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IN THREE-DIMENSIONAL EXCITABLE MEDIA

MATTHEW DOWLE, ROLF MARTIN MANTEL and DWIGHT BARKLEY*
Mathematics Institute, University of Warwick, Coventry CV4 TAL UK

Received January 6, 1997; Revised February 21, 1997

A fast numerical scheme based on the model of Barkley [Physica 49D (1991), 61] is extended
to three space dimensions (3D). The original time-stepping scheme is improved to provide
greater accuracy and a 19-point approximation for the Laplacian operator in 3D is shown to
have significant advantages over the commonly used 7-point formula. Simulations are coupled
to a state-of-the-art surface rendering algorithm such that the combined code allows real-time
interactive simulations of 3D waves on a desktop workstation. Results are presented from
simulations over a range of spatio-temporal resolutions, from coarse cellular-automaton type
simulations to fully resolved simulations of the underlying partial differential equations.

1. Introduction

Experimental and numerical work suggests that
scroll waves in three-dimensional cardiac tissue are,
at least in some cases, at the origin of sudden-
cardiac death, e.g. [Winfree, 1987, 1994; Davidenko
et al., 1992, Gray et al., 1995, Panfilov & Hogeweg,
1995; Panfilov & Keener, 1995]. One basic prob-
lem in the numerical study of these waves is that
cardiac tissue is an excitable medium and therefore
waves in the medium involve very disparate time
and space scales. The time scale of excitation (the
action potential) is orders of magnitude faster than
the time scale of recovery. Similarly, the space scale
of an excitation front is orders of magnitude smaller
than the size of the medium. This puts heavy
computational demands, both in memory and ex-
ecution time, on numerical simulations of waves in
three space dimensions (3D) and effectively rules
out, at the current time, full simulations of cardiac
tissue using accepted physiological models. Even a
model such as the Beeler and Reuter [1977] model
which is quite simple physiologically, would be
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extremely time-consuming to simulate in three
space dimensions.

Because of the need to obtain at least quali-
tatively accurate simulations of waves under such
demanding conditions, several cellular automaton
(CA) models of excitable media were proposed in
the early 1990s [Markus & Hess, 1990; Gerhardt
et al., 1990a, 1990b, 1990c, 1991]. Weimar et al.
[1992a, 1992b] further extended the CA approach
and showed how CA rules could be matched to
specific reaction-diffusion equations. At about the
same time, a reaction-diffusion model of essentially
FitzHugh—Nagumo type was proposed by Barkley
[1991] which allows for time stepping over a range
of spatio-temporal resolutions. In the coarse limit
the time-stepping scheme becomes similar to the
CA model of Weimar et al., while in the fine limit
the scheme gives accurate solutions to the underly-
ing partial-differential equations. Henze and Tyson
[1996] have recently extended the CA model of
Weimar et al. to 3D and have addressed quite
clearly many of the issues which arise when sim-
ulating waves in 3D.
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Here we describe an extension of the Barkley
model to 3D and show how the original time-
stepping scheme can be improved to obtain more
accurate solutions. We show that reasonable re-
sults are obtainable at speeds exceeding 10 times
what is required for fully resolved simulations. This
makes it feasible to study the dynamics of many
of the simplier 3D stuctures in excitable media
on desktop workstations with real-time interactive
graphics.

2. Model and Methods

Our starting point is the general two-variable sys-
tem of reaction-diffusion equations:

(1)

where the functions f(u, v) and g(u, v) express the
local reaction kinetics of the two variables u and
v. When modeling excitable media, the variable
u is fast in comparison to the variable v. By
choice of length scales, we set the diffusion coef-
ficient for the u-variable to unity. The parameter
D is then the ratio of diffusion coefficients. In the
case of cardiac tissue and other physiological media
D =0, and this is the only case we shall consider in
detail here.

Our approach can be applied to models of the
form (1) in which the function f(u, v) can be rep-
resented by:

ou 9
E—f(u, v) + V*u,

flu, v) = Zu(l — w)u — un(@)h), (2

where w, (v) and h(v) are functions of v only and e
is a small parameter. (The function f lacks the —v
term of the classical FitzHugh—-Nagumo equations.)
The function g(u, v) can be arbitrary so long as it is
slow, i.e. order 1, compared to the function f(u, v),
which is order 1/e. In fact, because there are essen-
tially no restrictions on the slow dynamics, there
may be more than one slow variable. Then wuy, and
h could be functions of all the slow variables.

The simplest choice for the functions g, uty,, and
h is:

h(v) =1
(3)

g(u, v) =u—v, uy(v)=(v+b)/a,

where a and b are parameters. This is the form we
shall consider here, though we hope in the future to
use other choices which more closely mimic cardiac
electrophysiology.

2.1. Reaction terms

We begin by considering just reaction terms f(u, v)
and g(u, v) in Eq. (1). This follows the treatment
of the 2D case presented in [Barkley et al., 1990,
Barkley, 1991]. The two important aspects of the
fast numerical scheme are: (1) the approximation of
u by zero whenever u becomes sufficiently close to
zero, and (2) the use of semi-implicit time stepping
for w.
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Fig. 1. One-dimensional cuts through the model excitable

medium showing the profile of typical waves. Plotted are
the u-field (points connected by solid curve) and the v-field
(dashed curve). The three cases correspond to simulations at
different computational grid spacings considered throughout
the paper: (a) h = 2/7, (b) h = 3/7, (¢) h = 5/7. The
grid spacing determines the number of points representing
the sharp “interface” between v ~ 0 and u ~ 1. The waves
travel from right to left and so a time series at a fixed spatial
location looks essentially the same except that the number of
points on the “interface” is set by the time step At. Model
parameters in all three cases are: a = 0.8, b = 0.01, ¢ = 0.02,
and D = 0.
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2.1.1. Setting u =20

Figure 1 shows typical spatial profiles for the u-
and v-fields from simulations of the full reaction-
diffusion system (1). It can be seen that u is quite
small (very near zero) over approximately 50% of
space. This is parameter-dependent of course, but
50% is typical and in fact it is quite common for the
flat regions to occupy 70% or more of the domain.
The crucial point is that there is no need to care-
fully follow the dynamics of u once it becomes very
close to zero. Hence we introduce a small numerical
parameter, §, where typically § is in the range 10~°
to 1073, and then simply set u = 0 whenever u < 4.

