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Competition in ramped Turing structures 

P. B o r c k m a n s  1, A .  D e  Wi t  2 a n d  G .  D e w e l  1 
IService de Chimie-Physique and 2Centre for Nonlinear Phenomena and Complex Systems, 
C.P. 231, Universit~ Libre de Bruxelles, 1050 Brussels, Belgium 

Stationary pattern selection and competition in the uniform Brusselator in two (2D) and 
three (3D) dimensions are reviewed, including reentrant hexagonal and striped zig-zag 
phases. Influences of linear or chain-like profiles of the pool chemicals on this selection are 
presented in the form of numerical experiments. The relation with the recent experimental 
patterns obtained with the CIMA reaction is discussed. 

1. Introduction 

Turing structures [1] are stationary periodical concentration patterns result- 
ing f rom a diffusive instability originating from the sole coupling of reaction 
and diffusion processes [2]. It has been claimed that such a mechanism may 
have deep biological implications [1-4]. Was the original paper  of Turing not 
entitled "Chemical  basis for morphogenesis"?  They however remain to be fully 
vindicated. From another  fundamental  point of view they may also prove to be 
important .  Indeed they are characterized by an intrinsic wavelength that 
depends  only on the diffusion coefficients, kinetic constants and concentration 
of some control species and not on some geometrical pa ramete r  of the 
exper imenta l  set-up. The experimental  3D chemical patterns may therefore 
prove  to be the first structures far from equilibrium resulting from a true 
symmetry-breaking  process [5, 6]. 

As was foreseeable,  the observat ion [7-12] of genuine Turing structures in 
solution chemistry,  nearly forty years after their prediction, triggered a wave of 
renewed experimental  and theoretical interest. Hopeful ly the t remendous  
corpus of theoretical knowledge that had accumulated may now be put to the 
test. 

To the eye, the similarities between the symmetries of the experimental ly 
observed structures and those predicted from the nonlinear theory for uniform 
conditions [13-17], are undeniable. In the experimental  conditions the system 
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is however kept under control by feeds through the boundaries that create 
specific nonuniformities. This led us to try to understand the effects of 
parameters ramps on the pattern selection p r o b l e m - t h e  aim of which is 
summarized in section 2 - i n  a 2D and 3D chemical system with the aid of 
intensive numerical simulations. In the third section we first summarize the 
bifurcation behaviour under uniform conditions for the Brusselator model in 
large systems, on which our studies are performed. Indeed this bifurcation 
structure may then be used, in the fourth section, to help us organize the closer 
to experiments ramped situations. 

The properties of the patterns obtained for uniform constraints may however 
also be of interest in regard of the experimental results in the new C S T R -  
membrane reactor [11] and also when the applied experimental ramps of 
concentrations are such that the structure is localized in a thin slab, the width 
of which is at most one wavelength, perpendicular to the feeding direction 
[10, 19]. Such structures may then be considered as quasi-2D. 

2. The pattern selection problem 

Because reaction-diffusion systems undergoing auto- or cross-catalytic pro- 
cesses are inherently nonlinear one expects the occurrence of some multiplicity 
in the number of solutions as a result of bifurcation phenomena.  

Pattern selection is then, in some sense, the study of the relative stability of, 
or competition among, these solutions when they are the result of symmetry- 
breaking bifurcations. More precisely, its aim lies in the determination, for 
given parametric conditions, of the possible s t ruc tures-geometr ica l  aspect, 
orientation, w a v e l e n g t h - a n d  their stability properties. This problem was 
already on Turing's mind when he stated in the final sections of his paper [1]: 

"Most  of an organism, most of the time, is developing from one pattern into 
another,  rather than from homogeneity into a pattern. One would like to be 
able to follow this more general process mathematically also". 

The basic equation for the study of Turing structures are reaction-diffusion 
equations: 

OC 
~ -  = f ( C )  + D V 2 C ,  

where C is a vector of concentrations, f ( C )  represents the reaction kinetics and 
D is the diffusion matrix. 

Linear stability analysis of the reference uniform state C O leads in general to 
a complex dispersion relation for the growth rate o-(k, B)  and frequency 



P. Borckmans et al. / Competition in ramped Turing structures 139 

w(k,  B)  as a function of the wavevector k of the perturbation and control 
parameter  B. From this dispersion relation one determines the critical 
wavevector  k c corresponding to the lowest value, Be, of B at which the growth 
rate tr first becomes positive. Turing's instability corresponds to the class of 
space-symmetry-breaking instabilities that are characterized by the fact that, at 
Be, o-= 0 occurs with o~ = 0 and k c ~ 0. To tackle the problem above B~, one 
must first determine which set of modes are active in the leading approximation 
to the solution of the nonlinear problem. 

