at the Benjamin-
Feir-Newell instability and is known as the Kuramoto-
Sivashinsky equation. It has stationary periodic solu-
tions, which are stable in a small wave-number range
0.77po<p<0.837p,, where po=+D,/D, (Frisch et al.,
1986; Nepomnyashchii, 1995b). It also has spatio-
temporally chaotic solutions, which are actually the rel-
evant attractors, and it may represent the simplest par-
tial differential equation displaying this phenomenon.
Since it is a rather general equation for long-wavelength
instabilities, independent of the present context of the
CGLE, it has attracted much attention in recent years
(see, for example, Bohr et al., 1998).

In the general case Q#0 both nonlinearities are im-
portant (as is the term proportional to (). The bifur-

§2=—dgDy = (28)
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cation to modulated waves, which are represented by
periodic solutions of Eq. (26), can then be either for-
ward or backward depending on the values of b,c. In
fact, the Eckhaus bifurcation always becomes supercriti-
cal before the Benjamin-Feir-Newell instability is
reached. Modulated solutions can be found analytically
in the limit D,,—0, where Eq. (26) reduces to

9ip—V g3, b+ i+ (3, ¢)*+ O (€)=0, (30)

with e=D4D,/|Q,|<1. This limit is complementary to
that leading to the Kuramoto-Sivashinsky equation and
one is in fact left with a perturbed Korteweg—de Vries
equation. This equation is (in one dimension) com-
pletely integrable. The perturbed case was studied by
Janiaud et al. (1992) and by Bar and Nepomnyashchii
(1995). They showed that a fairly broad band of the pe-
riodic solutions (much larger than in the Kuramoto-
Sivashinsky equation) perpetuate the perturbation of
the Korteweg—de Vries equation and is stable. Outside
this limit, and in particular in the Kuramoto-Sivashinsky
equation regime, one has in extended systems spatio-
temporally chaotic solutions. It is believed that this cha-
otic state is a representation of the phase chaos observed
in the CGLE, although this view has been challenged
(see Sec. III.D). Sakaguchi (1992) introduced higher-
order nonlinearities into the Kuramoto-Sivashinsky
equation, which allowed him to capture the analog of
the transition (or crossover) to amplitude chaos mani-
festing itself by finite-time singularities in d, ¢.

Under some conditions, namely, when D, is positive
and Q is small, the first nonlinearity in Eq. (27) is domi-
nant and reduces to the Burgers equation,

9ip— Dy dr+81(9,¢)*=0, (31)

which is completely integrable within the space of func-
tions that do not cross zero, because it can be linearized
by a Hopf-Cole transformation ¢=(D,;/g;)In W. The
equation allows one to describe analytically sink solu-
tions, or shocks (see, for example, Kuramoto and Tsu-
zuki, 1976; Malomed, 1983), and is (in two dimensions)
useful for the qualitative understanding of the interac-
tion of spiral waves in the limit b,c—0 (see Biktashev,
1989; Aranson et al., 1991a, 1991b).

Clearly generalization of the phase equations to
higher dimensions is possible. Using the full form of Eq.
(21) one can easily generalize the phase equation to two
dimensions (for details see Kuramoto, 1984; Lega, 1991).
The equation is most useful in the range where D, goes
through zero and becomes negative. Generalizations can
also be derived outside the range of applicability of the
CGLE (far from threshold) and for more general non-
linear long-wavelength phenomena, where ¢ does not
represent the phase of a periodic function (see, for ex-
ample, Bar and Nepomnyashchii, 1995).

H. Topological defects
Zeros of the complex field A result in singularity of

the phase #=arg A. In two dimensions, point singulari-
ties correspond to quantized vortices with topological
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charge n=1/(27)$;Vodl, where L is a contour encir-
cling the zero of A. Although for b+#c they represent
wave-emitting spirals, they are analogous to vortices in
superconductors and superfluids and represent topologi-
cal defects because a small variation of the field will not
eliminate the phase circulation condition. Clearly, vorti-
ces with topological charge n=*1 are topologically
stable. The vortices with multiple topological charge can
be split into single-charged vortices.> Two-dimensional
point defects become line defects in three dimensions.
One can then close such a line to a loop, which can
shrink to zero. Some definitions of topological defects
from the point of view of energy versus topology are
given by Pismen (1999).

Topological arguments do not guarantee the existence
of a stable, coherent solution of the field equations. In
particular, the stability of the topological defect depends
on the background state in which it is embedded. For
example, spiral waves are stable in a certain parameter
range, where they select the background state (see Sec.
IV). Simultaneously charged sinks coexist with spirals
and play a passive role. Defects can also become un-
stable against the spontaneous acceleration of their
cores.

|. Effects of boundaries

Boundaries may play an important role in nonequilib-
rium systems. Even in large systems the boundary may
provide restriction or even selection of the wave num-
ber. We shall not discuss this topic (see, Cross and Ho-
henberg, 1993) and shall consider situations in which
such effects are not important.

lll. DYNAMICS IN ONE DIMENSION

In this section we shall consider the properties of vari-
ous 1D solutions of the CGLE. We shall discuss the sta-
bility and interaction of coherent structures and the
transition to and characterization of spatio-temporal
chaos.

A. Classification of coherent structures, counting
arguments

The coherent structures introduced in the previous
section can be characterized using simple counting argu-
ments put forward by van Saarloos and Hohenberg
(1992). It should be mentioned, however, that the count-
ing arguments cannot account for all circumstances (for
example, hidden symmetries) and may fail for certain
class of solutions (see below). One-dimensional coher-
ent structures can be written in the form

A(x,t)y=e o ieE—vg(x —py), (32)

3In small samples vortices with multiple charge can be dy-
namically stable; for details see Geim et al. (1998) and Deo
et al. (1997).
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with the real functions ¢,a satisfying a set of three ordi-
nary differential equations:

a,=s;

sc=¢?a—y {(1+bwy)a+v(s+bya)

—(1+bc)a’];
yo=—2spla+y [b—w,+v(sbla— i)
—(b—c)a?]. (33)
Here y=1+b?% a,=daldxf, s,=ds/dx, and ¢

=d¢/dx. These ordinary differential equations consti-
tute a dynamical system with three degrees of freedom.

The similarity transform of Sec. II.C can be adapted
to these equations by absorbing the external wave num-
ber in the phase ¢, which leads to w,=w—Quv, w,
=w'—Q'v’', and

, , 2’)/’ 1b-b'

w,=b"+p 7 wk—b-f—z v,

, 1b-b' 34
v=p -3 0. (34)

The other relations (14)—(16) remain.

The counting arguments allow one to establish neces-
sary conditions for the existence of localized coherent
structures, which correspond to homoclinic or hetero-
clinic orbits of Eqgs. (33). Consider, for example, the tra-
jectory of Egs. (33) flowing from fixed point N to fixed
point L. If N has nj, unstable directions, there are ny
—1 free parameters characterizing the flow on the
ny-dimensional subspace spanned by the unstable
eigenvectors. Together with the parameters w;, and v
this will yield ny+1 free parameters. If L has n; un-
stable directions, the requirement that the trajectory
come in orthogonal to these yields n; conditions. The
multiplicity of this type of trajectory will therefore be
n=ny—n;+1 and, depending on n, it will give either
an n-parameter family (n=1), a discrete set of struc-
tures (n=0), or no structure (n<<0). In addition, one
may have symmetry arguments that reduce the number
of conditions.

The asymptotic states can correspond either to non-
zero steady states (plane waves) or to the trivial state
a=0. Accordingly, the localized coherent structures can
be classified as pulses, fronts, domain boundaries, and
homoclons. A pulse corresponds to the homoclinic orbit
connecting to the trivial state a=0. Pulses come in dis-
crete sets (van Saarloos and Hohenberg, 1992). For a
full description of pulses see Akhmediev et al. (1995,
1996, 2001) and Afanasjev et al. (1996). Fronts are het-
eroclinic orbits connecting on one side to a plane-wave
state and on the other side to the unstable trivial state.
They come in a continuous family, but sufficiently rap-
idly decaying initial conditions evolve into a “selected”
front that moves at velocity v* =21+ b and generates
a plane wave with wave number Q* =b/\/1+b? (“linear
selection”). For a discussion, see van Saarloos and Ho-
henberg (1992) and Cross and Hohenberg (1993).
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Domain boundaries are heteroclinic orbits connecting
two different plane-wave states. The domain boundaries
can be active (sources, often called holes) or passive
(sinks or shocks), depending on whether in the comov-
ing frame the group velocity is directed outward or in-
ward, respectively. They will be discussed in the next
subsection. Homoclons (or homoclinic holes, phasons)
connect to the same plane-wave state on both sides.
They are embedded in solutions representing periodic
arrangements of homoclons, which represent quasiperi-
odic solutions satisfying ansatz (32) and correspond to
the closed orbits of Egs. (33). They will be discussed in
Sec. III.C.2. There are also chaotic solutions of Egs.
(33), which correspond to nonperiodic arrangement of
holes and shocks, or homoclons (see Secs. II1.B.2 and
III.C.2).

B. Sinks and sources, Nozaki-Bekki hole solutions

Sinks (shocks) conform with the counting arguments
of van Saarloos and Hohenberg (1992): there is a two-
parameter family of sinks. However, there are no exact
analytic expressions for the sink solution connecting two
traveling waves with arbitrary wave numbers. The exact
sink solution found by Nozaki and Bekki (1984) corre-
sponds to a special choice of wave numbers and is there-
fore not typical. For slightly different wave numbers a
phase description of sinks is possible (Kuramoto, 1984).

However, the counting arguments (which are, strictly
speaking, neither necessary nor sufficient and cannot ac-
count for specific circumstances, such as a hidden sym-
metry) fail for the source solution. According to the
counting arguments there should be only a discrete
number, including in particular the symmetric standing-
hole solution that has a zero at the center and emits
plane waves of a definite wave number (for given b,c).
However, the standing hole is embedded in a continuous
family of analytic moving sources, the Nozaki-Bekki
hole solutions. They are characterized by a localized dip
in |A| that moves with constant speed v and emits plane
waves with wave numbers q{# ¢ .

This is a special feature of the cubic CGLE, as dem-
onstrated by the discovery that the moving holes do not
survive a generic perturbation of the CGLE, e.g., a small
quintic term (see below). Thus they are not structurally
stable (Popp etal., 1993, 1995; Stiller et al., 1995a,
1995b). With a perturbation the holes either accelerate
or decelerate depending on the sign of the perturbation,
and other solutions appear (see also Doelman, 1995).
Clearly, the 1D CGLE possesses a “hidden symmetry”
and has retained some remnant of integrability from the
nonlinear Schrodinger equation. Apparently this nonge-
nericity has no consequences for other coherent
structures.

The Nozaki-Bekki hole solutions are of the form
(Nozaki and Bekki, 1984)

AYP=[Bage, (kD) + Avlexplio,(k0)+ido—i0i]. (35)

where
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¢, (k{)=R"'Incosh(k{)

and {=x—wvt, v is the velocity of the hole, and g4/, are
the asymptotic wave numbers. Symbols with a “hat” de-
note real constants depending only on b and c, for ex-
ample, @=1/2(b—c). The frequency Q and «? are linear
functions of v?. The emitted plane waves have wave
numbers

qip=*tpta, (36)

where B=«/k and a=vda. One easily derives the
relation

v=[w(q2)—w(q1))/(q2—q1), (37)

where w(q) is the dispersion relation for the plane
waves. This relation can be interpreted as phase conser-
vation and is also valid for more general equations pos-
sessing phase invariance. For the cubic CGLE it reduces
tov=(b—c)(q;+q,), ie., the hole moves simply with
the mean of the group velocities of the asymptotic plane
waves. The exact relations between the parameters can
be derived by inserting ansatz (35) into the CGLE. The
resulting algebraic equations (eight equations for eight
parameters) turn out not to be independent, yielding a
one-parameter family. x> becomes zero at a maximal ve-
locity *v,,,,, and here the hole solution merges with a
plane wave with wave number q;=¢,=v./2(b—c).
In a large part of the b,c plane these bifurcations occur
in the range of stable plane waves. This is the case out-
side a strip around the line b=c given by |b —c|> & with
& varying from 1/2 for large values of |b|,|c| to 0.55 for
small values. The region extends almost to the
Benjamin-Feir-Newell curves. The bifurcation cannot be
captured by linear perturbation around a plane wave,
since the asymptotic wave numbers of holes differ. Pre-
sumably the bifurcation can be captured by the phase
equation (27). For b—c only the standing hole survives
(the velocities of the moving holes diverge in this limit).

The interest in the hole solutions comes particularly
from the fact that they are dynamically stable in some
range. The stability was first investigated by Sakaguchi
(1991a) in direct simulations of the CGLE. The stability
problem was then studied by Chaté and Manneville
(1992) numerically for v=0,0=0.2, by Sasa and Iwa-
moto (1992) semianalytically for v =0, and by Popp et al.
(1995), essentially analytically. As a result, hole solutions
were found to be stable in a narrow region of the b-c
plane, which is shown in Fig. 2 for the standing hole (v
=0) (upper shaded region). From below, the region is
bounded by the border of (absolute) stability of the
emitted plane waves with wave number ¢(b,c) [see Eq.
(35)] corresponding to the continuous spectrum of the
linearized problem (see curve AH in Fig. 2.) From the
other side, the stable range is bounded by the instability
of the core with respect to localized eigenmodes corre-
sponding to a discrete spectrum of £, (see curve CI in
Fig. 2). For c—o, one has
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3
b2C,—>Zc+O(\/E) for b>0, (38)

1
brr———+0(1l/lc) for b<O.
I v (1/c)

The result could be reproduced fully analytically by per-
turbing around the nonlinear Schrodinger equation
limit, where the Nozaki-Bekki holes emerge as a sub-
class of the three-parameter family of dark solitons; it is
supported by detailed numerical simulations and shows
excellent agreement (Stiller, Popp, and Kramer, 1995). It
differs from that obtained by Lega and Fauve (1997) and
by Kapitula and Rubin (2000), Lega and Fauve (1997),
and Lega (2001) who claim a larger stability domain in
disagreement with simulations (Stiller, Popp, and
Kramer, 1995).

The core instability turns out to be connected with a
stationary bifurcation where the destabilizing mode
passes through the neutral mode related to translations
of the hole. This degeneracy is specific to the cubic
CGLE and is thus structurally unstable (see below).
When going through the stability limit, the standing hole
transforms into a moving one. Indeed, the cores of mov-
ing holes were found to be more stable than those of
standing ones (Chaté and Manneville, 1992).

1. Destruction of Nozaki-Bekki holes by small perturbations
Consider the following perturbed cubic CGLE:
aA=[1+(1+ib)s*—(1+ic)|A|*+d|A|*]A, (39)

where a quintic term with a small complex prefactor d
=d’'+id" (|d|<1) is included, which will be treated as a
perturbation. There are, of course, other corrections to
the cubic CGLE, but their perturbative effect is ex-
pected to be similar.

Simulations with small but finite d show that stable,
moving holes are in general either accelerated and even-
tually destroyed or slowed down and stopped to the
standing-hole solution, depending on the phase of d
(Popp et al,, 1993, 1995; Stiller, Popp, Aranson, and
Kramer, 1995; Stiller, Popp, and Kramer, 1995). In par-
ticular, for real d=d’ one has
Jv

> ,>
_0ed' 0. (40)

One finds that the relations (37) connecting the core
velocity and the emitted wave numbers are (almost) sat-
isfied at each instant during the acceleration process.
The acceleration thus occurs approximately along the
Nozaki-Bekki hole family, and it can be described by
taking v=v(t) as a slowly varying variable while other
degrees of freedom follow adiabatically. The semiana-
lytic matching-perturbation approach gives the reduced
acceleration, which agrees with the simulations (see Fig.
3).

Of special interest is the case in which the core-
stability line is crossed while d #0 (which corresponds to
the typical situation with higher-order corrections to the
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FIG. 3. Acceleration instability in the perturbed (cubic)
CGLE: Solid line, the reduced acceleration d,v/v from theory
[Eq. (43)]; W, simulations for b=0.5, c=2.0, |d|=0.002, and
varying phase arg(d). From Stiller, Popp, and Kramer (1995)
and Stiller, Popp, et al. (1995).