This leads to the following simple algorithm for
time stepping the reaction terms:

if (u™ <9)
{untt =0
vt =" + At g(0, v™)}
else (4)

{u = wn(v™)
v =" 4 At g(u™, v™)
u™ = F(u™, ug)}

where u” and v" are the values of variables v and
v at the nth time step and At is the time step. We
shall use wuty, (v) to refer to the function of v and ugy,
to refer to a variable storing its value at a partic-
ular value of v. The function F' specifies the step-
ping of u when u > § and will be discussed shortly.I

n+1

L {u” + (At/e)u™ (1 — u™) (u™ — ug,)
u™ + (At/e)u™(1 — u™ ) (U™ — ug,)

The variable v is stepped by the explicit-Euler
method, with the condition that w is set to zero for
u < 6. Because the time-scale of v is slow in com-
parison with the fast time-scale of u (see Fig. 1),
even with time steps that are large relative to the
u-time scale, explicit-Euler stepping of v is both
stable and accurate.

2.1.2.  Semi-implicit time stepping

Here we consider how best to choose the func-
tion F for stepping the u-dynamics. This choice
can have significant impact on the overall ac-
curacy and speed of simulations. The simplest
choice for F' is explicit-Euler time stepping given
by:

uttl = F(e)(un’ uth)
=u" + At f(u", v"™)
=u" + (At/e)u™ (1 — u™)(u" — ug), (5)

where the one-step error is O(At?). [The global er-
ror is O(At!)]. With explicit-Euler time stepping,
At/e ~ 1 is the maximum time step for obtaining a
reasonable simulation of the fast dynamics (because
of the 1/e time scale of the u-equation, it is natural
to measure time steps in units of 1/¢). A time step
with At/e ~ 1 is also near the stability limit for an
explicit-Euler step and so it is not possible to take
time steps much larger than this.

In order to take larger time steps, a semi-
implicit form for F' can be used. The simplest form
is obtained from:

if u™ <y,

if ™ > wgy -

where u at the future time is used in those factors on the right-hand side that undergo largest relative

change over the time step. Solving the above expressions for u

"+l we obtain:

un

u'tt = F(i)(un, Uth) =

1—(At/e)(1 —um)(u™ — ugp)
u™ 4+ (At/e)u™(u™ — ugy)

if u™ <y,

if w” > uy

1+ (At/e)u™(u™ — ugy)

By expanding the denominators in the above
expressions it can be seen that this scheme agrees
with the explicit-Euler scheme to O(At?) and hence
it also has a one-step error of O(At?). This is the
implicit form proposed in [Barkley, 1991].

Unlike the explicit form, the semi-implicit form
is numerically stable for arbitrarily large values
of At and in the limit of large At/e, it goes
over to:
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Fig. 2. Comparison of the various time-stepping schemes
considered in the text. Shown is Au = 4™ — 4™ as function
of u™ for exact (solid), explicit-Euler (dotted), second-order
implicit (dashed), and new third-order implicit (long dashed)
methods. (a) Small time step, At/e = 0.6. The second-order
implicit method is not as good as the explicit-Euler; the third-
order implicit scheme is barely distinguishable from the exact
solution. (b) moderate time step, At/e = 2.4. The explicit-
Euler scheme leads to numerical instability, while both im-
plicit schemes remain stable. (c) large time step, At/e = 7.2.
The implicit schemes begin to approach the large-time-step
(CA) limit of a piecewise linear function.

0 if u” < gy
u"T =y, i u = g, (7)
1 if u™ > ugy -

The large-At limit is thus very similar to the
CA model Weimar et al. [1992a, 1992b] in which
the u-variable takes on just two values: 0 and 1.
In this limit « jumps between 0 and 1 in one time
step, and when space is included, v jumps between
0 and 1 over a single grid spacing. The coarsest
simulations that we consider are not quite at this
limit: u generally takes a few space and time steps
to go from u ~ 0 to u ~ 1 [see Fig. 1(c)]. The fact
that u is not discontinuous in our fast simulations
is a significant advantage of our approach over the
CA approach.

Figure 2 illustrates various time-stepping
schemes for different values of At/e. Plotted is the
change in u over one time-step, Au = v —u™, as
a function of ", with v™ and hence uy, is fixed. A
moderately small value is chosen for uy, correspond-
ing to a typical value at the excitation front. The
“exact” Awu is obtained by accurately numerically
solving @ = f(u, v = const) over the time interval
At.

It can be seen that while the implicit form F()
has the advantage of numerical stability for large
values of At/e, it is actually less accurate than the
explicit form F(©) for small values of At/e. This is
accentuated by the fact that the implicit form sys-
tematically errs by making Awu too small, whereas
in the explicit form Aw errs in both directions. The
net effect is that the time for w to cross the fast
region between u = uy, and w = 1 in the implicit
case is always smaller than the true time. Hence
while both the explicit and implicit scheme are of
the same order of accuracy, the numerical pre-factor
is such that the explicit scheme is superior in its
range of stability.