In small systems, the size of which is of the order of the wavelength (2,rr/kc) 
of the emerging pattern, the spectrum of the linearized operator  is discrete, 
and at most finitely degenerate.  Thus only a finite number of modes become 
excited and the concentration field C(r, t) may be approximated by a linear 
superposition of these modes, which interact nonlinearly. In this case, the 
center manifold theorem [20] assures that the original reaction-diffusion 
equations are well approximated by the reduced dynamics represented by a 
finite set of nonlinear ordinary differential e q u a t i o n s - t h e  amplitude equa- 
t i o n s -  that may be derived by standard techniques [2]. 

No such theorem exists, however, for large systems where the boundaries 
are at infinity or too far away to constrain the spectrum of spatial modes. It is 
nevertheless the case we have to consider to address the experimental Turing 
patterns as they exhibit the characteristics of extended systems. In the present 
state of the trade, the tackling of a large degeneracy of the linear spectrum is 
organized along two axes that bear directly on the problem of pattern selection 
[21,22]. 

The first is related to the geometrical aspect of  the pattern and its orientation. 
Often indeed k c will not be unique, reflecting some symmetry in the equations 
or boundary conditions. In the isotropic reaction-diffusion equations, which 
are the rule in liquid phase, we have a rotational degeneracy because the linear 
growth rate depends only on the modulus of k, o- = ~r(k 2, B),  and therefore all 
modes lying on the sphere (circle in 2D) of radius ]kJ -- kc may equally become 
excited and must therefore be included in the analysis. There is at present no 
completely satisfactory way to treat this problem. To proceed, one allows all 
the sets (M = 1 . . . .  ) of pairs of discrete modes k i ([ki] = k~), i =  l , . .  M, to 
compete  with each other  and one determines which combination 

M 

C(r, t) : C o + Z (Ai  eiki'r "~ a~  e-iki'r), Ik l = kc,  
i - - I  

will be favored by the nonlinear coupling. It is the combinations of k i modes 
that determine the physical aspect of the patterns. They are related to the 
tessellations of space [23], e.g. in 2D we may have stripes (M = 1), rhombi 
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(M = 2), triangles (M = 3), hexagons (M = 3). The presence of anisotropies 
tends to partially lift the orientational degeneracy, thereby modifying the 
pat tern selection. For instance, the void lattices in metals subjected to irradia- 
tion (a system that may sometimes be cast in the form of a reaction-diffusion 
problem) are influenced by the symmetry of the underlying host atomic lattice 
[24,25]. Similar effects may also come into play in the spatio-temporal 
structures [26, 27] obtained recently for the catalytic oxidation of CO on Pt 
[110] [28]. 

The other  effect touches on the wavelength of the pattern and can be dealt 
with in a much more satisfactory way. It is related to the quasi-degeneracy 
linked with the existence of the finite continuous band of modes, which, as 
soon as B > B c, become simultaneously unstable with the critical modes k~ 
(Ikil = kc), i = 1 , . . .  M. For a given B, one must thus take into account all the 
modes that lie inside the neutral stability curves o-(k 2, B) = 0. In large, finite 
geometries,  although these modes are quantified they are so close together that 
we may best think of them as a quasi-continuum. The effects of these 
sidebands of modes is best captured by considering the excitation of wave 
packets of modes centered on the critical modes. 

The full problem naturally takes both aspects into account. Using the 
standard techniques of bifurcation analysis, one determines the nonlinear 
complex amplitude equations that arise through asymptotic solvability condi- 
tions and that, for a pattern characterized by M pairs of wavevectors (i = 
1 . . . .  , M) ,  are of the form 

OA~ [ B - B  c ( 0  i 0 2 '  2 ] 

at - B ~  + O x i 2-kc ) JA, 
M M 

+ v(B) Z • a~a~6(ki + kj + kk) 
j k 

M M M M 

- Z yuJAjJZAi- Z Z Z fljk,a*]A**,A~8(k~ + kj + k k + kl), 
j j k t 

where x i and yi lie respectively in the directions parallel and orthogonal to k~. 
The last term represents the contributions of noncoplanar quadrangles of k~ 
that may arise in 3D. In these partial differential equations the spatial 
operators take the effect of the sidebands into account and therefore permit 
the t reatment  of modulational effects related for instance to the presence of 
boundaries,  d e f e c t s , . . .  

It is worthwhile noting that many of the typical nonlinear equations of 
mathematical phys ics-  Kor teweg-de  Vries, nonlinear Schr6dinger . . . .  - a r i s e  
precisely through a similar procedure.  They therefore possess universal fea- 
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tures as their structure is determined solely by the symmetries of the given 
problem and only the values of the coefficients in the amplitude equation take 
care of the idiosyncrasies of the specific problem considered. However, this 
universality is lost as soon as secondary, tertiary . . . .  bifurcations come into 
play [29, 30]. One is then led to consider scenarios eventually leading to the 
spatio-temporal complex phenomena that arise in these large aspect ratio 
systems with loss of various kinds of correlations and proliferation of defects as 
was done earlier for the roads to chaos in small systems [22]. 