CGLE). Then the two modes that cause the acceleration
instability and the core instability (which is stationary
for d=0) are coupled, which in the decelerating case
leads to a Hopf bifurcation. As a result, slightly above
the (supercritical) bifurcation, one has solutions with os-
cillating hole cores (Popp et al. 1993); see Fig. 4(d). The
normal form for this bifurcation—valid for small

|d|,v,u—is
i=(\—sv?)u+dv, (41)
U= putdoyu, (42)

which is easy to analyze. Here u and v are the ampli-
tudes of the core-instability and acceleration-instability

T -0.4
v
(@) v
-0.10¢} 1
-0.6 :
—0.20 ]
(b)
-0.30 v —0.8
0 3000 t 6000 9700 t 10000
0.0
v d
v (c) (@
0.20
-0.5
0.00
-1.0 -0.20
9500 t 10000 4000 t 5000

FIG. 4. Simulations showing the velocity of the hole center v
=v(t) of interacting hole-shock pairs (periodic boundary con-
ditions). In (a), (b), and (c) the CGLE parameters were b
=05, ¢=2.3, d'=+0.0025 (i.e., far away from the core insta-
bility line): (a) relaxation into a constantly moving solution for
period P=48.4; (b) selected final state with (almost) harmonic
oscillating velocity for period P=37.0; (c) selected final state
with anharmonic oscillating velocity for period P=40.0; (d)
CGLE parameters b=0.21,c=1.3,d"'=—0.005 (near the core-
instability line), d”=0; state with oscillating velocity (including
change of direction) for period P =50.
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FIG. 5. Snapshot of the modulus |A|=]A(x)| of a stable uni-
formly moving hole-shock pair in a simulation for b=0.5,c
=2.3,d'=+0.0025. The solution is space periodic with period
P=484.

modes, respectively. s and u are of order d° while d,
must be of order d!, since in the absence of a perturba-
tion holes with nonzero velocity exist. A can be identified
with the growth rate of the core-instability mode at d
=0. The nonlinear term in Eq. (41) takes care of the fact
that moving holes are more stable than standing ones
and at the same time saturates the instability (s>0).

Far away from the core-instability threshold where \
is strongly negative, u can be eliminated adiabatically
from Egs. (41), which for v—0 yield

The term in parentheses can be identified with the
growth rate of the acceleration instability. The param-
eters of Eq. (43) were calculated fully analytically by
Stiller, Popp, and Kramer (1995) for b,c—, bc>0.

2. Arrangements of holes and shocks

When there is more than one hole they have to be
separated by shocks. The problem of several holes is
analogous to that of interacting conservative particles,
which is difficult to handle numerically. The solutions
resulting from a periodic arrangement of holes and
shocks are actually special cases of the quasiperiodic
solutions—“homoclons” in the limit of large
periodicity—to be discussed in the next subsection. In
the situation discussed here the solutions depend sensi-
tively on perturbations of the CGLE.

Such states are frequently observed in simulations
with periodic boundary conditions [see, for example,
Chaté and Manneville (1992); Popp et al. (1993); Stiller,
Popp, Aranson, and Kramer (1995); Stiller, Popp, and
Kramer (1995)]. Figure 5 shows the modulus |A]|
=|A(x)| of a typical solution found in a simulation.* As
shown in Fig. 4, one finds uniform as well as (almost)

*For d=0 one expects to observe conservative dynamics for
holes and shocks, similar to interacting particles for zero fric-
tion.
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harmonic and strongly anharmonic oscillating hole ve-
locities. Slightly beyond the core instability line the di-
rection of the velocity is changed in the oscillations [see
Fig. 4(d)]. The solutions are seen to be very sensitive to
d perturbations of the cubic CGLE.

The uniformly moving solutions can be well under-
stood from the results of the last subsections. First, they
are not expected to exist (and we indeed could not ob-
serve them in simulations) in the range of monotonic
interaction, below curve MOH in Fig. 2.3 since here the
asymptotic hole-shock interaction is always attractive. In
the oscillatory range, and away from the core instability
line, uniformly moving periodically modulated solutions
can then be identified as fixed points of a first-order or-
dinary differential equation for the hole velocity v,
which can be derived by the matching-perturbation
method (Popp et al., 1995). In addition, solutions with
oscillating hole velocities were found coexisting (stably)
with uniformly moving solutions [see Figs. 4(b) and (c)].
They can (in a first approximation) be identified as
stable limit cycles of a two-dimensional dynamical sys-
tem with the hole velocity v and the hole-shock distance
L as active variables. These oscillations are of a differ-
ent nature than those found slightly beyond the core
instability line [Fig. 4(d); see above].

By an analysis of the perturbed equations (33) Doel-
man (1995) has shown that the quintic perturbations cre-
ate large families of traveling localized structures that do
not exist in the cubic case.

3. Connection with experiments

Transient hole-type solutions were observed experi-
mentally by Lega et al. (1992) and Flesselles et al. (1994)
in the (secondary) oscillatory instability in Rayleigh-
Bénard convection in an annular geometry. Here one is
in a parameter range where holes are unstable in the
cubic CGLE, so that small perturbations are irrelevant.
Long-time stable stationary holes (“1D spirals”) were
observed by Perraud et al. (1993) in a quasi-1D chemical
reaction system (the CIMA reaction) undergoing a Hopf
bifurcation. The experiments were performed in the vi-
cinity of the crossover (codimension-2 point) from the
spatially homogeneous Hopf bifurcation to the spatially
periodic, stationary Turing instability. Simulations of a
reaction-diffusion system (Brusselator) with appropri-
ately chosen parameters exhibited the hole solutions
(and in addition more complicated localized solutions
with the Turing pattern appearing in the core region).
Strong experimental evidence for Nozaki-Bekki holes in
hydrothermal nonlinear waves is given by Burguette
et al. (1999).

Finally we mention experiments by Leweke and Prov-
ensal (1994), where the CGLE is used to describe results
of open-flow experiments on the transitions in the wake
of a bluff body in an annular geometry. Here the sensi-

SThe boundary between monotonic and oscillatory interac-
tion depends on the hole velocity (see Sec. IL.F).
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tive parameter range is reached and in the observed
amplitude-turbulent state holes should play an impor-
tant role.

C. Other coherent structures

Coherent states (32) with periodic functions a and
=d ¢/dx (same period) have been of particular interest.
In general, when the spatial average of  is nonzero, the
complex amplitude A is quasiperiodic, i.e., A can be
written in the form of Eq. (12) with B a periodic func-
tion of {=x—uvt. The associated wave number p will be
called the “inner wave number,” in contrast to the outer
wave number Q, which is equal to the spatial average of
. These quasiperiodic solutions bifurcate from the trav-
eling waves (17) in the Eckhaus unstable range Q%
<Q?<1 at the neutrally stable positions obtained from
Eq. (19) with ReA=0 and k replaced by p(|p|<2). In
fact, the long-wave Eckhaus instability is signaled in par-
ticular by bifurcations of the solitary (or homoclinic)
limit solution p—0. In this limit the velocity v is at the
bifurcation equal to the group velocity V,, [see Eq. (21)].

Well away from the Benjamin-Feir-Newell instability
(on the stable side) the bifurcation is subcritical (as for
the GLE). However, it becomes supercritical before the
Benjamin-Feir-Newell line is reached (Janiaud et al.,
1992) and remains so in the unstable range. The bifurca-
tion is captured analytically most easily in the long-wave
limit by phase equations (see Sec. I1.G). The supercriti-
cal nature of the bifurcation allows one to understand
the existence of “phase chaos” that is found when the
Benjamin-Feir-Newell line is crossed (see below).

1. The Ginzburg-Landau equation and nonlinear Schrodinger
equation

For the GLE a full local and global bifurcation analy-
sis is possible, and the quasiperiodic solutions can be
expressed in terms of elliptic functions (Kramer and
Zimmermann, 1985; Tuckerman and Barkley, 1990). In-
deed, for b=c=0 Egs. (33) lead to the second-order
system

1 1

a.,=d,U where U= 7 —a’+ §a4—h2/a2 , (44)
with 1 =a?i an integration constant. This allows one to
invoke the mechanical analog of a point particle (posi-
tion a, time x) moving in the potential —U(a). One
sees that for |h|<hp=\4/27~0.385 the potential —U
has extrema at a,, with a%,zx/l—azlvzzh corresponding
to the plane-wave solutions (17) with Fj,=a;,,/01,)|
=41 —azl’z. The maximum corresponds to |Q|<Qpg
:=1/V3. Tt is stable since it corresponds to a minimum of
V. The solution |Q,|>Qp is unstable. In this way the
Eckhaus instability is recovered. The bifurcations of the
quasiperiodic solutions are subcritical and the solutions
are all unstable. They represent the saddle points sepa-
rating (stable) periodic solutions of different wave num-
ber and thus characterize the barriers against
wavelength-changing processes involving phase slips.
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FIG. 6. Quasiperiodic solutions: (a) Example of the bifurca-
tion diagram of the quasiperiodic solutions for ¢=-2.0,p
=2m/50 (see text). The inset illustrates the drift pitchfork bi-
furcation (v=0 branch not shown beyond bifurcation). (b)
Quasiperiodic solution profiles: @, at lower branch; O, at up-
per branch; A, at the saddle node (SN); HB, Hopf bifurcation;

DP, drift pitchfork bifurcation. From Brusch et al. (2000).

As was mentioned in Sec. II, all stationary solutions
and their stability properties of the 1D (defocusing)
nonlinear Schrodinger equation coincide with those of
the GLE. In addition, the nonlinear Schrodinger equa-
tion has more classes of coherent structures due to the
additional Galilean and scaling invariance absent in
GLE. We shall not pursue this question since the 1D
nonlinear Schrodinger equation is a fully integrable sys-
tem (Zakharov and Shabat, 1971) that has been studied
in great detail (see, for example, Proceedings of the
Conference on the Nonlinear Schrodinger Equation,
1994).

2. The complex Ginzburg-Landau equation

For the CGLE an analysis of the local bifurcation was
first carried out in the limit of small p using the phase
equation (27) (Janiaud ef al., 1992) and subsequently for
arbitrary p (Hager, 1996). These analyses showed that
the Eckhaus instability becomes supercritical slightly be-
fore the Benjamin-Feir-Newell curve is reached. The bi-
furcation has in the long-wave limit a rather intricate
structure, since the limits p—0 and Q— Qf do not in-
terchange (this can already be seen in the GLE). When
taking first the solitonic limit p—0 (while Q> Q) one
finds that the Eckhaus instability becomes supercritical
slightly later than in the other (“standard”) case, which
corresponds to harmonic bifurcating solutions. These
features are captured nicely by the phase equation de-
scription.

Recently Brusch et al. (2000, 2001) carried out a sys-
tematic numerical bifurcation analysis based on Egs.
(33) for the case Q =0, where A is periodic (neverthe-
less we shall usually refer to these solutions as quasip-
eriodic solutions). It shows that the supercritically bifur-
cating quasiperiodic branch (the shallow quasiperiodic
solution) terminates in a saddle-node bifurcation and
merges there with an “upper” branch (the deep quasip-
eriodic solution); see Fig. 6. For p#0 the bifurcating so-
lution has velocity v =0 [in Egs. (33) the bifurcation is of
the Hopf type]. It is followed by a drift-pitchfork bifur-
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cation generating a nonzero velocity. The separation be-
tween the two bifurcations tends to zero for vanishing p,
so that the solitary solutions develop a drift from the
beginning on (at second order in the amplitude).® These
features can be reproduced by the Kuramoto-
Sivashinsky equation, which exhibits only the shallow
homoclons. By adding higher-order (nonlinear) terms
(Sakaguchi, 1990) one can generate the other branch.
Brusch et al. (2000) give evidence that the existence of
the two branches provides a mechanism for the stabili-
zation of phase chaos (see below).

Deep quasiperiodic solutions (in the solitary limit)
were first studied by van Hecke (1998) and then by van
Hecke and Howard (2001) in the context of spatio-
temporal chaos in the intermittent regime (see the next
subsection). Following this author we have adopted the
name “homoclons” for the localized objects.

The stability properties of quasiperiodic solutions
were also analyzed by Brusch eral (2000). Both
branches of quasiperiodic solutions have neutral modes
corresponding to translation and phase symmetries. The
eigenvalue associated with the saddle-node bifurcation
is positive for deep homoclons and negative for shallow
ones. Apart from these three purely real eigenvalues,
the spectrum consists of complex-conjugate pairs.

For a not too small wave number p all the eigenvalues
of the shallow branch are stable within a system of
length L=2m/p, but when L increases, the quasiperi-
odic solutions may become unstable with respect to
finite-wavelength instabilities (near the bifurcation they
certainly do).

Shallow quasiperiodic solutions can be observed in
simulations of the CGLE (away from the bifurcation
from the plane waves), in particular for Q #0 (Janiaud
et al., 1992; Montagne et al., 1996, 1997; Torcini, 1996;
Torcini, Frauenkron, and Grassberger, 1997).

More complex coherent structures, corresponding to
nonperiodic arrangements of shallow homoclons, were
also found numerically, reflecting the oscillatory nature
of interaction between shallow homoclons for a certain
rouge of parameters. This is suggested by the fact that in
the supercritical regime the spatial exponents intro-
duced in Sec. ILF are complex. Clearly chaotic solutions
may be expected to exist in Egs. (33).

Recently, quasiperiodic solutions have been observed
experimentally in the form of modulations of spiral
waves excited by core meandering (see Secs. IV.B.2 and
IV.H.2) in an oscillatory reaction-diffusion system by
Zhou and Ouyang (2000).

D. Spatio-temporal chaos

1. Phase chaos and the transition to defect chaos

When crossing the Benjamin-Feir-Newell line with
initial conditions A~1 (actually any nonzero, spatially

For Q#0 there is already drift after the first bifurcation, so
the drift pitchfork gets unfolded (Brusch, private communica-
tion).
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constant A is equivalent), one first encounters phase
chaos, which persists approximately in the lower dashed
region between Benjamin-Feir-Newell and absolute in-
stability curves in Fig. 2. In this spatio-temporally cha-
otic state |A| remains saturated (typically above about
0.7-0.9), so there is long-range phase coherence and the
global phase difference (here equal to 0) is conserved.
In this parameter range one also has stable, periodic so-
lutions, but they obviously have a small domain of at-
traction which is not reached by typical initial condi-
tions. Beyond this range phase slips occur and a state
with a nonzero (average) rate of phase slips is estab-
lished (defect or amplitude chaos). Since in phase chaos
only the phase is dynamically active it can be described
by phase equations [in the case of zero global phase the
Kuramoto-Sivashinsky equation, otherwise Eq. (27)].

In the CGLE, phase chaos and the transition to defect
chaos (see below) were first studied by Sakaguchi (1990)
and subsequently systematically in a large parameter
range by Shraiman et al. (1992) and, for selected param-
eters and in particular very large systems by Egolf and
Greenside (1995). One of the interests driving these
studies was the question of whether in phase chaos the
rate of phase slips is really zero, so it could represent a
separate phase (in the thermodynamic sense), or
whether the rate is only very small. The recent studies
by Brusch et al. (2000) on the quasiperiodic solutions
with small modulation wave number p (see Sec. I11.C.2)
point to a mechanism that prevents phase slips in a well-
defined parameter range.

In fact, phase chaos “lives” on a function space
spanned by the forwardly bifurcating branches of the
quasiperiodic solutions. Thus snapshots of phase chaos
can be characterized (roughly) as a disordered array of
shallow homoclons (or disordered quasiperiodic solu-
tions); see Fig. 7. The dynamics can be described in
terms of birth and death processes of homoclonal units.
When these branches are terminated by the saddle-node
bifurcation, phase-slip processes are bound to occur.
Brusch et al. (2000) have substantiated this concept by
extensive numerical tests with system sizes ranging from
L=100 to L=5000 and integration times up to 5x10°.
For a given L (not too small) phase slips occurred only
past the saddle node for the quasiperiodic solutions with
inner wave number p =2/L. Tracking of (rare) phase-
slip events corroborated the picture. Thus the authors
conjectured that the saddle-node line for p—0 provides
a strict lower boundary for the transition from phase to
defect chaos.

One expects the existence of a continuous family of
phase chaos with different background wave numbers
Q. For Q+#0 the state should arise when crossing the
Eckhaus boundary for the plane wave with wave num-
ber Q, before the Benjamin-Feir-Newell limit. Such
states were studied by Montagne et al. (1996, 1997), Tor-
cini (1996), and Torcini et al. (1997). It was found that
the parameter range exhibiting phase chaos decreases
with increasing Q. Thus at fixed parameters b,c one has
a band of phase-chaotic states that is bounded from
above by some Q.«(b,c). Approaching the limit of
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FIG. 7. Phase turbulence observed for b=—1 and ¢=1.333.
Upper figure is a spatio-temporal plot of A; lower figure shows
snapshot |A|. From Chaté (1994).

phase chaos, Q. decreases smoothly to zero, i.e., the
phase-chaotic state with O =0 is the last to lose stability,
similar to the situation for the plane waves. As men-
tioned before, for not too small Q, one finds coexistence
with quasiperiodic solutions and spatially disordered co-
herent states.