We propose a rather simple improvement to im-
plicit scheme (6) which leads to significantly higher
accuracy while maintaining the advantage of stabil-
ity at large time steps. First note that any scheme
of the form:

un+1 — F(l)

un

1— (At/e)F<(u™, ugp)
u™ 4 (At/e)Fs (u™, ugn)
1+ (At/e)Fs (u™, ugn)

if u” <wug

if u™ > u

(8)

will have (7) as a limit. By requiring (8) to be or-
der O(At3), considering v and hence u, fixed, it is
possible to find a simple choice for the functions F-
and F\:

Fo(u", ugn) = (1 —u")(u" — ugp)

X <1 + g_et(uth - (un)2)> (9)

n

Fo(u™, ugn) = u™(u™ — ugp)

At
y (1 S g - (u”)2)> .
(10)
It can be checked that the resulting scheme is

O(A#®) by substituting into (8) and expanding to
O(At®). We have written the functions in such a
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way that it is clear that for At/e small these are
small modifications of the original implicit scheme.
Figure 2 shows how this scheme compares with the
other methods, not just for small At/e but over a
range of time-steps. The additional computational
expense of this higher-order method is a few ad-
ditional multiplications, and when taking into ac-
count that F' need only be evaluated for u"™ > 4,
this is well worth the gain in precision.

In our time-stepping scheme for u we assume
that v is fixed and this requires some explana-
tion. Because the slow v-equation is time-stepped
via the explicit-Euler method (4), (and because
we also step the diffusion terms via the explicit-
Euler method), the time-stepping scheme for the
full reaction-diffusion equations can have a one-step
error of at best O(At?), independently of how accu-
rately the fast u-equation is treated. However, the
change in v over a time-step is very small, and in
the full reaction-diffusion system the largest contri-
bution to Au comes from the reaction terms. Hence
by focusing on the fast dynamics and stepping the u
reaction terms with a more accurate method we can
obtain a significant reduction in the time-stepping
error. Even if there is no formal improvement in
the order of accuracy of the full scheme, the size
of the dominant errors is reduced. This is accom-
plished with a trivial programming change and adds
little time to the computations. In Sec. 3.1 we con-
sider how the improved implicit scheme compares
with the other schemes for full reaction-diffusion
simulations.

2.2. Including diffusion

With the approximation that u = 0 for u < §, the
u-field is constant (zero) over substantial regions of
the computational domain, e.g. Fig. 1. Hence the
Laplacian of the u-field is also zero in these regions
and need not be evaluated. To avoid unnecessary
computation, the Laplacian of u can be evaluated
by scattering values rather than by gathering val-
ues. Consider the seven-point finite-difference for-
mula for the Laplacian on a regular cubic lattice in
3D:

202
h*V Uik = Wi j + Uim1 jk + Wi j4+1,k
+ i1k + Ui k1 T Ui k-1 — OUk

where u;jp, is the value of u at grid point (i, j, k)
and h is the grid spacing. Letting > denote the
weighted sum of points given by the above formula,
then a scatter evaluation of this sum is obtained by
looping over the grid indices and scattering values

of u to neighboring X::

for each 1, j, k

Yijk < ijk — Ouyj

Y1,k < Biv1jk + Uik

Y1k & Bic1k T Uik

i1k & Mi g1k + Wik

i1k & Mij—1,k + Wijk

k41 B k1 T Uijk

Yigk—1 < Bijk—1 T Uijk
where all Y;;, are initially zero. The factor of h?
is absorbed into a coefficient to be multiplied by X.

The result is exactly the same as if one had gathered
values according to:

for each 1, j, k
Yijk — Uit1,jk T Wim1,jk T Uijt1k
+ Ui -1,k + Uij k1 + Uijk—1 — OUgjk -
What makes a scatter evaluation of the sum de-
sirable is that it can be combined into the algorithm
for the reaction dynamics in such a way that unnec-
essary computation is avoided at points that make
zero contribution to the Laplacian of the wu-field.
Specifically, the following algorithm updates a sin-
gle grid point in the spatial domain and computes
its contribution to the sum of neighboring points
for use at the next time step:
if (uijk < 5)
{uije <+ 85k
Vijk — Vijk + Atg(O, Uz‘jk)}
else
{uen  uen(vijr)
Vijk  Vijk + At g(uijk, vijk)
wijk < F(uijr, uen) + sk
Vgijk < Usijk — OUijk
Yot it1,jk £ B i1k + Uijk
Ygric1,jk < Bl i1,5k + Uijk
Ygri g1k < Usij+1,k T Uisk
Ygrij—1k < s ij—1,k + Uijk
Yo igk+1 < D k+1 T Wik
Vi1 D ijk—1+ Uik}
Yisijk < 0
where r = At/h?. The sum Y,k has four sub-
scripts, the first of which takes on just two values
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(zero and one, say). The values of s and s are inter-
changed at every time step. In effect, there are two
Laplacian fields which are used in alternation: The
first (unprimed) is used to update the u-field at the
current step and is then set to zero for use at the
next time step. The second (primed) is computed
for use at the next time step.

It can be seen how the approximation v = 0
whenever u < § leads to a reduction in the amount
of computation: Whenever v = 0 the reaction terms
for u do not need evaluation and no work is neces-
sary for updating the spatial sum X for the next
time step.

There are two additional points to consider
with regard to diffusion. The first is that we have
only treated the fast u-field. If the slow variable v is
diffusing as well, i.e. D # 0, then one must compute
the Laplacian of this field. In this case there are no
tricks to apply and one must compute the weighted
sum X at all points in the domain. Fortunately,
we will be primarily concerned with the case where
D =0.