In principle, once the amplitude equations, and their coefficients, are known 
it is possible to study the stability of the various structures with different 
geometrical form and wavelength. When the amplitude equations are relaxa- 
tional and can thus be derived from a Lyapunov functional L[A ,  A*] such that 

OAi ~L OL ~ ( ~L ]2 
Ot - ~A* where Ot - . \-g-~ ] <-0, 

the globally stable pattern corresponds, for given B, to the absolute minimum 
of L [ A ,  A*], whereas the relative minima represent metastable structures. 
This simple picture, at best valid near Be, is soon lost when B increases as most 
nonlinear problems, and certainly the chemical systems we are interested in, do 
not exhibit this so-called variational property. 

This relative stability problem for variational systems may also be resolved 
by considering the velocity of a domain wall (front) joining two (stable) 
solutions of the amplitude equation: If these two structures (say a and 13) are 
bistable between values B I and B 2 of the control parameter, there exists one 
value Be0, for which the wall is stationary (zero velocity), and the phases a and 
13 coexist spatially. For all other values in the interval {B1, B2} one phase will 
dominate the other and will invade the whole system as in classical nucleation 
theory. This method was recently used [31, 32] to study the coexistence of 
M = 3 and M = 1 structures in a 2D model. One has then to test for all the 
relative orientations of the k i defining both structures with respect to the 
direction of the domain wall. This problem already complex in itself is even 
trickier when it puts spatial structures, which possess their own characteristic 
length (2w/kc) , on the stage. In that case so-called nonadiabatic effects 
describing the pinning of the domain boundaries by the small-scale structure 
(for instance the concentration cells) seem to play an important role. These 
exponentially weak effects cannot be accounted for by the amplitude equations 
that only govern the large-scale modulation of the pattern. Other techniques 
must then be introduced. 

This dynamical method to test the relative stability of two phases is, 
however, also valid when the system does not present variational properties. It 
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has so been shown recently that under particular conditions the coexistence 
point Be0 may be shifted by these nonvariational effects leading, in a finite 
region, to the possibility of stable localized structures [33, 34] (under uniform 
conditions), the building blocks of which are provided by such domain walls 
[35-37]. The chemical "flip-flop" [9] recently discovered may fall in this 
category [38]. 

In large systems, the particular orientations of the patterns has to be chosen 
by some external or initial bias, because of the orientational degeneracy. 
Often, in real experiments, different biases are present in different parts of the 
domain and a structure with diverse orientations starts growing in various parts 
of the system. The way in which these orientationally competing patches form 
compatible patterns is a subject of much present interest. It is not unusual for 
these patterns to remain time dependent  over very long times and indeed never 
settle down at all. The resulting mismatch leads to the formation of defects 
(dislocations, disclinations) that play an important role in pattern rearrange- 
ment. Many aspects of their behaviour may then be described in the frame- 
work of phase equations [21, 22]. 

3. Pattern selection for the Brusselator under uniform conditions 

In a distributed system, when written in terms of scaled variables, the 
Brusselator model [2] is defined by its reaction-diffusion equations 

OX 

Ot 
= A _ ( B  + I ) X  + X 2 y  + DxV2 X OY 

' O t  
- B X  - X 2 y  + D r V 2 Y  , 

where the concentrations of species A and B serve to control the system, B 
being specificially chosen as the bifurcation parameter.  In this form, A and B 
are thus taken as pool species that are kept at a constant value in time. In this 
section that value is also chosen to be uniform over the system. Although 
rather unrealistic, this so-called pool-chemical approximation lies at the basis 
of most theoretical developments for the sake of mathematical tractableness. 
Recent  experimental set-ups may however fit into this approximation. The first 
is that implemented in the already cited new CSTR-membrane  reactor [11]. 
Another  situation where this approximation may apply concerns the hetero- 
geneous catalytic reactions [39] over well defined crystalline planes where the 
feed comes from the gas phase and where spatio-temporal symmetry breaking 
phenomena on the surface have been reported recently [26-28]. 

In these conditions, the Brusselator possesses a uniform reference state 
( thermodynamic branch) X 0 = A, Y0 = B / A  that undergoes a space (Turing) 
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symmetry  breaking bifurcation for B = B c = (1 + A D x ~ )  2 with k~ = A~ 

V ~ x D v  when Dy > DxA2/(~/1 + A z - 1) 2. This inequality simply implies that 

the Turing instability takes place before the Hopf  bifurcation, which is also 
suppor ted  by the Brusselator.  It may be relaxed if one allows, as proposed 
recently [40], for a fast, reversible reaction involving species X and a slowly 
diffusing or immobile  complexing agent in excess in the system (see fig. 1). 
This attractive idea may then lie at the basis of a systematic strategy to uncover 
new Turing structures in chemical systems not related to the C I M A  reaction 
[121. 