2. Defect chaos

The transition (or crossover) between phase and de-
fect chaos is reversible only for |b| larger than about 1.9
(near the lower edge of Fig. 2; Shraiman et al., 1992).
There, when approaching the transition from the side of
defect chaos, the phase-slip rate goes smoothly to zero.
On the other hand, for |b|<1.9, there is a region where
phase and defect chaos coexist (“bichaos,” the lower
dashed region to the right of the line DC), and in fact
defect chaos even persists into the Benjamin-Feir-
Newell stable range (the limit towards small ¢ is ap-
proximated by the dashed line DC in Fig. 2; Shraiman
et al., 1992; Chaté, 1994, 1995). There the defect chaos
takes on the form of spatio-temporal intermittency.

A qualitative understanding of the parameter region
where one has bistable defect chaos can be obtained as
follows: In this region, starting from the (saturated) state
with |A|~1 and forcing a large excursion of |A| leading
to a phase slip makes it easier for other phase slips to
follow. This memory effect is suppressed with increasing
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FIG. 8. Space-time plots (over a range of 60X 50) of | A| (black
corresponds to |A|=0) showing chaotic states in the spatio-
temporal intermittent regime, for coefficients (b,c)
=(0.6,—1.4). From van Hecke (1998).

|b|, as can be seen from the increase of the velocity v*
=21+b? with |b| of fronts that tend to restore a satu-
rated state (see Sec. IILLA).

From above (towards small values of |b|) the chaotic
state joins up with the region of stable Nozaki-Bekki
holes. The characteristics of these holes are influenced
by small perturbations of the CGLE, and this in turn
affects the precise boundary of spatio-temporal chaos
(see Sec. I11.D.4).

3. The intermittency regime

This regime, in which defect chaos coexists with stable
plane waves, has been studied numerically in detail by
Chaté (1994, 1995), and he has pointed out the relation
with spatio-temporal intermittency. There, typical states
consist of patches of plane waves, separated by various
localized structures characterized by a depression of |A].
The localized structures can apparently be divided into
two groups depending on the wave numbers ¢; and ¢, of
the asymptotic waves they connect. On the one hand,
one has slowly moving structures that can be related to
Nozaki-Bekki holes, which in this regime either are core
stable or have long lifetimes. They become typical as the
range of stable Nozaki-Bekki holes is approached
(Chaté, 1994, 1995).

However, on the other hand, the dominant local struc-
tures have velocities and asymptotic wave numbers over
a larger range that are incompatible with the Nozaki-
Bekki holes and that, according to van Hecke (1998),
must be associated with the deep homoclons. Space-time
plots of the amplitude |A|, the phase [arg(A)], and the
local wave number ¢q:=d, arg(A) in such a regime are
shown in Fig. 8 [the plot is a close-up view of a larger
simulation as shown in Fig. 9(b)]. The wave numbers of
the laminar patches are quite close to zero, while the
cores of the local structures are characterized by a sharp
phase gradient (peak in g) and dip of |A|. The holes
propagate with a speed of 0.95=0.1 and either their
phase gradient spreads out and the hole decays, or the
phase gradient steepens and the hole evolves to a phase
slip. The phase slip then sends out one or two new lo-
calized objects which repeat the process. van Hecke
(1998) provides evidence that the dynamics is continu-
ally evolving around the one-dimensional unstable
manifold of homoclons with background wave number
near zero. They provide the saddle points that separate
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FIG. 9. Space-time plots (over a range of 512x1000) of |A]
showing (a) zigzagging holes near the transition to plane waves
for b=-0.6,c=1.2; (b) evolution of a homoclons in a back-
ground state with wave number 0.05 for b=-0.6,c=1.4,
spaceXtime =512X250. From van Hecke (1998).

dynamical processes leading to phase slips from those
leading back to the (laminar) plane-wave state. When
the parameters b and ¢ are quenched in the direction of
the transition to plane waves, these zigzag motions of
the holes become very rapid [Fig. 9(a)].

A further consideration of homoclons and their role
in spatio-temporal chaos is presented by van Hecke and
Howard (2001). The simulations of the CGLE show that
when an unstable hole invades a plane-wave state, de-
fects are nucleated in a regular, periodic fashion, and
new holes can then be born from these defects. Rela-
tions between the holes and defects obtained from a de-
tailed numerical study of these periodic states are incor-
porated into a simple analytic description of isolated
“edge” holes, which can be seen in Fig. 9.

Recently Ipsen and van Hecke (2001) found in long-
time simulations that in a restricted parameter range
composite zigzag patterns formed by periodically oscil-
lating homoclinic holes represent the attractor.

4. The boundary of defect chaos towards Nozaki-Bekki holes

As the boundary of stability of Nozaki-Bekki holes is
approached (curve AH in Fig. 2) one can increasingly
observe Nozaki-Bekki-hole-like structures that emit
waves and thereby organize (“laminarize”) their neigh-
borhood. In this regime the state becomes sensitive to
small perturbations of the cubic CGLE, as discussed in
Sec. II1.B.

It is found that stable hole solutions suppress spatio-
temporal chaos and as a consequence, for a decelerating
(d'<0 if d"=0) perturbation, the (upper) boundary of
spatio-temporal chaos is simply given by the stability
boundary AH in Fig. 2 of the Nozaki-Bekki hole solu-
tions, whereas for an accelerating perturbation spatio-
temporal chaos is also observed further up (Popp et al.,
1993; Stiller, Popp, Aranson, and Kramer, 1995). For
d' <0 random initial conditions lead to an irregular grid
of standing holes, separated by shocks from each other
[see Fig. 10(b)]. Such grids are the 1D analog of the
“vortex glass” state found in two dimensions (see Sec.
IV.G, and also Chate, 1995).

Clearly, for accelerating d’ >0, such a grid is unstable.
In this case Nozaki-Bekki holes are created from ran-
dom initial conditions, too. In their neighborhood they
suppress small-scale variations of |A| typical of ampli-
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FIG. 10. Space-time plot of the zeros of the local phase gradi-
ent d,¢=0 (with A=|A|exp[i¢|]) for the perturbed cubic
CGLE. The parameters are: upper figure, b=0.9,c=5.55 (i.e.,
slightly below the absolute instability line for the plane waves
AH of Fig. 2), and d'=0.005; lower figure, d’'=—0.005,

"=0, with periodic boundary conditions and small-amplitude
noise as initial conditions. Isolated lines can be identified as
holes and shocks (alternating), which are spontaneously
formed out of the chaotic state. In their neighborhood there
are approximate plane waves. For decelerating d’ the holes
suppress the chaotic state after some transience (lower
figure) and one is left with a 1D vortex glass, while in the
accelerating case (d'>0, upper figure) the chaotic state
persists.

tude chaos over much of the chaotic regime. However,
since they are accelerated they have only a finite lifetime
[see Fig. 10(a)]. For parameters b,c below about curve
EH in Fig. 2 (the coincidence with the Eckhaus limit is
presumably fortuitous), destruction of the holes leads to
the creation of new holes and shocks, yielding a chaotic
scenario of subsequent acceleration, destruction, and
creation processes.

IV. DYNAMICS IN TWO DIMENSIONS

A. Introduction

The 2D CGLE has a variety of coherent structures. In
addition to the quasi-1D solutions derived from the co-
herent structures in one dimension discussed above, the
CGLE possesses localized sources in two dimensions
known as spiral waves. An isolated spiral solution is of
the form

A(r,0,t)=F(r)exp{i[ —wt+m o+ ¢(r)]}, (45)

where 7,0 are polar coordinates. The (nonzero) integer
m is the topological charge, w is the (rigid) rotation fre-
quency of the spiral, F(r)>0 is the amplitude, (r) is
the phase of the spiral, Q=4d,¢ for r—o is the
asymptotic wave number selected by the spiral (Hagan,
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FIG. 11. Image of the amplitude |A| and contour lines of the
phase ¢=arg A=0,7 for a single-charged spiral solution in a
domain with periodic boundary conditions. Note the edge vor-
tex (sink) in the corner. Image is coded in the gray scale; the
maximum of the field corresponds to black, the minimum to
white.

1982), and w=c+(b—c)Q? is the spiral frequency.’
Since spirals emit plane waves asymptotically [group ve-
locity V,=2(b—c)Q>0], they are a source of solu-
tions. In addition to spirals there are sinks that absorb
waves. The form of these sinks is determined by the
configuration of surrounding sources. Sinks with topo-
logical charge appear as edge vortices (see below). Spi-
ral solutions with m# =1 are unstable (Hagan, 1982).
Single-charged spiral solutions are dynamically stable in
certain regions of parameter space. The gray-coded im-
age of a spiral and an edge vortex is shown in Fig. 11.
For b —c¢—0, and also for b,c—, the asymptotic wave
number of the spiral vanishes and the solution becomes
the well-known vortex solution of the GLE and nonlin-
ear Schrodinger equation, known in the context of su-
perfluidity (Pitaevskii, 1961; Gross, 1963; Donnelly,
1991) and somewhat similar to that found in supercon-
ductivity in the London limit (Abrikosov, 1988; Blatter
et al., 1994). In periodic patterns, spirals and vortices be-
come dislocations.

The asymptotic interaction is very different for the
case b=c, where it is long range, decaying like ! with
some corrections, whereas for b —c#0 it is short range,
decaying exponentially (see below). The interaction
manifests itself in the motion of each spiral. The result-
ing velocity can have a radial (along the line connecting
the spiral cores) and a tangential component.

"Spirals with zero topological charge m=0 (targets) are un-
stable in the CGLE. However, inhomogeneities can stabilize
the target. Hagan (1981) has found stable targets in the inho-
mogeneous CGLE in the limit of small ¢. Stationary and
breathing targets over the wide parameter range of the CGLE
were studied by Hendrey et al. (2000).
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1.0

FIG. 12. Stability limits of a spiral wave solution. The bound-
ary of convective (EI) and absolute instability (AI) for the
waves emitted by the spiral are also shown (for an explanation
see Sec. ILLE and Aranson ef al., 1992). Bound states exist to
the right of the OR line (¢ —b)/(1+bc)=0.845. BFN indicates
the Benjamin-Feir-Newell limit 1 +bc, L shows the limit of 2D
phase turbulence, and line 7" corresponds to the transition to
defect turbulence for random initial conditions. From Chaté
and Manneville (1996).

Spirals may form regular lattices and/or disordered
quasistationary structures called vortex glass or the fro-
zen state. When individual spirals become unstable (spi-
ral breakup), the typical spatio-temporal behavior is
chaotic.

B. Spiral stability

1. Outer stability

For spirals to be stable the wave number of the
asymptotic plane wave has to be in the absolutely stable
range (see Sec. II.E). In order to find this stability limit
we have to evaluate condition (24) for the wave number
QO emitted by the spiral (see Fig. 12). The existence of an
absolutely stable spiral solution guarantees that small
perturbations within the spiral will decay, but does not
assure that it will evolve from generic initial conditions.
For further discussion see Sec. IVH.2.

2. Core instability

The spiral core may become unstable in a parameter
range where diffusive effects are weak compared to dis-
persion (large b limit). Then it is convenient to rewrite
the CGLE in the form

dA=A+(s+i)AA—(1+ic)|A|*A, (46)

where e=1/|b| and the length has been rescaled by Ve.
This situation is typical in nonlinear optics (transversely
extended lasers or passive nonlinear media). In this case
a systematic derivation of the CGLE from the Maxwell-
Bloch equations in the “good-cavity limit” for positive
detuning between the cavity resonance and the atomic
line leads to very small values of e>0 (Coullet, Gil, and
Rocca, 1989; Oppo et al., 1991; Newell and Moloney,
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1992; Newell, 1995). Representative values are ¢
~1073-10"2 (Coullet, Gil, and Rocca, 1989).

For ¢=0 one has the Galilean invariance mentioned
in Sec. II.C (see van Saarloos and Hohenberg, 1992 for
the 1D case); then, in addition to the stationary spiral,
there exists a family of spirals moving with arbitrary
constant velocity v,

r-v
—a)'t+0+l,[/(r')__”,

A(r,t)=F(r'")exp 5

i

(47)

where r'=r+vt, ' =w—v?%/4, and the functions F,
are those of Eq. (45) (this invariance holds for any sta-
tionary solution). For e#0 the diffusion term ~cAA
destroys the family and in fact leads to acceleration or
deceleration of the spiral proportional to ev. The natu-
ral assumption is that one has deceleration so that the
stationary spiral is stable (Coullet, Gil, and Rocca,
1989). In fact this is not the case. Stable spirals exist only
above some critical value ¢.. Below ¢, stationary spirals
are unstable to spontaneous acceleration (Aranson
et al., 1994).

For small values of € one may expect the solution (47)
to be slightly perturbed and have a slowly varying veloc-
ity v which obeys an equation of motion of the form

d,v+eKv=0. Because of isotropy the elements of the

tensor K must satisfy K,, =K yy and K, ==K, so the
relation can also be written as

4,0 +exkv=0, (48)

where ¥ =v,+iv, and k=K,,—iK,,. Since in general
the friction constant « is complex, the spiral core moves
on a (logarithmic) spiral trajectory.

The acceleration instability of the spiral core has a
well-known counterpart in excitable media, where the
spiral “tip” can perform a quasiperiodic motion leading
to meandering (see, for example, Barkley, 1994). The
main difference between the two cases can be under-
stood by considering the nonlinear extension of Eq. (48)
30 +exv=f(|6]*)6 with f(0)=0. In excitable media
one has Re f([6[*)<0, which provides saturation of the
instability. However, in the CGLE the sign of Re f{(|6]?) is
opposite and destabilizes the core according to simula-
tions. This one has an alternative scenario of the mean-
dering instability. The scenario appears to be generic
and is not destroyed by small perturbations of the
CGLE.

Now going to larger € one finds that Re « increases
with ¢ and finally changes sign at a value ¢.. The result
obtained from extensive numerical simulations is shown
in Fig. 13.

The acceleration instability can also be interpreted as
the destabilization of a localized core mode similar to
the situation with the standing-hole solution in the 1D
CGLE (Chaté and Manneville, 1992; Popp er al., 1993;
Sasa and Iwamoto, 1993; also see Sec. I1I).

The case of negative diffusion (e<0,|e|<1) is espe-
cially important for lasers with negative detuning
(Oppo, 1991; Staliunas, 1993; Lega et al.,, 1994). Then
higher-order corrections to the diffusion (fourth deriva-

yx o
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FIG. 13. Stability limits of a spiral wave in the large-b limit,
e=1/b. Here CI is the core-stability limit e=¢_ (unstable to
the left), the area below EI is the Eckhaus unstable region, ST
designates the transition line to strong turbulence (see text),
and the area below OR is the oscillatory range. From Aranson
et al. (1994).

tive) have to be included to stabilize the short-wave in-
stability. The resulting complex Swift-Hohenberg equa-
tion is

GA=A+iAA—e(q’>+A)A—(1+ic)|A]PA. (49)

This equation exhibits over some range of parameters
€,q. a similar core instability. In a certain parameter
range one has stable meandering of the spiral (Aranson
and Tsimring, 1995; Aranson, Hochheiser, and Moloney,
1997)

C. Dynamics of vortices in the Ginzburg-Landau equation,
in the nonlinear Schrodinger equation, and for b=c

1. Dynamics of vortices in the Ginzburg-Landau equation

In the GLE the spirals become vortices, i.e., in Eq.
(45) one has w=0 and =0. F(r) is a monotonic func-
tion and F~ ar for r—0, F*(r)—1—1/r? for r—.

A more general isolated moving-vortex solution with
wave vector Q away from the band center is described
by

A=B(r—vt)exp[iQr], (50)

where B fulfills the boundary conditions |B|?*—1—Q?
for r—o with the appropriate phase jump of +2.8
For large systems such that Rv>1, where R is the
system size or the distance to another defect, the drift
velocity v is perpendicular to the background wave

81t is important to mention that such a problem is not well
defined for spiral waves (b—c#0). Since the spiral waves are
active sources, they cannot in general coexist with plane waves.
Depending on the relation between the two frequencies, either
the spiral would invade the entire plane or the plane wave
would push the spiral away. For details see Sec. IVF
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number Q, such that the free energy decreases. The
speed v is given by the expression

1

Evln(vo/u)=UQ[1—0.35Q2], (51)
with the constant vy=3.29 (see Bodenschatz, Pesch, and
Kramer, 1988; Kramer et al., 1990; Bodenschatz et al.,
1991). Here U is the /2 rotation matrix

u-*, o)

The term in brackets on the right-hand side has been
fitted to numerical results (see Bodenschatz et al., 1991).
The formula can be used throughout the stable range
and is consistent with the experiments of Rasenat et al.
(1990) on electroconvection in nematics. In small sys-
tems, vR<1,R>1, the velocity is given by v
=20Q/1In(R/&) with &=1.13.