The second point is more general and concerns
the finite-difference approximation to the Lapla-
cian operator. We write the approximation in the
form:

1
Viui = onz Dk T B
where Y is a sum with integer weights, w is a con-

stant, and F is the truncation error of the approx-
imation. Then the 7-point finite difference formula

(a)

Fig. 3.

considered thus far is given by
Yijk = Wit1,jk T Ui-1,5k - — Oy

with w = 1; see Fig 3(a). Only the center and
nearest neighbor points are used in this approxima-
tion. Assuming one is approximating the Lapla-
cian of a differentiable function u at a location
corresponding to grid point (i, j, k), then the er-
ror incurred in using the 7-point approximation is
given by:

(ot o o \
E_ﬁ<@+a—y4+@>u|“k+o(h)’

and the stability constraint for explicit-Euler time
stepping leads to a maximum time step of:

h2
Atmax = E

Other approximations can be used for the
Laplacian operator, however. In particular consider
the approximation given by the 19-point sum:

Yijk = 2uip1gk 0+ 2Ui5 k-1 + Wit 541k

U116 o U1 k-1 — 24w

with w = 6, [See Fig 3(b)]. The truncation error is
given by:

h2
E= Ev4u|ijk +0(hY),

(b)

Stencils showing the integer weights for (a) the 7-point and (b) the 19-point finite-difference representation of the

Laplacian operator in 3D. For clarity only one quadrant is shown in each case. For the 7-point case there are six nearest-
neighbors having weight 1. The factor multiplying all weights is 1/ h?. For the 19-point case there are six nearest neighbors
with weight 2 and 12 next-nearest neighbors with weight 1. The overall factor is 1/6h>.
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and the maximum stable time step for explicit-Euler
time stepping is given by (see Appendix):

The 19-point formula is superior to the more
common 7-point formula in the following ways.
Most importantly, simulations with the 19-point ap-
proximation are some 80% faster than those using
the 7-point approximation. The reason is that the
limiting time step (Atmax) for the 19-point approxi-
mation is 2.25 times larger than that for the 7-point
approximation. Of course the 19-point approxima-
tion requires more computation, but our tests show
that with only the u-field diffusing, the 19-point ap-
proximation takes 1.3 times the CPU time, per time
step, of the 7-point approximation (this will depend
to some extent on computer architecture). The
larger time step possible with the 19-point method
more than makes up for the additional computation
required and thus leads to overall faster simulations
with no additional memory requirements.

A second advantage of the 19-point formula is
that the leading contribution to the error in this
case is invariant under rotations. This means that
grid anisotropies do not show up at leading order
when approximating V2u for smooth functions w.
Such anisotropies do appear at leading order when
using the 7-point approximation.

A final small advantage of using the 19-point
formula is that the stability limit Atyay is identical
to that for the 9-point formula for approximating
the Laplacian in 2D (see Appendix). It is conve-
nient when considering simulations in both 2D and
3D to be able to use the same time-step At for a
given grid spacing h independent of the space di-
mension considered.

The 19-point formula can be implemented in
just the same way as the 7-point method in algo-
rithm (11). The only significant shortcoming we
see in the 19-point formula is the difficulty in cod-
ing the boundary conditions when using this more
complicated stencil.

2.3. Visualizations and filament
detection

We combine our fast simulation technique with real-
time visualizations so as to view and interact with
simulations as they progress. It is highly desirable
to have such interactive capabilities and our method

—= (0111000) —=

e

Fig. 4. Illustration of the marching-cubes method. Left:
Cube formed from neighboring points of the computational
mesh. Solid circles indicate cube vertices which have field val-
ues above the contour level (e.g. u > 0.5). An eight-bit index
is formed based on which vertices are above or below the con-
tour value. An index other than (00000000) or (11111111)
indicates that the iso-surface passes through the cube and
a lookup table determines a unique triangularization (right)
representing the portion of the iso-surface lying within the
cube.

is sufficiently fast, at intermediate and coarse reso-
lutions, that this is feasible while running on a desk-
top workstation. We have employed a state-of-the-
art method known as marching cubes for rendering
iso-surfaces in 3D. In our case these are surfaces of
constant u or v. The marching-cubes method was
first introduced by Lorensen and Cline [Lorensen
& Cline, 1987; Cline et al., 1988]. Problems were
noted soon after it was introduced and these were
solved in a clever way by Montani et al. [1994]. We
use the Montani et al. extension of the marching
cubes algorithm.

The essence of the method is very simple: One
considers, in turn, each elementary cube in the com-
putational mesh and determines which vertices of
the cube have values above and below the pre-
scribed contour value. From this one obtains an
8-bit index (0-255 decimal). If the index is 0 or
255 then the iso-surface does not cut the cube and
one continues (marches) to the next cube. If the
iso-surface cuts the cube, then the index is used in
a lookup table to determine a particular triangu-
larization of the iso-surface in the cube (see Fig. 4).
The intersections of the triangles and the cube edges
are determined by linear interpolation from values
of the variable at the cube vertices. The triangular-
ization is such that the triangles from neighboring
cubes combine to give a (locally) connected surface.

Marching cubes is an ideal scheme to use in con-
junction with our simulations because of its simplic-
ity and speed, and because it provides good spatial
resolution while using only very local data within
the volume. The method is fast because a decision
is made quickly as to whether or not the contour
intersects an elementary cube. It provides good
surface detail because there are frequently several
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triangles per elementary cube, particularly in re-
gions of high surface curvature. The method was in
fact designed for medical imagining where surface
detail is of prime concern.