Because the experimentally obtained structures present the characteristics of 
large aspect ratio systems, we will not consider Turing patterns in small 
systems. Their  propert ies are considered for instance in refs. [2, 4]. 

We now want to summarize our numerical simulations on the Brusselator 
and put them in relation with the results derived from the nonlinear theory and 
also the experiments.  We essentially used two sets of parameters  values: 

Set I: ff~- v(Bc) < 0 ,  A = 4 . 5 ,  D y / D x = 8 ,  Bc = 6.71 , 

Set II: if=- v(Bc) > 0  , A = 2 ,  D r / D x = 5 ,  Bc = 3.58 , 

and the actual values of D x and D v used may be found in the figure captions. 
The integrations were carried out on a RISC workstation in order to be able 

to follow the transient behaviour  as well as the asymptotic states. Use was 
made of an explicit Euler  scheme complemented  by finite difference methods.  

...... ::~i~Tiii!iiii~i :~: ~:~'ii~: iiiiiiiill ':: 

[a] [b] [c] 

Fig. 1. The three basic 2D patterns for species X in a Brusselator modified to take the 
Lengye l -Eps t e in  procedure [40, 12] into account.  They are similar to the structures obtained for 
the s tandard Brusselator for set I of  parameters  [55]. The integrations were carried out on a square 
grid of size 64 x 64 with periodic boundary conditions. The gray scale corresponds to the 
concentra t ions  lying between the absolute min imum (black) and max imum (white). They thus 
measure  relative concentrat ion variations. (a) Near  critical H'rr (6 < 0) for A = 1.5, D x = D r - 4,  

o- = 3, B = 6.5. (b) Stripes for the same set of  parameters  as in (a) but B = 7.5. (c) Near critical H0 
( 6 > 0 )  for A = 0 . 5 ,  D x = D r = 4 ,  o - = 6 ,  B = 3 .  Here o- is the complexification factor [40, 12]. 
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3.1. The 3 D  Brusselator 

Using set I, we corroborated [41] the theoretical bifurcation diagram that has 
been obtained in the weakly nonlinear limit (near Be) [13, 14, 16]. The 
following sequence of patterns emerges as B is increased. When the reference 
state becomes unstable, a body-centered cubic structure (M = 6) is the first to 
appear subcritically. It is followed, also subcritically, by hexagonal prisms 
(M = 3) and then supercritically by lamellae (M = 1). As discussed in ref. [9] 
these patterns may be consistent with the experimentally observed 3D struc- 
tures. However,  more experimental and theoretical work is necessary to make 
a definite assessment. 

3.2. The 2 D  Brusselator 

Because we wanted to test the effects of ramps that extend to values of B 
beyond the range of validity of the weakly nonlinear theory, we analyzed the 
2D pattern selection more thoroughly. This part of our work is complementary 
to that undertaken by Dufiet and Boissonade [42, 43] for the Schnackenberg 
model [44]. 

3.2.1. Near B c 

When t7 < 0, a structure of hexagonal symmetry is first obtained, on increas- 
ing B quasistatically, where the maxima of concentration of X are arranged on 
a honeycomb lattice ( H v  s t r u c t u r e - M  = 3) (fig. la). Further,  these H~r 
become unstable with respect to stripes ( M =  1) (fig. lb). Reversing the 
variation of B allows to recover the H~r but by undergoing an hysteresis loop 

(insert of fig. 2). 
In this range we thus recover the sequence of events predicted by the weakly 

nonlinear theory [13-18], i.e. the standard hexagons-"rolls" competition 
known from the Rayleigh-B6nard [23, 45-48] and the B6nard-Marangoni  [49] 
problems. It is therefore not totally surprising that stripes and hexagons have 
also been observed [10-12] in some of the experimental work to date of Turing 
structures. 

When t7 > 0 ,  the first structure of hexagonal symmetry now gives rise to 
maxima of X concentration forming a triangular lattice (H0 structure - M = 3) 
(fig. lc). 

In an unbounded system the stripes are determined up to a phase factor that 
corresponds to the fact that an arbitrary translation leaves the pattern in- 
variant. However,  the patterns with hexagonal symmetry are composed of 
three sets of stripes and two phases are sufficient to describe all the translations 
in the plane. The third phase or equivalently the sum of the three phases must 
thus be determined by the dynamics. The H-~ and HO patterns therefore differ 
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Fig. 2. Bifurcation diagram compiled from the numerical simulations using set I of parameters. 
[Xm. x -- X~] is drawn as a function of the bifurcation parameter B. The inset zooms in the region 
near B c. 

only by the value of the sum of the phases that is recalled in the notation used. 
It is remarkable that for different kinetics, or smaller size systems and even 

for other  boundary forms or conditions the same 2D (and probably 3D) 
patterns should emerge [42, 43, 50-53]. This may bring some light to the 
understanding of the patterns obtained in a capillary [54]. 