The above relations were rederived by Pismen and
Rodriguez (1990), Rodriguez, Pismen, and Sirovich
(1991), Ryskin and Kremenetsky (1991), and in part by
Neu (1990a) using matching asymptotic techniques.

The result shows that for an isolated defect the limits
of the system size going to infinity and wave number
mismatch (or defect velocity) going to zero are not in-
terchangeable. This is analogous to the 2D of Stokes law
(drag of an infinite cylinder through an incompressible
fluid), where one also has a logarithmic divergence of
the mobility at vanishing velocities. The similarity was
pointed out by Ryskin and Kremenetsky (1991). It is
also useful to note that the force exerted on dislocations
in a phase gradient, expressed by a wave vector Q, is the
analog of the well-known Peach-Koehler force on dislo-
cations in crystals under stress.

In the following we consider linearly stable periodic
states, in which Q< QZE. All periodic states, except Q
=0 (band center), are metastable. Evolution to the band
center can occur by the motion of vortices, once they
have been nucleated by finite fluctuations or distur-
bances (see Bodenschatz, Pesch, and Kramer, 1988 and
Hernandez-Garcia et al., 1993 for a discussion of the
problem of homogeneous nucleation of vortices).

The asymptotic interaction between two vortices can
be described approximately by Eq. (51) with the right-
hand side replaced by the gradient of the resulting phase
of another vortex at the center of the vortex. Since the
gradient is perpendicular to the line connecting the vor-
tex cores, the resulting force is directed along this line.
As a result, oppositely charged vortices attract each
other and eventually annihilate, whereas those with like
charges repel each other.

Analysis of an isolated moving vortex shows that the
deformation of the roll pattern decays in front exponen-
tially over a distance R~1/v, while behind the disloca-
tion the decay is proportional to R™Y2 Thus, if the
background wave number is nonzero and two vortices
with opposite topological charge are approaching each
other, the velocity will be constant for R<2/v~2/Q.
Subsequently the motion will accelerate and eventually
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FIG. 14. The distance L between two defects of opposite po-
larity that approach each other on a straight line is plotted for
different Q versus time 7. From Bodenschatz et al. (1991). For
comparison the experimental data of Braun and Steinberg
(1991) are included. The different symbols denote different
distances & from the threshold: O, e=0.02; (0, £e=0.04; ¢, &
=0.005.

the attraction will dominate over the Peach-Koehler
force and lead to annihilation.’ In experiments by Brawn
and Steinberg (1991), the annihilation process was stud-
ied in detail near the band center (Q<1) where accu-
rate determination of Q is not possible. The quantitative
comparison with theory is shown in Fig. 14, where the
distance L between two vortices of opposite polarity ap-
proaching each other along a straight line versus time 7'
is shown for different Q in scaled units (Bodenschatz
etal., 1991). At time T=0 the vortices annihilate. The
solid line gives the numerical results, and the squares,
circles, and diamonds are the experimental data.

The case Q =0, in which the Peach-Koehler force van-
ishes so that v—0 for L—o, deserves special attention.
The analysis of Bodenschatz, Pesch, and Kramer (1988)
leads to vL=2/C, where C~In(L/2.26) for vL<l1.
Clearly for this to hold L needs to be exponentially
large. Otherwise one is caught in the intermediate re-
gion v L~1 where no accurate relation for C was found.
For that reason the so-called self-consistent approxima-
tion was proposed by Pismen and Rodriguez (1990), Ro-
driguez, Pismen, and Sirovich (1991), and Pismen
(1999):

In(vg/v)=exp(xvr/2)[Ky(vr/2)£ K (vr/2)],
vy=3.29, (52)

where the + sign corresponds to a like-charged pair and
the — sign to an oppositely charged one, and K, and K,
are modified Bessel functions. The formula is not very
accurate, as shown by comparison with full simulations
(Weber et al., 1991; Weber, 1992).

Allowing for a very small wave-vector displacement

%In this discussion we have tacitly considered the situation in
which the Peach-Koehler force and the force due to interac-
tion are parallel to each other. If this is not the case the vorti-
ces will move on curved trajectories.
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Q, one finds v(L+1/Q)=2/C. One can then get to the
limit vL>1 and then, for sufficiently large systems, C
=1In(3.29/v).

For small distances, shortly before the annihilation of
an oppositely charged pair, the gradient terms in the
GLE become dominant and one may argue that the dy-
namics is governed by self-similar solutions of the diffu-
sion equation so that L~ /T, which appears consistent
with the numeric results.

2. Dynamics of vortices in the nonlinear Schrodinger
equation

Although the stationary vortex solution of the nonlin-
ear Schrodinger equation coincides with that of the
GLE, the dynamic behavior of vortices is very different.
In the limit of small velocities, large separation, and
properly quantized circulation the motion of vortices in
the nonlinear Schrodinger equation is similar to the mo-
tion of point vortices in an ideal incompressible fluid
(Lamb, 1932). The problem of vortex motion in the con-
text of the nonlinear Schrodinger equation was first con-
sidered by Fetter (1966); since then many researchers
have rederived this result more accurately (see, for ex-
ample, Creswick and Morrison, 1980; Neu, 1990b; Lund,
1991; Pismen and Rubinstein, 1991; Rubinstein and Pis-
men, 1994).

Introducing the amplitude-phase representation A
=R exp[if] and the “superfluid density” p=R? as well as
the superfluid velocity V=—2V 6, one obtains from Eq.
(6) a Euler equation,

dV+(V-V)V=VP, (53)

and the continuity equation for the “density” of a super-
fluid,

d,p+divpV=0. (54)

Here P=2(—V2\p/\Jp+p—1) is the effective pres-
sure, whereas the first term is called the “quantum pres-
sure.” The quantum pressure is irrelevant for large-scale
perturbations of the density, i.e., V2p<p. In the Euler
equation the incompressibility approximation p=pg
=const#0 is reliable for velocities much smaller than
the sound velocity c;=+2p,. One expects the analogy
with classical incompressible vortex tubes in a liquid to
hold for well-separated vortices moving with the velocity
v<<c,. Thus, according to classical hydrodynamics
(Lamb, 1932), the oppositely charged vortex pair drifts
with the velocity v=2/L normal to the line connecting
the cores of the vortices, and the like-charged pair ro-
tates around the center of the symmetry, where L is the
distance between vortex centers. This result up to
higher-order corrections holds for well-separated vorti-
ces (L>1) in the nonlinear Schrodinger equation, as it
was later rederived by Neu (1990b), Pismen and Rubin-
stein (1991), and Rubinstein and Pismen (1994), using a
matching asymptotic technique. A numerical investiga-
tion of vortex dynamics in the nonlinear Schrodinger
equation was also carried out by Nore et al (1993),
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Frisch etal. (1992), Abraham et al
Josserand and Pomeau (1995).

For N well-separated vortices located at the points
R;=(X;,Y;) one has the more general formula

(1995), and

N
U(R;—R))

According to Eq. (55), obtained from the corresponding
incompressible Euler equation, the vortex velocities di-
verge as the intervortex distances vanish. However, the
above expression becomes incorrect when the intervor-
tex distance d becomes of the order of the coherence
length d~O(1) (one in our scaling). For small separa-
tions the interaction of two like-charged vortices can be
considered as a small perturbation of a double-charged
vortex. Aranson and Steinberg (1995) have shown that
for d—0 the velocity of vortices vanishes, and the fre-
quency of rotation ) for the like-charged vortex pair
approaches a constant as d—0 [the “classical formula”
(55) results in infinite frequency]. Similarly, for an oppo-
sitely charged pair the velocity remains finite for d—0.

An important problem in the context of the nonlinear
Schrodinger equation is the nucleation (or generation)
of vortices from zero-vorticity flow. Frisch, Pomeau, and
Rica (1992) considered the stability of flow passing an
obstacle and found nucleation of vortex pairs above
some critical velocity. Yet another mechanism of vortex
generation is related to the instability of quasi-1D dark
solitons, predicted by Kuznetsov and Turitsyn (1988).
Josserand and Pomeau (1995) studied the instability of
dark solitons numerically and found that the nonlinear
stage of this instability results in the creation of vortex
pairs.

3. Dynamics of vortices for b=c

The general case b =c, including the nonlinear Schro-
dinger equation limit, can be related to the GLE limit by
generalizing the ansatz (50) to

A=B(r—vt)exp[iQr—ibt]. (56)

Equation (1) can be written as

vWB=AB+2i

Q+

2(1+b2)V)VB

+(1-Q*B—-|B|*B. (57)

After neglecting the higher-order term Q’B, one ob-
serves that Eq. (57) coincides with the corresponding
equation for b=0 if one replaces Q with Q+ b/2(1
+b%)v.10

As a result we may extend Eq. (51) for arbitrary b
leading to

1
1+b2

. (58)

b
(1+b2)Q+§v

1
FVIn[(1+b2vg/v]=U

0The calculations can be generalized to arbitrary Q.
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We obtain oblique motion with respect to Q, with the
angle depending on b and Q. In the nonlinear Schro-
dinger equation limit the motion becomes parallel to Q.
Concerning the interaction between vortices, we obtain
oblique repulsion or attraction: for b#0 two vortices
never move along the line connecting their centers but
instead spiral with respect to each other (Pismen, 1999).

D. Dynamics of spiral waves for b #c

1. General

As we mentioned above, in the generic case of b #c¢
the asymptotic interaction of topological defects (spi-
rals) is very different from the corresponding dynamics
of vortices in the GLE and the nonlinear Schrodinger
equation. The problem of spiral wave interaction was
considered by Biktashev (1989), Rica and Tirapegui
(1990, 1991a, 1991b, 1992), Elphick and Meron (1991),
Aranson et al. (1991a, 1991b, 1993a), and Pismen and
Nepomnyashchii (1991a, 1991b). The approach of Rica
and Tirapegui (1990, 1991a) and Elphick and Meron
(1991) explored a type of global phase approximation
that in essence gave a long-range interaction ~1/r be-
tween the spirals, in analogy to the cases treated above.
The results were in obvious disagreement with numeri-
cal simulations done by Aranson et al. (1991a, 1991b),
revealing an exponentially weak interaction between the
spirals.

A more adequate solution of the problem was later
obtained by Aranson ef al. (1991a, 1991b) and Pismen
and Nepomnyashchii (1991a, 1991b) on the basis of the
phase-diffusion equation (see also Biktashev, 1989). The
results demonstrated an exponentially weak asymptotic
interaction, although they failed to describe the numeri-
cally observed bound states of spiral waves. The above-
mentioned approach is adequate for the case |b—c|<1.
Biktashev (1989) considered the very restrictive prob-
lem of spiral motion in an almost circular domain. Due
to some unphysical boundary conditions, the results of
Pismen and Nepomnyashchii (1991a, 1991b) were in
conflict with the numerical simulations (Aranson et al.,
1993a).

In later papers Rica and Tirapegui (1991b, 1992) at-
tempted to improve their interaction approach by com-
bining it with that of Aranson et al (1991a, 1991b).
However, in our view, the results remain unsatisfactory
because of an uncontrolled perturbation technique.

A consistent theory with quantitative predictions of
asymptotic spiral wave interaction including bound-state
formation was presented by Aranson et al (1993a,
1993b) using the matching-perturbation method. The
idea of the method is straightforward: in the full solu-
tions for a spiral pair (or a spiral and a wall, or more
complicated aggregates of spirals) the spirals move with
certain velocities, and thus solutions exist only with the
“correct” velocities. Such solutions may be constructed
approximately by starting with isolated spirals, each one
restricted to the region in space filled by its emitted
waves and moving with (small) velocities to be deter-
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mined. For a symmetric spiral pair one simply has two
half planes. In a first step the corrections are assumed to
be determined to sufficient accuracy by the linearized
(perturbational) problem with boundary conditions that
take into account the neighboring spiral (or wall, etc.).
The velocity comes in as an inhomogeneity. The occur-
rence of bound states can already be seen from the be-
havior of stationary perturbations of the asymptotic
plane waves emitted by the spirals, as given by Eq. (25).
Bounds states occur in the oscillatory regime, outside
the curves (c—b)/(1+bc)==*c.,,c.,=0.845 (one must
choose the curves inside the Benjamin-Feir-Newell-
stable region). The oscillatory range is plotted in Fig. 12
(curve OR). Also included in Fig. 12 is the convective
Eckhaus-stability boundary (curve EI; see Sec. I1.D) and
the boundary of absolute stability (curve Al; see Sec.
IL.E) for the waves emitted by the spirals.

The inhomogeneities involve the velocity linearly, and
as a consequence the solution for arbitrary (but not too
small) distance can be expressed in terms of one inho-
mogeneous and one homogeneous solution. Once these
are determined numerically and used to match the
boundary conditions, the velocity versus distance rela-
tion comes out. For b=0 (for simplicity) the resulting
velocities of the spiral at distance X from a plane bound-
ary [or, equivalently, a pair of oppositely charged spirals
at the points (* X,0)] are of the form

~0V1-Q%exp(—pX) )/
X+ 1
SC \2mpX m(C/C),

( —0\1- Q% exp(—pX)
SC \2mpX

vlem(

v,=Re

y X‘“)—vae(Cx/Cy),

(59)

where Q is the spiral wave number, v, is the component
of the velocity along the line connecting spiral cores (ra-
dial velocity), and v, is the velocity perpendicular to this
line (the tangential velocity). The constants C, and C,
are obtained numerically and the parameter u is derived
from the linearized problem (Aranson et al., 1993a). The
bound states correspond to the case of v, =0. The bound
state will drift with the velocity v, . The equilibrium dis-
tance 2.X, between spirals is found from the equation

_ — 0?2 _
L (—oVT=Qexp(—pX) | )

SC,\2mpX, ‘

Since only p and u are complex, this gives

ImpX,+ulnX,]=— ¢+ 7, (61)

where /=1,2,3,... and ¢= —arg[1/( 5Cyp1/2)]. Even val-
ues of / correspond to stable bound states, odd / to un-
stable ones. Usually the lowest bound state with /=2 is
relevant. Approaching the boundary of the oscillatory
range, the equilibrium distance diverges.
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Generalization to arbitrary b can be done along the
lines of the similarity transformation (16). The result is
unchanged at leading order."!

Note that the symmetries A(x,y)=A(—x,—y) (like
charged) and A(x,y)=A(—x,y) (oppositely charged)
have nearly the same effect on the boundary conditions
at x=0 for large spiral separation. Thus for large sepa-
ration X the interaction of like-charged spirals is similar
to the interaction of oppositely charged ones. The only
difference is that for the like-charged case both compo-
nents of the spirals’ velocities have the opposite sign,
whereas for the oppositely charged case the tangential
components have the same sign. This causes the rotation
of the spirals around the common center of the symme-
try in the like-charged case.

Like-charged spirals may form more complicated
bound states or aggregates. In contrast to the two-spiral
bound states, which are simply rotating with constant
velocity, each spiral in the aggregate performs a more
complicated motion (possibly nonperiodic) on the back-
ground of a steady-state rotation, perhaps similar to the
“dance” of spiral aggregates observed in a variant of the
Belousov-Zhabotinsky reaction (Steinbock and Muller,
1993). Certain problems of interaction between spiral
waves and hole solutions were considered by Bazhenov
and Rabinovich (1993, 1994). The interaction of spirals
with external periodic perturbation and response func-
tions of the spiral core were studied by Biktasheva et al.
(1998, 1999, 2000).

2. Comparison with results of numerical simulations

Bound states of spirals are shown in Fig. 15. In Fig.
16(a) the dependence of the velocities on the spiral
separation 2.X is plotted for b=0,c=1 and compared
with results from full numerical simulations. There is
reasonable agreement, particularly for the radial veloc-
ity v, . The first two zeros of v, at 2X,~11.5 and 22.8
correspond to /=1,2 in Eq. (61). Here the velocities are
already extremely small. From the simulations no other
bound state could be resolved. The equilibrium distance
obtained from the theory for the stable bound state [/
=2 in Eq. (61)] is in very good agreement with the re-
sults of the simulations of the full CGLE [see Fig. 16(a)].
There is a discrepancy between the values of the tangen-
tial velocity v, by a factor of about 1.5 [see Fig. 16(b)]
although the functional dependencies on ¢ are very simi-
lar. This discrepancy results from the fact that the shock
is not described well by a linear treatment.