We have extended the marching cubes method
so as to determine scroll filaments with minimal
computational expense over what is necessary for
rendering a single iso-surface. By filament we shall
mean the curve of intersection between appropriate
u and v iso-surfaces. The reason that it is com-
putationally advantageous to combine the filament
detection with surface rendering is that once the u-
iso-surface, say, has been found then one has greatly
reduced the set of cubes on which to test for inter-
sections with the v-iso-surface. Given a cube which
is intersected by both the uw and v iso-surfaces, we
find all intersections of triangles from the two tri-
angularizations. This gives a set of line segments
lying on (to within our numerical approximation)
the filament. As with the surface rendering, this
method gives good detail of the filament, particu-
larly in regions of high filament curvature.

In 3D there is a question of how best to as-
say wave dynamics and in particular how to define
the filament of scroll waves. We do not follow the
common method of defining the filament as the re-
gion of space which does not become excited over
a certain time interval (on the order of the rota-
tion period of the wave), e.g. [Henze, 1993; Henze
& Tyson, 1996]. Instead, we simply use crossed con-
tours as the instantaneous location of the scroll ring.
These intersections can be computed very precisely

(a)

Fig. 5.

(b)

and do not depend on any averaging. Moreover, we
plan to approach the dynamics of 3D excitable me-
dia from a dynamical-systems view point similar to
that used successfully in the study of spiral waves
[Barkley & Kevrekidis, 1994; Barkley, 1995; Mantel
& Barkley, 1996], and for this it is desirable to have
a simple, well-defined projection from the full phase
space of the reaction diffusion equations onto some
low-dimensional phase space.

3. Results

3.1. Two space dimensions

We first consider the dynamics of spiral waves in 2D.
This case allows us to assess the quality of simula-
tions over a wide range of resolutions with greater
ease than is possible in the truly three-dimensional
case. We have simulated spiral waves for a variety
of grid spacings h and time-steps At with model
parameters fixed at values such that the spiral ex-
ecutes rigid (periodic) rotations. The parameters
are: a = 0.8, b = 0.01, ¢ = 0.02, and D = 0.
We consider this fixed set of kinetics parameters
throughout the paper.

Figure 5 shows a qualitative comparison of
spirals at three spatio-temporal resolutions. The
fine resolution case has been chosen such that the
rotation period and spiral wavelength are within
1% of the “exact” values obtained at still higher
resolutions. The medium resolution simulation is
about 10 times faster and provides a period and

(e)

Spiral waves at three spatio-temporal resolutions. Model parameters are as given in the text. (a) h = 2/7, At/e = 0.6,

§=10"" (b) h=13/7, At/e = 2.4, =2 x 1072 (c) h=5/7, At/e = 7.2, § = 5 x 1072, The domain is of size L = 50 in each
case. Simulation (b) is about 10 times faster than (a), and the coarse, CA-type, simulation (c) is about 100 times faster than
(a). Plotted is the u-field with w < 0.1 (blue), 0.1 < u < 0.9 (black), and u > 0.9 (red).
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Table 1.

Spiral rotation period for various grid spacings and time steps. Results in

square brackets are for explicit-Euler time-stepping and results in parentheses are for
second-order implicit time-stepping. All other results are for third-order implicit time-

stepping.

h=1/7 h=2/7 h=3/7 h=4/7 h=5/7
At/e =17.2 3.8641
At/e = 4.8 3.5771 3.7523
At/e =24 3.2896 3.3991 3.6163
At/e =1.2 3.1403 [3.1624] (3.5156) 3.1908 3.3257 3.5488
At/e = 0.6 3.1055 [3.1372] (3.3269) 3.1622 3.3073 3.5425
At/e =0.3 3.0774 3.0999 [3.1229] (3.2212) 3.1593 3.3077
At/e =0.1 3.1116 [3.1127] (3.1464)

wavelength which are within 7% of the exact values.
The coarse simulation is 100 times faster than the
fine case and gives a period and wavelength which
differ by roughly 25% from the true values. The
values of h correspond to those in Fig. 1 and the
values of At/e correspond to those in Fig. 2.

For a quantitative comparison we have com-
puted the rotation period for the spiral as a func-
tion of grid spacing and time step. The results are
shown in Table 1. Similar trends can be found in
wavelength data, but it is possible to obtain much
higher precision in period measurements by averag-
ing over many periods, so we focus on these data.

There are two points to make based on the data
shown and our general impressions from numerous
simulations. The first can be seen from the runs
at h = 2/7 in Table 1. The spiral period con-
verges much faster as a function of time step with
third-order implicit time-stepping than for either
of the other two methods. The second-order im-
plicit method is particularly poor. This is what one
would expect based on the plots shown in Fig. 2.
The simulation data show that the improved kinet-
ics scheme does indeed improve the quality of full
reaction-diffusion simulations. Thus we conclude
that in almost all circumstances it is better to use
the new third-order method.

The second point concerns the usefulness of
coarse, CA-type, simulations such as shown in
Figs. 1(c) and 5(c). While one obtains spiral
waves which look quite reasonable in many respects,
e.g. the form of the spiral wave in Fig. 5(c), our feel-
ing is that these simulations are too far from the
correct PDE results to be of use for serious study.
On the other hand, we feel that the our approach is
very advantageous at intermediate resolutions such

as shown in Figs. 1(b) and 5(b). Here one obtains
quite good results with simulations that are signifi-
cantly faster than those necessary for full resolution.
We shall see this more clearly in the 3D case.