3.2.2. Reentrant hexagons 
When t7 < 0, starting on the previously described stripe branch and increas- 

ing B again quasistatically, the stripes eventually become unstable with respect 
to an H0 type pattern (fig. 2). These remain stable for still higher values of B 
(this was tested up to B = 32). At this point, decreasing B again leads back to 
the stripes with the appearance of another  hysteresis loop. The previous loop 
and this one were never seen to overlap for the parameters values that we 
screened. Such a reentrant  hexagonal phase was also discovered by Dufiet and 
Boissonade [42, 43]. 

When 6 > 0, the situation is different. Indeed the H0, obtained in this case 
near Bc, never destabilized to stripes (that may however appear as an isolated 
branch) or another  H-rr structure when increasing B quasistatically. The 
secondary bifurcations therefore really lead to the breakdown of the simple 
universality that prevails near B c. 

These scenarios, for the Brusselator and the Schnackenberg models, can be 
explained simply in terms of a renormalization, due to higher-order nonlinear 
contributions, of the quadratic coupling coefficient v [55, 56]. The two kinds of 
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hexagons have been observed (see fig. 3a,b of ref. [57]), one of them being 
only transitorily. However, a stationary succession H-rr/stripes/H0 may have 
been seen experimentally in the presence of gradients [19]. Indeed as will be 
seen in section 4 the presence of a ramp permits the unfolding in space of the 
bifurcation diagram (spatial coexistence). 

3.2.3. Zig-zag patterns 
A branch of zig-zag stripes (fig. 3) simultaneously stable with the straight 

stripes was also uncovered when starting from random initial conditions instead 
of proceeding quasistatically from the Hw. Such patterns arise also in the 
electrohydrodynamic instabilities of a nematic liquid crystal [58]. When B 
increases, the knee angle in the structure also grows steadily (fig. 4) until it hits 
~ /6  where the zig-zag pattern becomes unstable to the H0 structure. 

Standard stability analysis [22] implies that in the k < k c sideband stripes 
undergo a zig-zag instability inducing a periodic modulation of the concen- 
tration field in the direction of the axis of the stripes. It was shown recently 
[59, 60] that this instability may saturate for k ~< k c giving rise to zig-zag stripes 
whereas for deeper quenches in the sideband no saturation of the zig-zag mode 
occurs and the zigs and zags of successive stripes reconnect to yield a new set of 
straight stripes. Both these processes have also been observed by Dufiet and 
Boissonade [42]. Such wavy stripes were also obtained for the hyperchirality 
model [52]. For other conditions the zig-zag instability may also give rise to the 
creation of defects and chaos [60]. 

Fig. 3. Zig-zag stripes on a 64 x 64 grid with periodic boundary conditions with set I of parameters  
for D x - 7  and B -  1{I. 
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Fig. 4. Bifurcation diagram representing the size of the knee angle of the zig-zig stripes as a 
function of B for set I of parameters. 

Such undula ted  stripes have not  been seen experimental ly  but then in the 

large aspect  ratios of  the exper iments  they may be hard  to untangle  f rom a 

straight  stripes domain  invaded by disclinations and dislocations [10-12].  

I n d e e d  as men t ioned  in section 2 in large systems defects come into play and 

are not  necessarily el iminated by the dynamics.  A large aspect ratio Hw 

s t ructure  (fig. 5) contains numerous  defects,  in this case p e n t a g o n a l - h e p t a g o n -  
al pairs, which separate  well o rdered  domains.  Once  the ampli tude has 

sa tura ted ,  the remaining dynamics  consists only of  the slow drift of  these 
defects.  It is reminiscent  of  some experimental  observat ions  [10, 57]. 

Fig. 5. Hexagonal pattern (H~r) for the concentration of species X of the standard Brusselator in a 
large system (256 x 256) with periodic boundary conditions and A =4.5, B=7.1, Dx=2.8, 
D r = 22.4. 
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4. Pattern selection for the ramped Brusselator 

Selection in the presence of ramps has previously been studied to take into 
account the effects of small experimental imperfections in hydrodynamical 
problems even though researchers in that field often appeal to react ion-  
diffusion systems, which are more tractable than the equations of fluid mech- 
anics. One thoroughly studied problem is related to wavelength selection inside 
the sideband degenerate states. If the control parameter  varies in space, such 
that it becomes subcritical in part of the system then the stable band is reduced 
and - in the limit of infinitely slow variation - shrinks to a single wavenumber. 
The wavelength is then perfectly selected [61]. It was further shown that the 
selected solution need not be stationary, leading eventually to oscillations or 
even chaotic behaviour [62]. Some of these results were verified experimentally 
for the Taylor vortex flow [63]. Theoretical analyses were also undertaken for 
the Rayleigh-B6nard convection problem when the heating is weakly 
nonuniform [64-67]. Here the lack of experimental results does however not 
permit to draw definitive conclusions. The effects of some type of ramps were 
also considered in nonlinear chemical systems. We return to these below. 