More accurate estimates can be obtained by treating
the shock fully nonlinearly. Far away from the core the
motion of the spiral can be neglected and one may con-
sider the stationary shock produced by the waves emit-
ted by the spirals. Thus one has to solve the stationary

"UNote that the additional term —ibvV A arising in the corre-
sponding equations of motion for each spiral can be absorbed
in the nonsingular part of the linear problem (Aranson and
Pismen, 2000).
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(@) (b)

FIG. 15. The bound state of (a) oppositely charged spirals and
(b) like-charged spirals for b=0,c=1.5 in a 100X 100 domain.
Images show |A(x,y)| (top) and Re A(x,y) (bottom), respec-
tively.

CGLE with boundary conditions A~rexp[if] for x
— X, and J,A=0 at x—0. This is a rather complicated
2D problem. Numerically one could extract more accu-
rate values of the constants C,,,, characterizing reflec-
tion at the shock [see Fig. 16(b)].

3. Interaction in the monotonic range

In the case 0<c<c,, there exist two real positive
roots of Eq. (25). Using the analogous numerical proce-
dure one can also determine the constants C, ,, but for
small c it is technically very difficult in this form. The
results can be simplified considerably for the case c—0
and |cQ|X>1. Then one can neglect the coefficients C,,,
because for ¢—0 one has 0<p,~—-2cQ0<l1, p,~V2,
w1—0, and & ——1/(20%. One obtains Uiy
~C,. ; exp(—2|cO|X)/\/X, which explicitly exhibits the
exponential decay of the interaction and reproduces the
earlier analysis using a phase-diffusion equation (Bikta-
shev, 1989; Aranson et al., 1991a, 1991b; Pismen and Ne-
pomnyashchii, 1991a, 1991b).

Numerical simulations for oppositely charged spirals
for b=0 and c¢=0.5 indicate asymptotic repulsion
(Aranson et al., 1993a). This result can be inferred from
the work of Biktashev (1989), who used a phase-
diffusion equation and asymptotic matching to treat the
interaction of spirals with a boundary. It appears to be in
conflict with the work of Pismen and Nepomnyashchii
(1991a, 1991b) in which matching with the internal solu-
tion was done analytically in the limit ¢—0 and
asymptotic attraction was found. The repulsive range is
expected to move to larger X roughly as |cQ|™! for
smaller c¢. In this way the crossover to the long-range
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FIG. 16. Dependence of velocities on spiral separation 2.X: (a)
Radial velocity (v,) and tangential velocity (v,) vs spiral sepa-
ration 2X for b=0,c=1 for an oppositely charged pair. Solid
and dashed lines show radial and tangential velocities obtained
from solution of Eq. (59), respectively. Symbols (O is radial
and < is tangential) for velocities are obtained from the simu-
lations. Inset: Equilibrium distance 2.X, (solid line) given by
Eq. (61) as a function of ¢ for b=0; O and A correspond to
numerical results for oppositely charged and like-charged
pairs, respectively. (b) Tangential velocity v, at the equilibrium
distance for 5=0; @ and A correspond to numerical results for
oppositely charged and like-charged pairs, respectively. Solid
and dashed lines show theoretical results obtained using non-
linear and linear treatments of the shock.

attraction within the GLE is recovered. The interaction
becomes attractive at smaller distances, leading to final
annihilation of the spiral pair.

Like-charged spirals for c<c,, have repulsion at large
distances (as in the oppositely charged case) and also at
small distances. So it is quite clear that the interaction is
repulsive everywhere.

E. Interaction of spirals with an inhomogeneity

Spirals may interact with inhomogeneities of the me-
dium. This problem is particularly interesting in the con-
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text of Bose-Einstein condensation as described by the
nonlinear Schrodinger equations in a parabolic potential
(for a review see Dalfovo et al., 1999). Weak inhomoge-
neities are sometimes included in the CGLE in the form

dA=[1+v(r)JA+(1+ib)AA—(1+ic)|A|*A, (62)

with an appropriate function »(r). An interesting prob-
lem is the drift of a spiral in the gradient created by a
localized, radially symmetric inhomogeneity (see Staliu-
nas, 1992; Gil et al., 1992). The spiral may be trapped
(pinned) by the inhomogeneity or perform a stationary
rotation at some distance from it, as observed in optical
systems (Arecchi, 1990, 1991; Brambilla ef al., 1991).

Using the method described above, one arrives at the
following expression for the spiral velocity due to inter-
action with weak axisymmetric inhomogeneity (Aranson
et al., 1995):

v=G(r), (63)

where r is the distance from the inhomogeneity to the
spiral core, v is the spiral core velocity, and the function
G is obtained by a convolution of the inhomogeneity
profile »(r) with the corresponding solution of the lin-
earized CGLE. Equation (63) is the analog to the mo-
tion of a “massless particle” in a radially symmetric field.
Numerical simulations with the CGLE show that Eq.
(63) describes the motion of the spiral fairly well for not
too large values of |b| [see Fig. 17(a)].

For large |b| the complex trajectories of the spiral
core are not captured by Eq. (63) [see Fig. 17(b)]. In
order to describe the numerical simulations one has to
include the effective “mass” term in the equation of
motion:

dv

o +ekv=G, (64)

where K is the friction tensor (or mobility tensor) and
e=1/b (see Sec. IV.B.2). Although these features were
obtained in the stable range Re k>0 (e>¢,), the exter-
nal forces created by the inhomogeneity can excite the
weakly damped core mode. This can explain the com-
plex motion of the spiral core observed in the presence
of obstacles (Sepulchre and Babloyantz, 1993).

Spiral motion in a slowly varying (on the scale of the
coherence length) inhomogeneity was considered by
Hendrey et al. (1999). In this situation additional simpli-
fications are possible. A related problem is the motion
of the spiral in the presence of small thermal noise. As
was shown by Aranson, Chaté, and Tang (1998), the spi-
ral core has finite mobility and exhibits Brownian mo-
tion.

F. Symmetry breaking

Symmetric bound states of spirals are not necessarily
stable. There is numerical evidence that symmetric
bound states, after a sufficiently long evolution, sponta-
neously break the symmetry such that one spiral begins
to dominate, pushing away other spirals (Weber et al.,
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FIG. 17. (a) The tangential and radial velocities of a spiral
versus the distance X from the inhomogeneity v(r)=b,exp
(= X?/o) for b=0,c=1 and by=0.3,0=20, see Eq. (63). From
the numerical solution one finds the radius of the first station-
ary orbit ry~9.8. (b) Numerical simulations with the CGLE.
The limiting orbits of the spiral core for different values of
inhomogeneity strength b,=0.1,0.2,0.3 in the large-b limit for
e=1/b=02,c=1,0=20.

1991; Weber, 1992; Aranson et al, 1993b). Broken-
symmetry states are often produced directly from ran-
dom initial conditions (Aranson et al., 1993b). To under-
stand the symmetry-breaking instability one must
consider the perturbation of the relative phase, or the
frequency w of the waves emitted by each spiral, caused
by interaction with the other spiral. Indeed, from analy-
sis of the CGLE it is known that the shock (or sink)
where two waves with different frequencies w; collide
moves in the direction of smaller frequency, due to con-
servation of phase. This means that after a sufficiently
long time only the larger frequency [or equivalently the
larger wave number |Q|, because of the dispersion
relation w=c(1—Q?)+bQ?] dominates in a bounded
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system. The VCIOCIty of the motion is given by vy
~(c=b)(Q1+0,)=17(vg1+vy), Where v,=dw/dQ is
the group velocity of a plane-wave state. If due to the
interaction the frequencies of the spirals become differ-
ent, one can expect a drastic breaking of the symmetry
of the system. This effect appears to be very important

—QV1-0Q%exp(—pX)
S\2mpX

)
20

d,=21Im X HC} sinh(

where C,,,C, are the constants obtained from the lin-
earized CGLE. The last term represents the lowest-
order term of an expansion in ¢. The constant { deter-
mined numerically from Eq. (65) turns out to be positive
for the (first) symmetric bound state (see Fig. 18), so
that the state is unstable with respect to ¢. According to
Aranson et al. (1993b), bound states are unstable with
respect to symmetry breaking over the whole oscillatory
range. Due to the fact that  is very small, the symmetric
bound state is rather long lived. As a result of symmetry
breaking, only one “free” spiral will remain, whereas the
other spiral is pushed away to the boundary. Depending
on the boundary conditions, the second spiral will finally
either annihilate at the boundary (nonflux boundary
conditions, i.e., zero normal derivative on the boundary)
or, with periodic boundary conditions, the defect will
persist for topological reasons, but reduced to a sink and
enslaved in the corner of the shock structure of the free
spiral (edge vortex; see Fig. 19). This leads to an asym-
metric lattice of topological defects, which appears to be
stable in the oscillatory case.

The absence of symmetry breaking in the limit |c
—b|—0 and |(c—b)Q|X>1 can be inferred from the
paper of Hagan (1982). From this work one finds that
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FIG. 19. Evolution of an unlike-charged spiral pair into a
stable antisymmetric state, b=0,c=1,L,= L,=100, time lapse
between snapshots = 50.

for the generic long-time evolution of large systems con-
taining spirals (vortex glass).

The symmetry-breaking instability of spiral pairs can
be understood from the dynamics of the relative phase
of the spirals ¢= ¢p; — ¢p,. Aranson et al. (1993b) derived
an equation governing the phase difference between two
spirals separated by the distance 2.X:

]/ Im(C1yCq)~ ¢, (65)

decreasing the radius increases the spiral wave number,
which ultimately means stability of the shocks. The sta-
bility of symmetric states together with the repulsion of
the spirals indicates the possible existence of symmetric
(antiferromagnetic) lattices of spirals (or “Wigner crys-
tal”), i.e., lattices made up of developed spirals with al-
ternating topological charge. Such lattices were obtained
in numerical simulations in this range by Aranson et al.
(1993b). The%/ appear to exist over the whole nonoscil-
latory range.

Since for large separation X the properties of like-
charged spirals are analogous to those of oppositely
charged spirals, one expects the same mechanism of
symmetry breaking. Indeed for |b —c| above the critical
value such a breaking was observed in numerical
simulations.

Certain aspects of spiral pair dynamics were studied
numerically by Komineas et al. (2001). It was shown that

12 Aranson er al. (1993b) have found stable square lattices in
rather small systems and for relatively small numbers of spiral
(4X4). There is no guarantee that similar lattices are stable in
arbitrarily large systems.
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FIG. 20. Vortex glass in the convectively unstable range, 1024 X 1024 lattice, periodic boundary conditions (Chaté and Manneville,
1996): left side, large spirals nucleating in turbulent sea, ¢=0.75,b = —2 right-side, developed vortex glass for c=0.7,b=—2.

for ¢>c,, (the symmetry-breaking range) the spirals in-
terchange partners and form new pairs. For c<c,, (the
monotonic range) symmetric spiral states were found.

G. Vortex glass

A fascinating problem concerns the effect of symme-
try breaking on the long-time behavior of large systems
that evolve from random initial conditions in the param-
eter range where one has an oscillatory interaction and
spirals. Numerical simulations, carried out by Huber
et al. (1992) and Chaté and Manneville (1996), have
shown a remarkable phenomenon: from an initially
strongly turbulent state spirals with a developed far field
eventually evolve. The spirals grow until the entire space
is filled (see Fig. 20), each spiral occupying a certain
domain. The domains have various sizes and typically
have a four- or five-sided near-polygon structure. Lo-
cally each domain boundary, represented by a shock, is
nearly hyperbolic. The shocks often contain “enslaved”
or edge vortices. This state appears to persist indefi-
nitely, although sometimes domain boundaries break
and edge vortices annihilate. The state was called vortex
glass by Huber et al. (1992). Some aspects of relaxation
to the vortex glass state were considered by Braun and
Feudel (1996) and Kevzekidis et al. (2002).

The existence of vortex glass is connected with the
nonmonotonic dependence of the spiral frequency on
the domain size. As can be seen from Fig. 21 the spiral
frequency oscillates as the radius of the domain in-
creases and approaches the asymptotic value for r—oo.
(The computations were done for a radially symmetric
domain, but we expect the result to be qualitatively cor-
rect for domains with arbitrary convex shape.) As a re-
sult, one has sets of domain radii 7; corresponding to the
same frequency. Neighboring domains can only coexist
without (further) symmetry breaking if they correspond
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to the same spiral frequency. Ultimately one can con-
ceive of a network of fully synchronized domains of vari-
ous shapes and sizes. These are likely the ingredients
necessary to explain the variability in domain sizes ob-
served in a quasistationary vortex glass. The vortex glass
is presumably also a global attractor in the full convec-
tively stable oscillatory range.

Bohr et al. (1996, 1997) considered the shapes of spiral
domains in vortex glass. They found that they differ
from Voronoi polygons and obtained the form of the
domain boundaries from the condition of phase continu-
ity across the shocks. In particular, far away from the
center of an unperturbed spiral, the phase is given by
¢;=*0,+Qr;+C;, where r;,6;, are the polar coordi-
nates measured from the center of the spiral and C; is
the phase constant of the spiral. If one assumes that the
distance between two neighboring spirals is much larger
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FIG. 21. The spiral’s frequency w as a function of the domain
radius for c=0.8b=—1.
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FIG. 22. Close-up of the shock structure (left). Reconstruction
of the shock structure using the hyperbolic approximation
(right). From Bohr et al. (1996).

than the wavelength 27/(Q, one obtains a hyperbola de-
scribing the shock shape: r,—r;=(C;—C;)/Q. This
simple formula reproduces the structure of the spiral do-
mains with high accuracy (see Fig. 22).

H. Phase and defect turbulence in two dimensions

On a rough scale, two types of turbulent behaviors
can be identified in two dimensions: phase and defect
turbulence. Defect turbulence is characterized by persis-
tent creation and annihilation of point defects. By con-
trast, in phase turbulence no defects occur. In a system
with periodic boundary conditions the total phase gradi-
ent across the system, the winding number, is conserved.
The simulations of Manneville and Chaté (1996) provide
some evidence that phase turbulence breaks down in the
infinite size, infinite time limit. However, it could be that
the transition is characterized by a sharp bifurcation sce-
nario similar to the situation in one dimension (see
I11.D.1).

1. Transition lines

The most detailed survey of various regimes occurring
in two dimensions is that of Chaté and Manneville
(1996) and Manneville and Chaté (1996). According to
Chaté and Manneville (1996), the transition from vortex
glass to defect turbulence starting from random initial
conditions occurs at the numerically determined line T
(see Fig. 12). The transition occurs somewhat prior to
the absolute instability limit given from the linear stabil-
ity analysis of plane waves emitted by spirals. However,
by starting from carefully prepared initial conditions in
the form of large spirals one can approach the absolute
instability limit.

Before the line T one finds transient defect turbulence
which finally exhibits spontaneous nucleation of spirals
from the “turbulent sea.” At line T the nucleation time
presumably diverges. Before line T the entire space will
finally be filled by large spirals separated by shocks,
forming a vortex glass state.

As in one dimension, persistent phase turbulence also
exists in two dimensions between the Benjamin-Feir-
Newell line and the line L (Chaté and Manneville, 1996;
Manneville and Chaté, 1996). The range is somewhat
smaller than in one dimension. Beyond line L defects
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are created spontaneously, leading to defect chaos. Ac-
tually, in two dimensions, phase turbulence is always
metastable with respect to defect turbulence or vortex
glass.

2. Spiral breakup

Spiral breakup was observed in experiments on
chemical oscillatory media by Ouyang and Flesselles
(1996) and Zhou and Ouyang (2000), in simulations of
the CGLE by Chaté and Manneville (1996), and in
model reaction-diffusion systems by Bar and Or-Guil
(1999). The instability likely originates from the outer
region of the spiral and thus is expected to occur beyond
line T. Quenching a large spiral to this domain will usu-
ally trigger a breakup scenario. However, a careful adia-
batic procedure allows one, in principle, to avoid
breakup and to preserve one large spiral up to the (lin-
ear) absolute instability threshold. (In the presence of
noise, the convective instability actually imposes a maxi-
mal noise-dependent radius R .) Not too far from the
absolute instability limit one is left with a smaller spiral
surrounded by strong chaos [Fig. 20(left)] whose well-
defined radius R depends neither on system size nor on
distance to the boundaries, but vanishes as one ap-
proaches the absolute instability threshold.