3.2. Three space dimensions

Our detailed studies in 3D have been for scroll rings
such as those illustrated in Fig. 6, though we have
also explored more complicated structures. The
scroll rings we simulate are axisymmetric and while
we do not impose full axisymmetry on solutions, to
reduce computational expense we impose a 4-fold
rotational symmetry by simulating only 1/4 of the
ring as shown. Because the scrolls are axisymmet-
ric, their dynamics are limited to changes in radius,
R, and position, Z, along the axis of symmetry,
i.e. a scroll ring may shrink or expand in radius, and
it may propagate (drift) along the symmetry axis,
but that is all. We use periodic boundary condi-
tions in the direction of drift so that rings may drift
freely. Neumann boundary conditions are used in
the other two directions. Except where stated oth-
erwise, all results reported in this section are for the
new implicit time stepping scheme and the 19-point
Laplacian formula.

Taking the same approach as in the 2D case,
we assess the reliability and speed of 3D simulations
at different spatio-temporal resolutions by making
quantitative measurements of the scroll dynamics
for a set of grid spacings h and time-steps At. For
each case we follow the dynamics of a fixed initial
scroll ring and extract the ring radius and center as
a function of time. Specifically, at each time step
we find the best fit circle to the points defining the
filament. For all but the coarsest resolutions the
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Fig. 6.

Scroll ring from 3D simulations. One quarter of the ring is simulated. The boundary conditions on the cubical

volume are periodic top to bottom and no-flux (Neumann) on the other four sides. The u = 0.5 iso-surface is shown with
colors indicating position in three-space: the three axes correspond to each of red, green, and blue, with intensity varying from
zero to full along each coordinate, e.g. green intensity varies from zero to full in the vertical direction. The bold red curve
shows the location of the instantaneous filament. The kinetics parameters are given in Sec. 3.1; the volume has length L = 24
on a side; the numerical parameters for the simulation are: h = 3/7, At/e = 2.4, 6 = 1073,

filament data lie very close to this circle. We then
define R to be the radius of this circle and Z to be
the location of the circle center along the symmetry
axis.

Figure 7 shows results for scroll dynamics at
three representative spatio-temporal resolutions —
the same three that were considered in the 2D case
in Fig. 5 (though here § = 1072 for all cases). One
can see the approximately periodic oscillations of
the filament, due to scroll rotation, superimposed
upon a slower shrink and drift of the scroll ring. We
have defined the filament (Sec. 2.3) such that these
oscillations appear in the filament dynamics. The
medium-resolution case is roughly 12 times faster

than the fine-resolution case, and the coarse, CA-
type, simulation is more than 200 times faster than
the fine simulation. (These timings are for the sim-
ulations only; they do not include contributions due
to graphics or filament finding.)

The slow dynamics seen in Fig. 7 follows from
the theory for the dynamics of untwisted scroll
rings, e.g. [Panfilov et al., 1986]. In this theory,
the slow dynamics of axisymmetric ring filaments
whose curvatures are not too great is given by:

R=—c/R (12)
Z =cq/R (13)
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Fig. 7. Collapse dynamics of axisymmetric scroll rings. Plotted is R? versus time (left) and Z versus R (right) at three
numerical resolutions (a) h = 2/7, dt/e = 0.6, (b) h = 3/7, dt/e = 2.4, and (c) h = 5/7, dt/e = 7.2. Model parameters
are as elsewhere. Arrows on the right show the evolution direction. For R greater than about 5 the collapse is “linear”.
The coarse-resolution case shows only qualitatively the expected shrink and drift. The medium-resolution case gives a good
approximation to fine-resolution simulations while requiring less than 10% of the CPU time.

where the constants ¢; and ¢4 are called the shrink
and drift coefficients respectively. These equations
can be written in the more useful form:

dR?

— = —2¢4 14
p c (14)
dz cqd
— = 15
dR Cs (15)

Figure 7 shows that the slow dynamics are qual-
itatively in accord with theory. That is, so long as R
is not too small, the slow dynamics are such that R?
decreases linearly with time and the path in (R-Z2)
coordinates is linear. The coarse, CA-type, simu-
lation shows considerable “noise”, but even in this
case the dynamics are qualitatively in accord with
Egs. (14) and (15).

For a more quantitative comparison, we use re-
lations (14) and (15) to extract shrink and drift
coefficients from our simulations. Tables 2 and 3
summarize our results. The error bounds for the
coefficients in Tables 2 and 3 come from uncertainty
inherent in estimating slopes from finite, and in the
case of coarse simulation, noisy data sets. We in-
clude results from a single simulation using explicit

Euler method to show that, as in the 2D case,
it does not perform as well as the new implicit
scheme.

The most striking aspect of the shrink and drift
data is that the coefficients are much more sensi-
tive to spatio-temporal resolution than is the rota-
tion period in 2D simulations (Table 1). This is
especially true for the drift coefficient. Even at a
resolution where the spiral period is converged to
within about 1% of the “exact” value (i.e. h = 2/7,
At/e = 0.6), the drift coefficient is off by about
10%, which is far more than the uncertainty in its
measurement. The explicit-Euler result is off by
a considerably larger amount. (We did not run
with a timestep smaller than At/e = 0.3; never-
theless, we use these values as a basis to estimate
the precision of coefficients.) The shrink coeffi-
cient is somewhat better being within about 3%
of the converged value. Moreover, the medium-
resolution simulation in Fig. 7, which would appear
to be reasonably good, gives a drift coefficient which
is off by as much as 28% from the converged re-
sult. We will return to this point in the discussion,
but for now we note there is not, as far as we are
aware, a fundamental difference in the resolution



2540 M. Dowle et al.

Table 2. Scroll shrink coefficient ¢ for various grid spacings and time steps.
The coefficient in square brackets is for explicit-Euler method; all other
results are for third-order implicit time-stepping. Except for h = 5/7, the
uncertainty in the coefficients due to the fitting procedure is about +2%.
For h = 5/7 the uncertainty is about +5%.