Our aim in this section is to show, with the aid of a few numerical 
experiments,  how the pattern selection may be affected by the variations in 
space of the parameters,  for instance the bifurcation parameter.  Understand- 
ingly pattern selection theory is much less developed under nonuniform 
conditions. The results presented here must thus be considered as first steps in 
the search for the occurrence of generic behaviours permitting to disentangle 
the various contradictory orientational effects that are at play in the presence 
of ramps. Therefore  most questions we raise will go unanswered. 

The simplest principle that springs to the mind is that a pattern will develop 
in the region of space where the local value of the bifurcation parameter  allows 
it to be stable in the corresponding uniform problem. We will however see that 
even such a simple idea is not always true. It also leads immediately to the 
prediction of spatial coexistence of structures with different symmetries and a 
possible high order multiplicity, resulting from multistability, among various 
different spatial coexistences. The orientational role of the slope of the profile, 
domain walls and boundaries are furthermore difficult to assess. 

Here  again we appeal to the pool approximation: the concentrations of A 
and B are kept constant in time but are given specific profiles. We will make 
use of linear (where the direction of the gradient is denoted by G) and 

chain-like ramps. 

4.1.  L i n e a r  r a m p s  

Linear ramps in the reaction-diffusion context were previously mainly 
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considered in relation to polarity effects in problems with a biological content 
[51, 53, 68]. Recently crossed linear ramps on two pool species where studied 
numerically [69] in the context of the new Turing experiments. 

4.1.1. 3D  Brusselator 
In relation with the experimental results some simulations were carried out 

for set I of parameters in parallelepipeds. 
If, as for the Bordeaux reactor type geometry,  the ramp is applied along one 

of the large sides of the gel slab, we obtain numerically the spatial coexistence 
of the three kinds of patterns we described in section 3: bcc, hex prisms 

(k 1 + k 2 + k 3 : 0, all k i ± G  ) and lamellae (kl/G) in order  of increasing value 
of B along the ramp (see fig. 5 of ref. [70]). The transition regions (domain 
walls) between the coexisting 3D patterns are however very complex and a 
systematic study of their relative orientations will require to switch to more 
powerful numerical means to be able to control size and boundary effects. 

4.1.2. 2D  Brusselator 
All our 2D numerical experiments were made with set I parameters on a grid 

of size L, in the direction of the gradient, times L'.  The ramp is applied to the 
bifurcation parameter  B that varies along L: its value is B L at L and we apply 

1L B = B c at grid points (~ , y) in order to define a subcritical region. No flux 
boundary conditions are imposed along the sides perpendicular to the ramp 
and periodic boundary conditions along the others. 

Let us start by presenting (fig. 6) a typical result. In this case the simple 
argument alluded to above is true and three regions are visible at a glance: 
transverse stripes at the highest B values with wavevector ks//G, Hrr with 

wavevectors k~±G (k I + k 2 + k 3 = 0) near Bc, which invade the subcritical 
region. There  is also a domain wall between Hw and stripes. In the region 
straddling Be, we find the amplitude variations characteristic of imperfect 
bifurcations, here to an hexagonal phase. Such bifurcations have only been 
studied theoretically in the present context for M = 1 structures in weak linear 
ramps [65, 67]. While the unfolding of patterns (spatial succession of HTr and 
stripes) is trivial, the influence of the ramp, the boundaries (they induce a 
forcing because in general the ramped reference state does not satisfy the 
imposed boundary conditions) and the existing domain wall on their orienta- 
tion (for instance the relative orientation of k~ to ks) lies at the heart  of the 
pattern selection problem. To deepen the plot let us dissect two numerical 
experiments.  