In the experiments and in some model systems, a spi-
ral need not be introduced initially, as the chaotic phase
is only metastable to the spontaneous nucleation of spi-
rals whose radius grows up to R. Thus the asymptotic
configuration over a long time scale is actually a quasi-
frozen cellular state [Fig. 20(right)].

The above concept of spiral breakup in large systems
is in contrast to arguments by Tobias and Knobloch
(1998), who stated that spiral wave breakup occurs in
the regime of absolute Eckhaus instability via “a glo-
bally unstable wall-mode confined to the outer bound-
ary” whose front structure is at the origin of the stable
“laminar” spirals immersed in a turbulent sea. Whereas
a stationary front can indeed be associated with the ab-
solute stability limit (see Sec. ILE), it can only give an
upper limit to the existence of the convectively unstable
state.

In the breakup scenario studied by Zhou and Ouyang
(2000), spirals emitting modulated waves in the presence
of stable meandering of the core were observed. This
behavior can be understood in terms of the spatial am-
plification of periodic perturbations due to core mean-
dering in the regime of convective instability of the
background waves (Brusch, Bar, and Torcini, 2001). Al-
though the saturated meandering does not occur in the
framework of the CGLE, a properly perturbed CGLE
may exhibit both saturated meandering and convective
instability (see Aranson, Hochheiser, and Moloney,
1997).

3. Defect statistics

Defect turbulence is the most chaotic state in two di-
mensions. It is characterized by the exponential decay of
correlations, with short correlation lengths and times.
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The density of defects varies with b and c¢. However, it
can be argued that, at least in the most studied region
with b,c of order one, the defects do not play the role of
particlelike excitations. Indeed, the defects in defect tur-
bulence are very different from spiral waves, since they
do not emit waves. They behave as passive objects and
are merely advected by the surrounding chaotic fluctua-
tions. According to Chaté and Manneville (1996), “am-
plitude turbulence” is a more appropriate name for such
a spatio-temporally chaotic state.

One may argue that the stationary distribution for the
number of defects is described by p(n)~exp[—(n
—n)*n], where 7 is the average number of defects. The
formula follows in the limit n— from treating defect
pairs as statistically independent entities (Gil et al.,
1990). Note that this assumption is strictly valid only for
large domains. Otherwise the statistics are influenced by
defects entering/leaving the subsystem. When these pro-
cesses dominate, the exponent acquires a factor 3.

Egolf (1998) extracted the degrees of freedom associ-
ated with defects from those of phase fluctuations by
using the concept of a finite-time Lyapunov dimension.
He found that each defect “carries” from one to two
degrees of freedom. Although one may argue that the
number of defects can be a convenient characterization
of some types of spatio-temporal chaos, the method of
separation does not appear fully convincing because the
relation between the finite-time dimension and the num-
ber of defects is not examined for different system sizes
and duration intervals.

It is interesting to note that a similar analysis per-
formed by Strain and Greenside (1998) for a reaction-
diffusion system resulted in a much higher dimension
per defect, namely, between 3 and 7.

Mazenko (2001) studied defect statistics in the CGLE
in the “defect-coarsening regime,” presumably the re-
gion of small b and ¢ and mean distance between defects
smaller than the screening length 1/(|b—c¢|Q), using an
expression for the defect velocity similar to that of Rica
and Tirapegui (1990, 1991a), which is not applicable for
defects separated by more than the core size of O(1).

4. Core instability and spiral turbulence for large b

One expects that in the full core-unstable range e
=1/b<e., a state with persistent defects should typi-
cally exhibit spatio-temporaly chaos.

In the monotonic range (Fig. 13, above curve OR),
this turbulence is characterized by rapid motion of the
defects and collisions which often do not result in anni-
hilation, in contrast to the usual defect chaos discussed
above. In Fig. 23, the number n of defects as a function
of time is shown for a fairly large system (150X 150).
Apart from the rapid fluctuations due to creation and
annihilation there is an extremely slow decrease of n.
Crossing €. in the monotonic range, the disordered state
appears to persist (or is at least very long lived). This
indicates a hysteretic behavior, which is to be expected
from the subcritical character of the core instability.
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FIG. 23. The number of defects versus time for four different
values of ¢ and £ =0.025. Parameters of the simulations are as
follows: domain of integration, 150X 150; number of Fourier
harmonics, 256X 256; time step, 0.02.

In the oscillatory Eckhaus-stable range (Fig. 13, below
curve OR), the behavior is drastically different. Starting
from random initial conditions one first sees evolution
towards a vortex glass as in the range ¢ >¢, (see Fig. 23
and Sec. IV.G; Aranson et al. 1993b). However, the spi-
rals are unstable with respect to acceleration, resulting
in continued dynamics of the spiral and shocks. Addi-
tional spirals are created very rarely. One might call this
a “hot vortex glass.”

When the Eckhaus instability sets in at the curve EI of
Fig. 13, the perturbations produced by the accelerating
core of the dominant spiral are amplified away from the
core due to the convective character of the instability.
When some critical level is exceeded, the state loses sta-
bility and many new defects are created throughout the

FIG. 24. Snapshots of |A(x,y)| in the intermittency range for
four consecutive times [c=—0.5,6=0.025; black: |A(x,y)|
=0, white: |A(x,y)|=1]. The times corresponding to (a)—(d)
are indicated in Fig. 23.
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cell. Then the process repeats (Figs. 23 and 24). Such
phenomena are very similar to the spatio-temporal inter-
mittency of holes observed in the 1D CGLE (Popp et al.,
1993; Chaté er al., 1994; see also Sec. I11.D.4) and might
be called defect-mediated intermittency. In a large cell
one expects to have such processes developing indepen-
dently in different regions of the cell, so one has persis-
tent chaotic bursts (or spots) on the background of
growing spirals.

Below the curve ST in Fig. 13, which presumably is
the continuation of the T curve in the range £>e¢,
(Chaté and Manneville, 1996), the strong chaotic char-
acter of the intermittent bursts becomes persistent. The
state is similar to the usual defect chaos. The curve ST
lies somewhat above the limit of absolute instability,
curve Al (see Sec. II.E). For e —0 the Al curve tends to
c¢~—1.2. The curve was determined by simulating Eq.
(46) with the restricted class of functions (45) and
boundary conditions A (0)=0,d,A(L)=0,L>1, which is
effectively a 1D problem. The curve ST determined in
this manner is consistent with 2D simulations (Aranson
et al., 1994).

V. DYNAMICS IN THREE DIMENSIONS
A. Introduction

The 3D analog of the 2D vortex or spiral wave is
called a vortex filament or scroll wave. The point singu-
larity of the phase of the complex function A at the
center of the spiral becomes a line singularity in three
dimensions. The filaments can be open (scrolls), closed
(vortex loops and rings), knotted, or even interlinked,
twisted, or entangled. Depending on the parameters of
the CGLE the scroll wave can be stable or can develop
some instabilities. Remarkably, 3D vortices can be
highly unstable even in the range of parameters where
their 2D analog is completely stable.

The CGLE has a stationary solution in the form of a
straight vortex with a twist:

A(r,0,z)=F(r)expilwt* 0+ y(r)+k,z]. (66)

Here the axial wave number k, characterizes the twist.
Curved vortex lines are nonstationary. In most cases vor-
tices untwist, and the solution with k,=0 is the most
stable one.

Scroll waves have been observed experimentally in
slime mold (Siegert and Weijer, 1991), heart tissues
(Gray and Jalife, 1996), and the gel-immobilized
Belousov-Zhabotinskii reaction (Vinson et al., 1997).
Long-lived entangled vortex patterns in three-
dimensional Belousov-Zhabotinskii reactions were ob-
served by the group of Winfree using optical tomogra-
phy techniques (Winfree et al., 1995). Complex vortex
configurations have also been observed in numerical
simulations of reaction-diffusion equations (Winfree,
1995; Aranson and Mitkov, 1998; Biktashev, 1998; Fen-
ton and Karma, 1998a, 1998b; Qu, Xie, and Garfinkel,
1999).
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Theoretical investigation of scroll vortices in reaction-
diffusion systems was pioneered by Keener and Tyson
(1990, 1991) who derived the equation of motion for the
filament axis. In particular, it was found that vortex rings
typically shrink with a rate proportional to the local cur-
vature of the filament, leading to collapse in finite time.
The existence of nonvanishing vortex configurations and
the expansion of vortex loops, also observed in numeri-
cal simulations of reaction-diffusion equations, was in-
terpreted as “negative line tension” of the vortex fila-
ment (Biktashev, 1998).

In order to characterize the motion of vortex lines in
three-dimensional space let us consider a curve C at any
moment of time ¢ in a parametric form X(s,?), where s
is the arclength. At any point of the curve a local or-
thogonal coordinate basis can be defined (the Frenet tri-
hedron), yielding the Frenet-Sorret equations (see, for
example, Pismen, 1999),

X,=1, L=«n, n;=-«kl+7b, b,=—mn, (67)

where 1, n, and b are tangent, normal, and binormal unit
vectors, and « and 7 are the curvature and torsion of the
curve, respectively.

B. Vortex line motion in the nonlinear Schrodinger
equation

As in two dimensions, the analysis of vortex motion in
the 3D nonlinear Schrodinger equation is based on the
analogy with the Euler equation for ideal fluids (see
Batchelor, 1967; Pismen, 1999). Following the analogy
with the vortex lines in an ideal fluid, the local “super-
fluid velocity” v=V ¢,p=arg A can be found from the
Biot-Savart integral

r RXdl
v(x)=— 2 ¢ ' (68)

where §Vp=2xI", I'==*1 is the vorticity of the line,
R=x—-X, and R=|R|. The Biot-Savart integral de-
scribes the velocity far away from the vortex line but
does not allow one to compute the velocity of the line,
since it diverges at the core. In order to get the velocity
of the line motion one needs to match the vortex core
field with the far field given by the Biot-Savart integral
(Pismen and Rubinstein, 1991; Pismen, 1999). As a re-
sult of matching one obtains

VJ_ZVS'FFKbh’IA, (69)
ap
where v, is the vortex drift velocity in the local normal
plane, A is a constant dependent on the geometry of the
vortex, and a(~1.856 for a single-charged vortex line.
For a vortex ring of radius R one has A=8R. The last
term expresses the drift along the binormal with the
speed proportional to the curvature, and the first term vy
accounts for a contribution from the nonlocal induction
of the Biot-Savart integral. Neglecting the first term, one
recovers the localized induction approximation, often
used in hydrodynamics (for a review see Ricca, 1996).
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The localized induction approximation is in fact a rather
crude approximation of vortex motion in the nonlinear
Schrodinger equation. It has been extensively used due
to its mathematical elegance.

In the simplest case of a vortex ring of radius R, one
finds from Eq. (69) that the ring drifts as a whole along
the binormal, i.e., along the axis of symmetry, with the
speed given by (Pismen, 1999)

1
v= Eln(R/RO), (70)

where R,~0.232 is the constant obtained from matching
with the vortex core. Clearly, a similar result can be ob-
tained for classical vortices in an ideal fluid, with the
difference that in the latter there is no well-defined core.

C. Collapse of vortex rings in the complex
Ginzburg-Landau equation

In the GLE one finds that a vortex ring with radius R
collapses. Indeed, substituting the ansatz

A(r,ﬁ,z,t)IA()(r—fotv(t’)dt’,z) (71)

(A, is the 2D stationary vortex solution; r, 6, and z are
cylindrical coordinates) into the 3D GLE one derives

1
—09,Ag=Ay(1—|A|})+PAg+ A+ ~d,A¢.
(72)

Replacing the explicit r dependence in the last term by
the radius of the ring, one obtains from the consistency
condition that

dR 1
V=TT TR (73)
Solving Eq. (73), one derives R(t)= \/ROZ—ZI, i.e., the
ring collapses in finite time. Surprisingly, in the case of
the GLE the analog of the localized induction approxi-
mation produces the correct answer.

Gabbay et al. (1997, 1998a) generalized this result for
the CGLE where the ansatz Eq. (71) has to be general-
ized to include the curvature-induced shift of the fila-
ment wave number. They showed that the ring collapses
in finite time according to the evolution law

dR  1+b?

dt R
In addition, there is no overall drift (at least, at first
order in 1/R) of the vortex ring in the direction perpen-
dicular to the motion of collapse. The collapse rate (of-
ten associated with the line tension) v=1+b? appears to
be in reasonable agreement with simulations for not too
large |b|. This corrects a previous erroneous estimate v
=1+bc (Frisch and Rica, 1992).

For the evolution of the local twist of a straight vortex

one obtains the Burgers equation (Gabbay, Ott, and
Guzdar, 1997, 1998b; Nam et al., 1998)

(74)
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FIG. 25. Dynamics of vortex rings in the nonlinear Schro-
dinger equation: (a) in-plane collision of two rings at 90° inci-
dence, seen from the side; (b) in-plane collision of two rings at
120° incidence, seen from above. From Koplik and Levine
(1996).

dip=(b—c)(1—kg)(d,¢.)>
+[1+bc+(b—c)bk}]d,, o, (75)

where d,¢=k, and k is the asymptotic wave number of
the 2D spiral solution. A more complicated equation
was obtained for a twisted and curved vortex filament.

D. Vortex nucleation and reconnection

Vortex reconnection in nonlinear Schrodinger equa-
tion was studied in relation to turbulence in superfluid
liquid helium. Large-scale computations were per-
formed by Schwarz (1988) using the localized induction
approximation. These computations give an impressive
picture of vortex tangles. However, it remains unclear
whether the particular features of the tangle are real or
an artifact of the localized induction approximation.

Obviously, vortex reconnection must be described by
the full nonlinear Schrodinger equation. Koplik and Le-
vine (1993, 1996) find in full numerical simulations of
the nonlinear Schrodinger equation that vortices recon-
nect when they approach to within a few core lengths.
Depending on conditions, the vortex rings may subse-
quently scatter, merge, or break up (see Fig. 25).

Gabbay et al. (1998b) studied vortex reconnection in
the CGLE. As a result of the interplay between two
effects—motion of the filaments towards each other due
to attraction (two-dimensional effect) and opposite mo-
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tion due to curvature (three-dimensional effect)—a cri-
terion for vortex reconnection was proposed.

In the GLE vortex rings ultimately shrink. However,
with an additional phase gradient j parallel to the ring
axis (e.g., due to rotation of a superfluid or supercurrent
in superconductors) the vortex rings may expand. The
additional force is the analog of the Peach-Koehler force
on a 2D vortex in a background wave number Q =j. In
this situation one has the following equation for the ring
radius R:

dR 1 )

W = — E + aj, (76)
where o~2/In(vy/2j) [see Eq. (51)]. Thus if R>1/(o7)
the vortex ring will expand.

Expanding vortex rings in the GLE were obtained in
simulations as a result of nucleation after a rapid ther-
mal quench by Aranson, Kopnin, and Vinokur (1999).
This problem was considered by Ruutu eral. (1996,
1998) in the context of experiments in superfluid liquid
3He heated well above the transition temperature by ab-
sorption of neutrons. This experiment was designed to
verify a fluctuation-dominated mechanism for the for-
mation of topological defects in the early Universe, as
suggested by Kibble (1976) and Zurek (1985) and elabo-
rated in later work by Dziarmaga et al. (1999), and An-
tunes et al. (1999) mostly in one and two dimensions.

Selected results are shown in Fig. 26. One can see
[Figs. 26(a)—(c)] that without fluctuations the vortex
rings nucleate upon passage of the thermal front. Not all
of the rings survive; the small ones collapse and only the
big ones grow. Although the vortex lines are centered
around the point of the quench, they exhibit a certain
degree of entanglement. After a long transient period,
most of the vortex rings reconnect and form an almost
axisymmetric configuration.

It turns out that fluctuations have a strong effect at
early stages: the vortices nucleate not only at the
normal-superfluid interface, but also in the bulk of the
supercooled region [Figs. 26(d) and (e)]. However, small
vortex rings in the interior later collapse and only larger
rings (primary vortices) survive and expand [Fig. 26(f)].

E. Instability of weakly curved filaments in the large-b
limit

Aranson and Bishop (1997) and Aranson, Bishop, and
Kramer (1998) have shown that the simple relation for
the collapse rate Eq. (74) is violated in the large-b limit,
b=1/e>1. As a result of an asymptotic expansion for €
<1 the equation of motion of the filament takes the
form

dv+ K[ ev— kn]=0, 77)

where v is the velocity of the filament and « is the local
curvature. The 2 X2 matrix K corresponds to the “fric-
tion” matrix of 2D spiral waves (see Sec. IV.B.2).