h=1/7 h=2/7 h=3/7 h=4/7 h=5/7

At/e =72 0.604
At/e =4.8 0.593
At/e =24 0.674 0.544
At/e =1.2 0.711
At/e = 0.6 0.757 [0.749] 0.752 0.665 0.446
At/e =0.3 0.793 0.779

Table 3. Scroll drift coefficient ¢4 for various grid spacings and time

steps. The coefficient in square brackets is for explicit-Euler method; all
other results are for third-order implicit time-stepping. For h < 3/7,
the uncertainty in the coefficients due to the fitting procedure is about
+5%. For the others the uncertainty is +15% or less, except for h = 5/7,
At/e = 0.6, where the uncertainty is about +25%.

h=1/7 h=2/7 h=3/T h=4/T h=5/7
Atfe =T.2 0.859
Atfe =48 0.753
At/e = 2.4 0.973 0.771
Atfe =12 1.15
At/e = 0.6 1.36 [1.140] 1.44 1.40 0.493
At/e =03  1.390 1.48

requirements of 2D and 3D simulations of the type
we are considering here, rather it is a question of
what is being measured. For example, one can ex-
tract the local period from the measurements in the
Fig. 7 and one finds a dependence on resolution very
close to what was found in the 2D case.

We further note that it is not the drift in Z that
is so sensitive to resolution, rather it is the drift
coefficient. By this we mean that Z(t) is quite in-
sensitive in resolution. In fact the plots of Z(t) for
different resolutions lie quite close to one another
for a considerable time. This is less true for plots
of R(t) and it is in relating Z to R though the drift
coefficient that the sensitivity to resolution appears.

There are two further points which we mention
here and return to in the discussion. The first is
that, except for the largest grid spacing considered,
the drift coefficient is much more sensitive to time
step than to grid spacing and it appears that for
an accurate measure of drift coefficient the best ap-

proach is to simulate with a small time step. The re-
lated though somewhat contradictory point is that
for larger grid spacings, h > 4/7, the quality of fil-
ament paths is better at larger rather than smaller
time-steps. We do not show any filament data for
small time-steps, but one can see, for example, the
very poor shrink and drift coefficients obtained at
h =5/7, At/e = 0.6. We have no explanation for
this behavior.

We end this section by showing in Fig. 8
results from simulations of two other 3D struc-
tures: A twisted scroll ring and a pair of linked
rings. The numerical and model parameters are
the same as for the medium resolution simula-
tions considered previously, e.g. Fig. 7(b). The
initial conditions for these are obtained using the
complex polynomial method described by Winfree
[1987,1995]. Our method is sufficiently fast that
one may simulate these structures interactively, in
real time on a moderately powerful workstation.
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(b)

Fig. 8. (a) Twisted scroll ring and (b) pair of linked rings. In each case a clipping plane cuts surfaces halfway through the
volume; the filaments are not clipped. The color scheme and parameter values are the same as in Fig. 6; only the initial
conditions are different and here the volume has length L = 26 on a side.
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Importantly, these simulations are qualitatively re-
liable. Hence simulations at these resolutions can
be used to explore parameter space or examine a
variety of initial conditions at these fixed model
parameters.

4. Summary and Discussion

We have presented a computationally efficient
method for simulating waves in 3D excitable me-
dia. Our principal contributions are (1) a more
accurate method for implicitly time stepping the
reaction terms in the equations and (2) a superior
finite-difference representation for the Laplacian op-
erator in 3D. This second contribution is new in
that, to our knowledge, no one currently simulating
3D excitable media is using this representation, and
its advantages are not known or appreciated within
this field.

We have focused our considerations on three
spatio-temporal resolutions (fine, medium, and
coarse) with a fixed set of model parameters. In 3D
the relative speeds (reciprocal of execution times)
of these are fine : medium : coarse =1 : 12 : 240.
We have shown that simulations at medium resolu-
tion are qualitatively quite good and in some mea-
sures these simulations do not differ significantly
from fully resolved ones. Using our approach the
medium-resolution case offers more than a factor of
10 increase in speed when compared to fine simu-
lations. (There is approximately another factor of
2 increase in speed when we compare with stan-
dard methods of simulating the FitzHugh—Nagumo
equations.) Presumably one could further reduce
the resolution and obtain speed increases of fac-
tors of 20 or more while maintaining useful results.
We have, however, found that as one gets near the
coarsest simulations possible in our approach, re-
sults become too inaccurate to be useful in most cir-
cumstances, and in particular we feel that a speedup
by a factor of 100 is not realistic. Thus we limit
our claim to having a method which allows approx-
imately a factor of 10 increase in speed in simula-
tions that can be reliably used to study waves in 3D
excitable media.

We have noted that in the limit of large
time steps our method becomes similar to the CA
method considered by Henze and Tyson [1996].
It is thus natural to compare approaches and re-
sults. The important differences between the CA
approach and ours are (1) our excitation variable

u takes on a continuous range of values, so that
even when simulating in the coarse spatio-temporal
limit, there are points on the interface and we con-
tinue to use standard representations for the Lapla-
cian operator. (2) Our grid spacings and time steps
can be adjusted independently (within stability con-
straints). (3) Our spatio-temporal resolution can
be varied continuously from fine to coarse. Many
of the advantages that CAs originally enjoyed over
PDE simulations, such as smaller memory require-
ments and faster integer arithmetic, have been lost
in the improvements made to correct the shortcom-
ings of CAs due to their discrete nature. We refer
the reader to Henze and Tyson for a discussion of
these points.