Experiment A (fig. 7). The conditions are the same as those just discussed. 
We start at B L = 7 with random initial conditions. This leads to the pattern 
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Fig. 6. Typical spatial coexistence of H~r and transverse stripes resulting from the existence of a 
linear ramp from the left to the right. Set I of parameters ,  with D x = 3.5, have been used on a 
90 × 128 (L x L ' )  grid. Here B~. = 8  while B = B. =6.71 is imposed at grid points (30, y). 
Boundary  conditions are no-flux to the left and right and periodic at top and bottom. 

shown in (fig. 7a). There is nothing particular to witness. We have only the Hw 
(oriented as before) because B L is still below the lower stability limit of stripes 
in the uniform system. We then proceed by making a series of quasistatical 
modifications of B L. When B L = 8 (fig. 7b) we still have only H~,  even though 
near grid point L we are, for uniform systems, in a region where the Hax are 
unstable. So our simple principle is already failing us: the ramp has broadened 
the stability domain of the H'rr. Contrary to what we saw above transverse 
stripes do not occur and the Hw even have to incur some deformation to fit in 
the system for these conditions. Increasing again B1~ to 8.2 (fig. 7c), the 
situation changes radically: the H~ snap back to their uniform equivalent 

stability region but the stripes that enter the show appear with k~[]k 2 (or k3) 
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Fig. 7. Exper iment  A for the same conditions as in the previous figure on a grid of size 90 x 64. (a) 
Bt. = 7; (b) Bt. = 8; (c) B~. = 8.2; (d) B~, = 10; (e) and (f) B L = 16 at two successive times. Pat tern 
(a) is obtained from random initial conditions and all the others by increasing B~ quasistatically 
from the preceding stationary one. 
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implying an orientational effect of the domain wall. The only influence of the L 
boundary  is a slight bend of the stripes to meet  the no flux boundary condition. 
Fur thermore  the new oblique stripes (with respect to G) are drifting perpen-  
dicularly to G at constant velocity (on the way up or down depending on 
whether  ksllk2 or k3) because of the presence of periodic boundaries in that 
direction. This is the sign that a pari ty-breaking bifurcation [71] with respect to 
the direction of the gradient has occurred. The H-rr are entrained in the 
process. For B L = 10 (fig. 7d), while the whole structure continues its motion,  
the Hrr are in the process of being squeezed out because the gradient is now so 
large that they have less than one wavelength to fit into. As soon as the H v  
have vanished a set of longitudinal stripes starts to invade the system sponta- 
neously from the L border.  These new stripes eventually invade the whole 
supercritical region (fig. 7e,f). No H0 intervene yet because of the quasistatical 
nature of the procedure.  

Experiment B. The conditions are again the same but at each increase of Bt, 
we start f rom random initial conditions. For B L -- 8 we have the pattern (fig. 6) 
discussed at length before. Having in mind the result of experiment  A for the 
same values of the parameters ,  we here observe a clear-cut example of 
bistability between a state exhibiting only H~r and another  state that unfolds 
both H~r and transverse stripes. On increasing the ramp the stripes invade 
more  and more of the system until, as before,  the H'rr are expelled and only 
transverse stripes remain. The selection of stripes over HTr in these ramps does 
not seem to be the result of a simple kind of anisotropic effect favoring M = 1 
structures over  M = 3 patterns [72] because at Bt~ = 14 the H0 have been 
allowed to come into play. Fur thermore,  as soon as the H0 appear,  necessarily 
near  B L, the transverse "bulk"  stripes seem to be screened from the Bt~ 
boundary  by these H0 (remarkably a lonely transverse stripe is present  near  
B L). They then start to bend,  probably aided by the presence of zig-zag stripes 
that are present  also in the region of B. Finally, after a long transient we obtain 
the pat tern of fig. 8 for B L = 16, which exhibits the coexistence of longitudinal 
stripes (ks±G), H0 (k1±G, k 1 + k 2 +  k 3 : 0  ) and still the lonely transverse 
stripe (k~llG). The H0 are observed to present  the same orientation with 
respect  to the gradient as the former  H'rr. 

Let  us remark  that many numerical experiments with ramps lead to patterns 
containing a lot of bend stripes and defects probably because of the ubiquitous 
use of zig-zag stripes that are stable for a wide range of values of B. This leads 
to a further increase of the multiplicity of possible structures. Fur thermore  as 
soon as a region contains stripes oblique to G a drift of the whole structure 
comes into play. 
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Fig. 8. Final pattern in the sequence of events for experiment B described in the text. For this 
particular pattern set I is used with D x = 7 for a 90 × 128 grid with the same boundary conditions 
as before. Bt. = 16. It exhibits the coexistence in the ramp of longitudinal stripes, H0 and a single 
transverse stripe. 

So one  s tar ts  to u n d e r s t a n d  tha t  the  p a t t e r n  se lec t ion  b e c o m e s  i n d e e d  very  

c o m p l i c a t e d ,  even  in the  p re sence  of  the  s imples t  fo rm of  profi le .  Cons ide r ing  

on ly  the  s t r ipes ,  we have  seen ,  as was a l r e a dy  the case for  the  n o n u n i f o r m l y  

h e a t e d  R a y l e i g h - B 6 n a r d  p r o b l e m ,  tha t  the  s lope  of  the  r a m p  and the  b o u n d -  

ar ies  (and  in our  case also the  wall  bounda r i e s )  consp i re  to d e t e r m i n e  the  

s e l ec t ed  o r i en t a t i on .  O t h e r  e x p e r i m e n t s  with l inear  r a m p s  will be  p r e s e n t e d  
e l s e w h e r e  [73]. 