Note that by dropping the acceleration term in Eq.
(77) one recovers the result of Eq. (74) for b—, since
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FIG. 26. Nucleation and expansion of vortices in the GLE with
background k=0.4. The supercurrent j, is given by j,=k(1
—k?). Shown are the 3D isosurfaces f |[A|=0.4: (a)—(c) no
thermal fluctuations, images are taken at times ¢=36,48,80;
(d)—(f) amplitude of thermal fluctuations 7,=0.002,¢
=24.,48,80. From Aranson, Kopnin, and Vinokur (1999).

for the ring vy=dJ,R,k=—1/R. Restoring the original
scaling r—r/ Jb, one obtains d,R=—Db*R. However,
since in three dimensions the local velocity in general
varies along the vortex line, even a small acceleration
may cause severe instability, because the local curvature
becomes very large. Moreover, deviation of the local ve-
locity from the direction of the normal will lead to
stretching and bending of the vortex line. Thus the ac-
celeration term, which formally can be considered as a
higher-order correction to the equation of motion, plays
a pivotal role in the dynamics of a vortex filament.

1. Perturbation around a straight vortex

An almost straight vortex parallel to the z axis can be
parametrized by the position along the z coordinate:
[Xo(z2),Yo(z)]. Since in this limit the arclength s is
close to z, the curvature correction to the velocity xn is
simply kn= ((ﬁXo,(ﬁYo) = ﬁ?r, where r=(X,,Y,). Us-
ing dr=v, Eq. (77) reduces to a linear equation,

v+ K[ ev—3d2r]=0. (78)

The solution can be written in the form r~exp[ikz
+A(k)t], where N is the growth rate. We immediately
obtain the following relation for \:
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FIG. 27. The growth rate Re \(k) as a function of k for e
=0.02,c=0.1: solid line; theoretical result for k<<1; dashed
line, result of numerical solution of 3D CGLE; inset, blowup
of the small-k region. From Aranson and Bishop (1997).

N+ x(en+k?)=0, (79)

where y=K,,*iK,, is the complex friction (compare
Sec. IV.B.2). One may consider two cases: k<e and k
>e. For k<e, from Eq. (79) one obtains \=—e€y
+0(k?), i.e., recovers the core instability of the 2D spi-
ral. For k> € one derives A\~ * - (K, *iK,,)k. There
always exists a root with a large positive real part: \
~k>e. Therefore, for finite k, the growth rate A(k)
may significantly exceed the growth rate of the accelera-
tion instability in two dimensions (corresponding to k
=0): ReA=—¢€K,,. Hence the small-curvature approxi-
mation considered above can be valid only for finite
time. The falloff of the growth rate A at large k is not
captured by the small-curvature approximation used
here.

2. Numerical results

The theoretical results are compared with numerical
simulations in Fig. 27. As an initial condition, a straight
vortex line with small periodic modulation along the z
axis was taken. As the figure shows, the growth rate
indeed increases initially with & and then falls off for
large k. The theoretical expression (79) shows reason-
able agreement with the simulations for small enough k.
The growth rate at the optimal wave number exceeds
the corresponding growth rate of the acceleration insta-
bility (k=0) by more than two orders of magnitude.

The long-time evolution of a perturbed straight vortex
is shown in Fig. 28. As can be seen from the figure, the
length of the vortex line grows. The dynamics seems to
be vary rapidly in time, and the line intersects itself
many times, forming numerous vortex loops. The long-
time dynamics shows, however, a saturation when a
highly entangled vortex state is developed and the total
length of the line cannot grow further due to a repulsive
interaction between closely packed line segments. The
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FIG. 28. Instability of a straight vortex filament. 3D isosur-
faces of |A(x,y,z)|=0.1 for €=0.02,c=—0.03, shown at four
times: (a) 50, (b) 150, (c) 250, (d) 500. A similar dynamics is
also observed for a larger value of e From Aranson and
Bishop (1997).

dependence of the line length on time is shown in Fig.
29. Two distinct stages of the dynamics can be identified,
rapid growth of the length; second, oscillations of the
line’s length around some mean value.

For small enough ¢, two distinct behaviors of the total
vortex length depending on the value of ¢ are observed.
Above a critical value ¢, corresponding approximately
to the convective instability range of the 2D spiral (c,
—0 for e—0), the total length approaches some equilib-
rium value and does not exhibit significant fluctuations.
In contrast, for c<c., the total length exhibits large
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FIG. 29. The dependence of filament length L on time: solid
line, e=0.02,c=—0.03; dashed line; e=0.02,c=—0.5.



132 I. S. Aranson and L. Kramer: The complex Ginzburg-Landau equation

FIG. 30. Two snapshots of 3D isosurfaces of |A| taken in the
regime of spatio-temporal intermittency, e=0.02,c=—0.5: (a)
t~620 for Fig. 29; (b) t~740. From Aranson, Bishop, and
Kramer (1998).

nondecaying intermittent fluctuations around the mean
value. Figure 30 presents snapshots illustrating the struc-
ture of the vortex field corresponding to maximum and
minimum moments of the length. One can see that in
this situation some segments of the vortex lines start to
expand spontaneously, pushing away other vortex fila-
ments and creating substantial vortex-free holes around
them. The instability then takes over and destroys these
almost-straight segments of filament, bringing the sys-
tem back to a highly chaotic state. This dynamics can be
considered a 3D spatio-temporal vortex intermittency,
which is an extension of the spiral intermittency dis-
cussed in Sec. IVH.4. For even smaller values, c<—1,
one has the transition to a highly chaotic state, which is
an analog of defect turbulence in the 2D CGLE. In this
regime small vortex loops nucleate and annihilate spon-
taneously.
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FIG. 31. Sequence of snapshots demonstrating the evolution
of a vortex ring for €=0.2 and ¢=0.2.

The evolution of a closed vortex loop is shown in Fig.
31. The simulations show that the 3D instability may
prevent the ring from collapse, causing stretching of the
loop in the direction transvere to the motion of collapse.
However, small rings typically collapse, since the insta-
bility described above does not have time to develop
substantial distortions of the ring. Even in this situation
the ring exhibits a few oscillations of the radius.

3. Limits of three-dimensional instability

The previous analysis indicates instability of vortex
lines in the limit e—0 for all c. However, it cannot de-
scribe the boundary of the instability for increasing €. In
order to obtain the stability limit one needs to perform a
full linear stability analysis of a straight vortex solution,
not limited to small & and e (Aranson, Bishop, and
Kramer, 1998). The linear stability analysis shows that
the 3D instability persists substantially beyond the 2D
core instability. The results are shown in Fig. 32. More-
over, the typical growth rate in 3D is much higher than
in 2D.

F. Helices, twisted vortices, and supercoiling instability

Close to the stability boundary of the 3D instability,
the evolution of a straight vortex does not necessarily
result in spatio-temporal chaos. In contrast, the simula-
tions show that the instability saturates, resulting in a
traveling-helix solution (Aranson, Bishop, and Kramer,
1998) or a superposition of two helices with opposite
chirality (zigzag) (Rousseau et al., 1998). Indeed, since
the left and right rotating unstable modes of a straight
vortex have the same growth rate, the resulting configu-
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FIG. 32. Stability limits in three dimensions (solid line) and
two dimensions (dashed line), obtained from linear stability
analysis: 4, limit of the two-dimensional instability, obtained
by direct numerical simulation of the CGLE (Aranson,
Kramer, and Weber, 1994). Vortex lines and two-dimensional
spirals are stable to the right of the respective lines.

ration is determined by the cross-coupling coefficient be-
tween these modes, which is a function of the param-
eters b,c.

The symmetry between left and right rotating helices
can be broken by applying an additional twist to the
straight filament. Studies of twisted filaments were per-
formed by Rousseau et al. (1998) and Nam et al. (1998).
The simulations revealed stable helices and a secondary
supercoiling instability.

Nam et al. (1998) performed linear stability analysis of
a straight filament with twist. It was shown that the twist
reduces the domain of stability for the straight filament.

The question arising in this context is how to prepare
a vortex with twist. One way to proceed is to create an
inhomogeneity close to the axis of the vortex filament.
The inhomogeneity will locally change the frequency of
the vortex and will result in persistent twist. This situa-
tion was realized experimentally in a reaction-diffusion
system by Mironov et al. (1996).

VI. GENERALIZATIONS OF THE COMPLEX
GINZBURG-LANDAU EQUATION

The CGLE is a minimal, universal model that cannot
be further simplified. However, there are many ways to
generalize it in order to include qualitatively new fea-
tures (we are not concerned with additional terms that
merely give quantitative corrections). The main trends
of generalization can be associated with the different
terms of the CGLE:

e generalization of the nonlinearity,
e generalization of the differential operator,
e generalization of the symmetry group.
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A. Subcritical complex Ginzburg-Landau equation
1. Small-amplitude solutions in the weakly nonlinear case

In this subsection we consider the CGLE with a de-
stabilizing nonlinearity,

dA=A+(1+ib)AA—(—1+ic)|A]?A. (80)

The CGLE was first derived in this form for a physical
system by Stewartson and Stuart (1971) in the context of
plane Poiseuille flow, where one has a (strongly) sub-
critical bifurcation.

Spatially homogeneous solutions of Eq. (80) with
A(t=0)=A, diverge at finite time according the
expression

|Agle!
[1+]Ag[*(1—-e*)]"*

Also, for ¢#0 the rate of phase winding diverges. When
|A| is a function of x, however, its behavior is more
subtle.

At first sight one expects a blowup of the solutions,
which can be avoided by adding a fifth-order stabilizing
term. It was suggested by Hocking and Stewartson
(1972) and Hocking et al. (1972) that for generic initial
conditions the blowup does not occur in a considerable
region of the parameter space (b,c). By considering the
evolution of pulselike solutions, the region in the (b,c)
plane was found where the solution remains bounded.
Since |c|, which is the ratio of nonlinear dispersion over
nonlinear growth, has to be sufficiently large, this may
be called the weakly subcritical case.

These results were then apparently forgotten and
were addressed again (independently) by Bretherton
and Spiegel (1983) (in the limit ¢—) and by Schopf
and Kramer (1991). They reproduced many of the re-
sults of Hocking and Stewartson (1972) and found stable
periodic solutions of Eq. (80). The analytic work was
supported by detailed simulations. The work was contin-
ued by Powell and Jakobsen (1993), Kaplan et al.
(1994a, 1994b), Kramer et al. (1995), and Popp et al.
(1998). Weakly subcritical Hopf bifurcations are found
in convection in binary fluids (see Heinrichs et al., 1987;
Moses et al., 1987; Kolodner et al., 1988, 1995, 1999) and
presumably in nonlinear optics (Powell and Jakobsen,
1993; Kramer et al., 1995).

Hocking and Stewartson (1972), Bretherton and Spie-
gel (1983), and Schopf and Kramer (1991) have found
bursts of two types depending on the relative signs of
b,c (by analogy with the nonlinear Schrodinger equa-
tion the case of bc=0 will be called the focusing case
and the others called defocusing).

Kaplan et al. (1994a, 1994b) and Kramer et al. (1995)
proposed a simple physical mechanism, called the phase
gradient mechanism, which arrests collapse in Eq. (80) if
|c| is sufficiently large and |b| is not too large. The
phase-gradient effect manifests itself as a fast differen-
tial phase rotation resulting from an explosive burst am-
plitude increase. To understand this effect it is conve-
nient to rewrite Eq. (80) in the variables A
=R exp[if] [see Egs. (10)]. For the sake of simplicity

|Al=

(81)
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let us consider the limit »<1. Introducing the local wave
number k=4d,0, we find that Egs. (10) reduce to

d,R=(1+R*>)R+#R—k’R,

ax(RZk))

dk=cd . R*+9, R

(82)

From the second equation one sees that a gradient in R
drives the growth of |k|, which in turn saturates R via
the last term in the first equation. If |c| is sufficiently
large, this effect overcomes the explosive growth mani-
fest in the first term on the right-hand side of the first
equation. Specifically, consider an initial pulse having a
small, broad, constant plateau and decaying away at the
edges. Let k=0 initially. At the linear stage of the insta-
bility and then in the subsequent blowup regime, the
amplitude will remain approximately constant inside the
plateau region. At the boundaries sharp gradients of R
will be formed. These gradients will act as sources for
the generation of the phase gradient, i.e., k, in narrow
regions. There the large value of k& will saturate the
blowup. The net result will be two counterpropagating
fronts representing the moving plateau boundaries. The
front propagation speed will not be constant but it will
grow at the blowup stage. Thus, if |c| is sufficiently large,
the pulse will be “eaten” by these fronts moving from
the edges to the center.

2. Strongly subcritical case

The solutions considered above bifurcate from the
trivial state supercritically (in the range of b,c where
they remain bounded), in spite of the fact that the sign
of the real part of the nonlinear term signals a subcritical
bifurcation. Thus in that parameter range, but below
threshold, the trivial state is the global attractor. The
scenario is not changed qualitatively by the addition of
stabilizing higher-order terms. Outside this parameter
range one needs (at least) quintic terms to saturate the
explosive instability provided by the cubic term. The
equation can be written in the form

dA=€eA+(1+ib)AA—(—1+ic)|A]’A
—(1+id)|A|*A. (83)

The finite-amplitude solutions persist stably with respect
to amplitude fluctuations below threshold €<0 in a cer-
tain parameter range, where they coexist with the lin-
early stable trivial solution. There exist moving fronts
and—surprisingly—stable localized pulses over a finite
interval of parameters (Thual and Fauve, 1988). This
clearly is a result of the nonvariational nature of Eq.
(83). A study of the existence, stability, and selection of
various solutions is given by van Saarloos and Hohen-
berg (1992). Localized perturbations around the trivial
state can either decay (small €), evolve into pulses (in-
termediate €<0), or develop into fronts that invade a
plane-wave state. In certain cases their velocity is se-
lected by a nonlinear marginal stability criterion below
some positive value of € and by linear marginal stability,
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as in the supercritical cubic CGLE, for larger e In a
parameter range with sufficiently small nonlinear disper-
sion there exists a class of fronts that can be expressed in
the form (polynomial fronts)

k=ky+eo(R*—R%), R'=e;R(R*—R%).  (84)

Very recently steady fronts that cannot be expressed in
this form have been found (Coullet and Kramer, 2001).
They exist in particular in a parameter range where
there are no polynomial fronts. Whereas the polynomial
fronts are sources in their rest frame, the new fronts are
sinks. They move in a direction that generates the trivial
state even for positive values of €, which can be under-
stood from the phase-gradient mechanism discussed
above. They play a significant role in the dynamics of
spatio-temporal chaotic states and in the formation of
localized structures.

Deissler and Brand (1994, 1995) and Akhmediev et al.
(2001) have studied periodic, quasiperiodic, and chaotic
pulses of Eq. (83) and its generalization. The interaction
of these solutions in the framework of two coupled
equations [Eq. (83)] shows that the result depends sen-
sitively on the initial conditions. Convective and abso-
lute instabilities in the subcritical CGLE are investigated
by Colet et al. (1999).

Deissler and Brand (1991) found in two dimensions
localized particlelike solutions of Eq. (83). Moreover,
one expects localized solutions possessing a topological
charge coexisting with extended (conventional) spirals
known for CGLE (Malomed and Rudenko, 1988). Re-
cently the properties of spiral waves and other localized
solutions in the cubic-quintic CGLE were studied by
Crasovan et al. (2001).

B. Complex Swift-Hohenberg equation

The complex Swift-Hohenberg equation in the form
dA=rA—(1+ic)|A|?A+iaAA—(Q+A)?A, (85)

where r<1 is the control parameter and a characterizes
the diffraction properties of the active media, was de-
rived asymptotically in the context of large-aperture la-
sers (class A and B) with small detuning ) between the
atomic and cavity frequencies (see Staliunas, 1993; Lega,
Moloney, and Newell, 1994, 1995). This equation is also
believed to be relevant for oscillatory convection in bi-
nary fluids; however, it cannot be derived asymptotically
from appropriate Navier-Stokes equations. Equation
(85) is a generic equation in the vicinity of a
codimension-2 bifurcation where the coefficient in front
of the diffusive term is allowed to change sign (see, for
example, Coullet and Repaux, 1987).

Clearly one should distinguish between the real Swift-
Hohenberg equation (see, for example, Cross and Ho-
henberg, 1993) and Eq. (85). The Swift-Hohenberg
equation is a phenomenological model and cannot be
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rigorously derived from the original equations.' In con-
trast, the complex Swift-Hohenberg equation in the
form of Eq. (85) is derived asymptotically and is rigor-
ous in the limit of 1—0, i.e., in the long-wavelength
limit. In this limit the differential nonlinearities have for-
mally higher order and therefore can be dropped. In this
case the wave-number-selecting term (Q+A)2A is just a
small correction to the diffraction term iaAA. Thus the
complex Swift-Hohenberg equation can be treated as a
perturbed CGLE. In contrast to the real Swift-
Hohenberg equation, Eq. (85) has two independent
wave-number selection mechanisms: the first is related
to the (Q+A)? term, providing maximal amplification
for the plane wave exp[i(wt+kx)] with the optimal wave
number k=/Q: the second mechanism is related to the
selection of wave number by topological defects (e.g.,
spirals, holes) in the CGLE and relies on the diffraction
iaAA. For this case the last term in Eq. (85) slightly
changes the wave number selected by the defects (Aran-
son, Hochheiser, and Moloney, 1997).

The stability of plane waves in Eq. (85) was studied in
detail by Lega ef al. (1994). A new feature is the zigzag
(transversal) instability of plane waves for wave num-
bers away from the band center.

In two dimensions Eq. (85) possesses, as does the
CGLE, topological defects in the form of spiral waves.
Aranson, Hochheiser, and Moloney (1997) show that in
the limit of small r these spiral waves undergo a core
instability, leading to stable meandering. Another fea-
ture of Eq. (85) in two dimensions is the existence of
domain boundaries between traveling waves with differ-
ent orientation, usually called zipper states. Further-
more, in two dimensions, the question of wave-number
selection can be transformed into one of wave-vector
selection, since the domain wall can adjust the direction
of ingoing or outgoing waves. The domain wall itself
may no longer be stationary, but may move in a certain
direction if there is no reflection symmetry of the wave
pattern with respect to the domain-wall axis. The second
spatial dimension (along the domain wall) opens the
possibility for additional instabilities of the wall, as was
observed experimentally in convection in a binary mix-
ture by Moses et al. (1987) and La Porta and Surko
(1997). Aranson and Tsimring (1995) have shown that
near threshold the active (emitting waves) zipper states
are alway unstable with respect to transverse undula-
tion. The nonlinear stage of this instability leads to the
creation of a chain of topological point defects (spirals),
which themselves are unstable. The latter appears to be
analogous to the famous Kelvin-Helmholtz instability of
a tangential discontinuity of shear flows. Passive (ab-
sorbing) zipper states turn out to be stable.

13The Swift-Hohenberg equation is obtained by keeping only
one nonlinear term. However, nonlinear terms also involving
derivatives have formally the same order and, strictly speaking,
cannot be neglected.
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C. The complex Ginzburg-Landau equation with broken
gauge invariance

It is interesting to break the global gauge invariance
of the CGLE. This corresponds in particular to a situa-
tion in which a system undergoing a Hopf bifurcation
with the frequency w,. is parametrically forced (modu-
lated) at a frequency near w./2. This leads to

dA=A(etin)+(1+ib)AA—(1+ic)|A]PA+ yA*.
(86

Obviously, instead of global gauge invariance A — Ae'®
one is left with the discrete symmetry A— —A. Here o
is the detuning, y>0 is the forcing amplitude, and € de-
scribes the distance from the threshold of instability.

1. From oscillations to bistability (e>0)

For €>0,'* depending on the values of the other pa-
rameters, Eq. (86) describes an oscillatory or bistable
situation. In the latter case the system is in general (i.e.,
for b,c,w#0) of an excitable nature. In the context of
ferromagnets in a static magnetic field it describes do-
main walls separating two stable states (domains with
opposite spins). The domain walls exhibit a transition
involving a spontaneous breaking of chirality (in ferro-
magnets Ising walls become Bloch walls as the strength
of crystal anisotropy is reduced; Lajzerowicz and Niez,
1978, 1979). In such an equilibrium situation the imagi-
nary coefficients in Eq. (86) vanish and Eq. (86) can be
cast in variational form:

oF
A== (87)

where the free-energy functional is of the form

4
F:H—ewz 14 |+|VA|2 [(A*)2+A2])dxdy.
(88)

Equation (87) possesses stationary kinklike solutions
connecting stable homogeneous equilibria A=* 1+ vy
for e=1:

A=+ 1+ ytanh(\/1+ yx), (89)

V1-3y
Ap==*\1+ytanh x_l 90
5== (V2y)=i— oo 0
The first solution, called by Coullet et al. (1990) an Ising
wall, is stable when y>+y.=1/3; the second solution,
which is stable for y<<vy, and breaks chirality, is called a
Bloch wall. The order parameter A vanishes at the core
of the Ising wall but not at the core of the Bloch wall.
For y=1/3 an exchange of stability (pitchfork bifurca-

tion) occurs between these two solutions.
Coullet et al. (1990) investigated the behavior of Ising
and Bloch walls in nonequilibrium conditions, when at

14Note that for €>0, by rescaling z,r,w,y,A in Eq. (86), € can
be replaced by 1.
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least one of the coefficients b, ¢, or w is nonzero. They
found that nonpotential effects in general lead to motion
of the Bloch walls and not of the Ising walls (see also
Coullet and Emilson, 1992; Sakaguchi, 1992; Mizuguchi
and Sasa, 1993; Chaté et al., 1999). Coullet ef al. (1991)
applied this concept to the description of the Ising-Bloch
transition in ferromagnets in a rotating magnetic field.

Frisch et al. (1994) have studied Eq. (86) in two di-
mensions in the context of a homeotropically aligned
nematic liquid crystal in a rotating magnetic field in the
vicinity of the electric Fredericks transition. They have
found that Bloch walls containing a defect separating
the two variants assume the form of rotating spiral
waves. Those spiral waves were also studied experimen-
tally by Migler and Meyer (1994). Frisch et al., (1994)
have shown that spiral waves in Eq. (86) combine the
properties of spirals in oscillatory media (as in the
CGLE) and of excitable spirals (as in reaction-diffusion
systems; Tyson and Keener, 1988). The problem of the
spiral’s frequency selection was solved by Aranson
(1995) for small w and b=c=0. In particular, it was
shown that the frequency is selected by the local curva-
ture of the moving Bloch wall. For y,w<1 the spiral
wave solution can be described in the phase approxima-
tion by the overdamped sine-Gordon equation (¢
=arg A)’

d,p=w—ysin(2¢)+ A . (91)

Korzinov et al. (1992) have studied Eq. (86) in the
context of periodically forced convection. Hanusse and
Gomez-Gesteira (1994) considered it in the context of
chemical systems.

Frisch and Gilli (1995) as well as Coullet and Plaza
(1994) considered the more general equation

9 A=A(1+iw)+(1+ib)AA
—(1+ic)|A]PA+ yA* +,. (92)

The term v, is responsible for the effect of a tilted mag-
netic field. In contrast to Eq. (86) the spiral waves in the
framework of Eq. (92) exhibit a diverse variety of be-
haviors from rigid rotation to meandering and even hy-
permeandering. The Ginzburg-Landau equation with
more complicated forcing terms was studied by Gilli and
Gil (1994).

2. Parametric excitation of waves in the Ginzburg-Landau
equation

Equation (86) for €<0 is a phenomenological model
of parametric excitation of surface waves in fluids (Gol-
lub and Langer, 1999). In the absence of parametric
driving yA* the system always relaxes towards the
trivial state A =0. However, if the parametric driving ex-
ceeds the critical value y.=(w—e€b)/1 +b72, the trivial
state A=0 becomes unstable with respect to standing
waves with wave vector k= (bw+€)/(1+b?) of arbi-
trary orientation. In this sense Eq. (86) is reminiscent of
the Swift-Hohenberg equation (Cross and Hohenberg,
1993).
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In two dimensions a variety of nontrivial static and
dynamic states are possible. Theoretical studies of
spatio-temporal chaos in Eq. (86) in the context of sur-
face waves in fluids were conducted by Zhang and Vi-
nals (1995). Spiral waves were studied experimentally
and theoretically by Kiyashko et al. (1996).

Tsimring and Aranson (1997) and Aranson, Tsimring,
and Vinokur (1999) used Eq. (86) coupled to an addi-
tional field to describe pattern formation in a thin layer
of vibrated granular materials in connection with experi-
mental studies (Melo et al, 1994, 1995; Umbanhowar
et al., 1996). In this case the parameters y and w can be
associated with the amplitude and the frequency of ex-
ternal periodic driving. Depending on the values of y
and o, a variety of stable solutions were found ranging
from localized oscillons and interfaces separating do-
mains of opposite polarity to periodic stripes, squares,
and hexagons. The topology of the transition lines be-
tween different types of solutions turns out to be in
agreement with the experiments.

D. Anisotropic complex Ginzburg-Landau equation in two
dimensions

In many physically relevant situations the 2D CGLE
is essentially anisotropic (see Sec. LA class iii), i.e., it is
of the form

GA=A+(1+ib)) A+ (1+iby)dA
—(1+ic)|A]A, (93)

with b;#b,. The equation in this form was studied by
Weber et al. (1991), Brown et al. (1993), and Roberts
et al. (1996). The stability of plane waves depends on the
orientation of the wave vector, in particular, the situa-
tion in which the wave is stable in only one direction.
Under such a condition Weber ez al. (1991) found stable
lattices of defects.

New features of phase and defect chaos in the 2D
anisotropic CGLE were found by Faller and Kramer
(1998, 1999). The phase-chaotic states exist over a
broader parameter range than in the isotropic case, of-
ten even broader than in one dimension. They may rep-
resent the global attractor of the system. There exist two
variants of phase chaos: a quasi-one-dimensional and a
two-dimensional solution. The transition to defect chaos
is of the intermittent type.

E. Coupled Ginzburg-Landau equations

When both the critical wave number g, and the criti-
cal frequency w, are nonzero at the bifurcation (class iii)
with reflection symmetry (see Sec. I.A), the primary
modes are traveling waves that in one dimension or in
the presence of anisotropy are described by two coupled
complex Ginzburg-Landau equations. The physical
fields in the weakly nonlinear regime are of the form

~Agexp[—i(wt—qx)]|+Apexp[ —i(w.t+q.x)]+c.c,
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where Ay and A are the complex amplitudes of right-
or left-traveling waves. In one dimension the coupled
CGLE’s are given by

JAR+sd Ag=Ag+(1+ib)JiAg
—[(1+ic)|Ag>+(1+id)g|AL|*]Ag,
G A=A =A +(1+ib)d A,
—[(1+ic)|A P+ (1+id)g|lAg/HIA,,
(94)

where s is the linear group velocity and (1+id)g is the
complex coupling coefficient between the two modes
(Cross and Hohenberg, 1993).

In addition to the usual CGLE parameters b and c
one has here three relevant parameters s, d, and g.
Careful surveys of the various regimes occurring in Egs.
(94) are given by van Hecke et al. (1999) and Riecke and
Kramer (2000); see also Amengual et al. (1996, 1997)
and Neufeld et al. (1996).

The case of strong suppression corresponds to g=>1.
In this situation dual-wave solutions with Az=A;#0
are unstable. In contrast, single-wave solutions with A
#0,A; =0 or vice versa can be stable. For g>1 a variety
of source and sink solutions in counterpropagating
waves were analyzed by Malomed (1994), Alvarez et al.
(1997), and van Hecke et al. (1999).

F. Complex defects in the vector Ginzburg-Landau
equation

The vector CGLE can be viewed as a particular case
of Eq. (94) for s=0:

dA=A.+(1+ib)V?A.
_(1+iC)[|Ar|2+(1+id)g|A:|2]Ar . (95)

The problem of nonlinear dynamics of a complex vector
field arises most naturally in the context of nonlinear
optics, where the order parameter is the electric-field
envelope in the plane normal to the direction of propa-
gation; the fields A . can be identified with the two cir-
cularly polarized waves of opposite sense (Gil, 1993;
Haelterman and Sheppard, 1994; Pismen, 1994a, 1994b,
1999; San Miguel, 1995; Buryak et al., 1999; Hernandez-
Garcia et al., 1999; Hoyuelos et al., 1999).

A distinguishing feature of the vector GLE is the pos-
sibility of a transition between two phases, which can be
characterized by either mixing or separation of two su-
perfluids. Defects (vortices) can exist in both superfluids,
and transitions between alternative core structures are
possible (Pismen, 1994a, 1994b, 1999); in this sense the
real case (vector GLE) could be viewed as a toy model
for the nine-component description of superfluid *He,
dressed down to two components. Pismen (1994a,
1994b) introduced the notation of vector and scalar de-
fects in the vector GLE. Vector defects have a topologi-
cal charge (and therefore zeros of A.) in both fields,
whereas scalar defects have a nonzero charge in only
one of the fields A - .
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Simulations of the vector CGLE by Hernandez-
Garcia et al. (1999, 2000) have shown spiral wave pat-
terns with an exceptionally rich structure in which both
separated (but closely packed) scalar defects in the two
fields and vector defects with a common core could be
seen.

A particularly intriguing possibility, suggested by Pis-
men (1994a), is the formation of a bound pair of defects
in the two fields, i.e., a vortex “molecule” with dipole
structure. Aranson and Pismen (2000) have shown that
such a molecule requires complex coefficients. Analyti-
cal calculations were conducted in the limit of small cou-
pling g between two complex fields. As was shown, the
interaction between a well-separated pair of defects in
two different fields is always long range (powerlike), in
contrast to the interaction between defects in the same
field, which falls off exponentially as in a single CGLE
(Aranson, Kramer, and Weber, 1993a). In a certain re-
gion of parameters of the vector CGLE, stable rotating
bound states of two defects—a vortex molecule—are
found.

G. Complex oscillatory media

Two-dimensional oscillatory media exhibit a wide va-
riety of wave phenomena, including spiral waves, phase
and defect turbulence, etc. The CGLE describes the dy-
namics of oscillatory media in the vicinity of a primary
Hopf bifurcation. Brunnet ef al. (1994) and Goryachev
and Kapral (1996) have shown that spiral waves may
also exist in systems with more complex local dynamics,
e.g., period-doubling bifurcations or chaos. In this situa-
tion the rotational symmetry of spiral waves may be bro-
ken by line synchronization defects.

Goryachev et al. (1999) studied transitions to line-
defect turbulence in complex oscillatory media support-
ing spiral waves. Several types of line-defect turbulence
were found in a system in which the local dynamics is
described by a chaotic Rossler oscillator. Such complex
periodic spirals and line-defect turbulence were ob-
served experimentally in chemical systems by Park and
Lee (1999).

VIl. CONCLUDING REMARKS

In this work we have attempted to overview a wide
variety of dynamic phenomena described by the CGLE
in one, two, and three dimensions. The CGLE exhibits
in many respects similar behavior in all dimensions, e.g.,
active and passive defects, distinct chaotic states, con-
vective and absolute instabilities, etc. Surprisingly, quan-
titative aspects of instabilities and transitions are differ-
ent. In particular, the core (acceleration) instability of
1D Nozaki-Bekki holes, 2D spirals, and 3D vortex fila-
ments has different manifestations: Nozaki-Bekki holes
undergo a stationary instability, spirals exhibit unsatur-
ated Hopf bifurcations, and 3D vortex filaments show a
supercritical Hopf bifurcation. One observes a general
trend in the region of occurrence: 1D defects have the
smallest stability domain, 2D spirals are stable over a
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much wider range of parameters, and the stability do-
main again decreases for 3D vortex filaments.

The unique combination of all of these features in one
equation stimulates continuous interest in this topic in a
broad scientific community. The insights obtained from
the CGLE over the last decades have had an enormous
impact on the physics of nonequilibrium systems, pat-
tern formation, biophysics, etc. and will be useful for
further progress in the physics of complex systems.

Let us discuss briefly some open problems in the
world of the CGLE.

e Description of turbulent states in all dimensions. Al-
though considerable work has been done to identify
the stability limits and transition lines between various
turbulent states in the CGLE, surprisingly little is
known about the statistical properties of these states.
The main obstacle is the lack of appropriate analytical
tools, since the traditional methods of statistical phys-
ics are not suitable for a description of spatio-
temporal chaos.

e The structure and statistical properties of vortex glass.
The “glassy” properties of this state (such as power-
like decay of correlations and a hierarchy of relax-
ation times) are not yet adequately explained.

e The dynamics of the 3D CGLE. The revolutionary
development in computers will make possible a de-
tailed investigation of this area.

Hopefully the last two questions will be elaborated on
during the next decade. However, the problems of
spatio-temporal chaos and turbulence may require con-
siderable time and effort.
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