4.2.  C h a i n - l i k e  r a m p s  

T h e s e  were  c o n s i d e r e d  be fo re  bo th  theo re t i ca l ly  [74, 2] and  numer ica l ly  

[75, 2] for  1D chemica l  sys tems  because  such r a m p s  are  the  k ind  of  spa t ia l  
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d i spe r s ion  one  gets  for  the  A species  in the  Brusse l a to r  if it is let  f ree to diffuse 

f rom the  b o u n d a r i e s .  The  effects of  s imilar  r amps  in the  nonun i fo rmly  h e a t e d  

R a y l e i g h - B 6 n a r d  convec t ion  p r o b l e m  were  also assessed [64, 66]. 

It was shown that  such profi les  give rise to local ized s t ruc tures  (not  to be 

confused  with those  cons ide red  in sect ion 2, which a p p e a r  u n d e r  un i fo rm 

condi t ions ) :  the  s t ruc ture  d e t e r m i n e s  the  ex ten t  of  its own region  of  ex is tence  

and  within this reg ion ,  as for  l inear  r amps ,  spat ia l  coexis tence  of  pa t t e rns  of  

d i f fe ren t  symmet r i e s  is poss ib le .  F o r  these  r amps ,  the  bi furcat ions  are  h o w e v e r  

per fec t  [76] but  are  d e l a y e d ,  with respec t  to the  un i fo rm cond i t ions ,  because  

the  b i fu rca t ion  p a r a m e t e r  must  be  sufficiently large tha t  one  wave leng th  of  the  

s t ruc tu re  may  fit in the  supercr i t i ca l  reg ion  for  H ~  or  t ransverse  s t r ipes .  F o r  

l ong i tud ina l  s t r ipes ,  which are  the  first to a p p e a r  because  they  are  not  sensi t ive 

to such a res t r i c t ion  on the  width  of  the  supercr i t i ca l  r eg ion ,  the  cu rva tu re  of  

the  prof i le  nea r  th re sho ld  never the less  also de lays  the  b i furca t ion  [77]. Some  

i l lus t ra t ions  are  given in figs. 9 and  10. I t  is also wor thwhi le  not ing  that  the  H0 

(fig. 9) a re  o r i e n t e d  d i f fe ren t ly  f rom the l inear  r a m p  case.  

80 

Fig. 9. 3D amplitude plot for the concentration of species X in the Brusselator in the presence of a 
symmetric chain-like ramp of A resulting from its diffusion from the boundaries (D A = 12) in the 
presence of a linear consumption with constant k A = 0.01. The size of the grid is 80 × 40 and B is 
maintained at the uniform value 3.7. On the lateral sides we impose concentrations: A((I) 3, 
X(O) A(O), Y(O) - B/A(O). We use periodic boundary conditions along the other sides. D~. - 4, 
D v = 20. As initial condition we take X= A(x) and Y= B/A(x) and apply a small sinusoidal 
perturbation parallelly to the ramp. 
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Fig. I0. Coexistence of Hw (near the lateral walls), stripes and H0 in the presence of a symmetric 
chain-like ramp of A and for conditions similar to fig. 9. Here O A : 1 0 ,  k A : 0 . 0 1 ,  A(0) : 10, 
D v = 3.5, D+, = 28 and B = 12. The grid size is 90 x 30. The initial condition is also similar but the 
perturbation consists in multiplying the concentration of X(45, y) by a factor of two. 

5. Conclusions 

It should by now be clear that the study of Turing structures presents new 
challenges to pattern selection theory: characterization of the first genuine 3D 
periodic patterns in far from equilibrium conditions and of the stability of 2D 
polygonal structures, which may complement the information obtained from 
hydrodynamical systems. The incorporation of the effects of profiles of the 
control parameters, which derive naturally from the experimental context, 
introduce further difficulties. 

But already new incitements, linked to the Turing patterns, are brought to us 
by the experimentalists. They are related to the reappearance of the time 
dependance one had tried to ward off as for instance with the help of the 
Lengyel-Epstein procedure [40, 12]. The first of these new teasers, dubbed 
"chemical turbulence" for lack of better wording, manifests [56] itself as a new 
time dependent phase with proliferation of defects that, for some conditions, 
squeeze in between the stripes and the hexagons. The other, christened 
"chemical flip-flop" [9] is a localized asymmetric emitter, a chemical beacon, 
which, thanks to the ramps, lives in a quasi-lD world in a region of experimen- 
tal parameters where Turing and Hopf instabilities interact. Both have in 
common that they point once more to the complex wonders that remain to be 
discovered in our nonlinear chemical playground. 
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