It is difficult to compare results from the
two approaches and to answer the basic question:
“Which method is faster?” The reason is that one
must first have a precise measure of the quality of a
simulation and this is probably impossible to define.
A comparison of timings between the specific coarse
simulations that we have considered and timings of
the Henze-Tyson CA would make no sense with-
out knowing that they are of comparable quality.
Which of our continuous range of resolutions is to
be compared with Henze-Tyson? There are other
reasons comparison is not simple, for example, the
result will depend not just on the algorithms but
also on the actual implementations which may or
may not be optimal for a given numerical approach.

One may take the point of view that our fast
simulations are simply under-resolved simulations.
There is certainly some truth in this. Even so, our
numerical method allows one to time-step the re-
action terms with larger steps than are stable in
other numerical schemes. Without this stability,
one could only reduce spatial resolution of the sim-
ulations while keeping a fixed time step set by the
stability of the reaction terms.

A related point which Henze and Tyson raise
and which we have also considered is what time step
is optimal for fast, qualitative, simulations. In the
CA approach where the space and time steps are
linked, Henze and Tyson postulate that the effec-
tive large time-step of the CA may in some cases
be too large to provide a good simulation. Because
we are not restricted in our choice of time-steps, we
have examined this and find that the answer de-
pends on which situations one considers. Consider
for example Table 2 containing scroll shrink data.
In the column h = 5/7 one sees that the shrink
coeflicient becomes particularly bad at small time-
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steps. As stated in Sec. 3.2 the poor quality of these
simulations is evident in the filament data itself. We
find this to be a general trend at least for h > 4/7.
One can also compare the case h = 4/7, At/e = 0.6
with the case h = 3/7, At/e = 2.4. The latter sim-
ulation is faster than the former by about a factor
of 2 yet it gives nearly the same shrink coefficient.
This would indicate the one should take the largest
time-step possible for a given spatial resolution.

If, on the other hand, one considers the drift co-
efficient, then except at the largest grid spacing, one
sees that it depends primarily on the time-step and
very weakly on the grid spacing. In fact, Henze and
Tyson found that the drift coefficient was difficult
to obtain accurately in their CA simulations and
this is what led them to make speculations on the
time-step. We offer no explanation for this effect,
but we stress the observations reported in Sec. 3.2.
Namely, it is not the drifting of the scroll wave in Z
that is sensitive to resolution: Z(t) is surprisingly
insensitive to resolution. It is R(¢) that depends
significantly on resolution. It is when one consid-
ers the relationship between R and R, and between
Z and R that the sensitivity to time step shows
up in the drift coefficient more than in the shrink
coefficient.

We conclude with some points about general
applicability of our approach and areas for future
work.

Our two new contributions to numerical sim-
ulations stated above should be broadly applica-
ble. The 19-point representation of the Laplacian
operator clearly can be implemented in any finite-
difference simulation based on a cubical lattice. We
strongly advocate its general use in preference to
the 7-point formula. Our approach to the improve-
ment of the reaction terms is generally applicable
in the following sense. In effect we have identified
the weak link in the numerical simulations, i.e. the
time stepping of the fast reaction terms during ex-
citation, and we have strengthened that weak link
in a simple way. While our particular improvement
depends on the form of the reaction terms, it is
plausible that with other models such as the classi-
cal FitzHugh—Nagumo equations (for which implicit
time stepping is more difficult), employing a higher-
order method on just the fast kinetic equation could
produce a significant benefit.

This suggests a more general approach to im-
proving numerical simulations of excitable media.
Due to the disparate space and time scales associ-
ated with excitation it would be advantageous to

use adaptive methods which locally evolve the fast
regions within the medium using smaller space and
time steps. Programming a fully adaptive method
for waves in 3D excitable media seems a daunting
task. However, one might be able to use a poor-
man’s approach by extending our method of treat-
ing the fast kinetics terms. The next most signif-
icant source of error comes from the diffusion of
u in the fast regions, i.e. from the approximation
of the Laplacian for a rapidly changing function of
space. It might be possible to use a method which
is higher-order in space in the fast regions only and
thereby increase the accuracy where it is important
and yet have a scheme which uses a uniform com-
putational mesh. We leave this for the future.
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Appendix

In this Appendix we sketch a derivation of the time-
stepping stability constraint for the 19-point repre-
sentation of the Laplacian operator in 3D, and we
discuss the relationship of this to the 9-point rep-

resentation in 2D. While the derivation is straight-
forward, we are unaware of any standard reference
which contains the result.

The issue is the numerical stability limit for the
linear diffusion equation:

ou

— =V

ot
when it is time-stepped using explicit-Euler method
in time and the 19-point representation of V?u:

1
u"+1 = u:}k + At—Eijk,

where

— n n
Yijk = 2y gk T 2UGp
n n
U1k T Uit e

+ u%i]_’kil - 24uzk .
Writing numerical scheme (16) as:

uzzl = Au%k ) (17)
then the scheme is stable so long as all eigenval-
ues of the operator A satisfy |A| < 1. In practice
the stability limit is reached when At becomes just
large enough that A first has an eigenvalue A = —1.

The eigenfunctions of A are simply discrete
forms of the eigenfunctions of the Laplacian:
Yijr, = cos(ly1) cos(lyj) cos(l;k) (18)
(and similarly with sine replacing any of the co-
sine functions), where [, I, [, are wavenumbers.
In principle these must be such that 1);;;, satisfies
some boundary conditions, but this is not very im-
portant. What is important is that the maximum
value for each of the [s is 7w corresponding to the
highest spatial frequency supported by the grid.
We substitute (18) into (17) and repeatedly use
trigonometric identities which, for example give:

Yiv1,5k + Yic1,jk = 2 cos(le)Vijr, -

The eigenvalue equation A1, = Ay is exactly
satisfied with:

4At
A=1+ W{COSU’:) + cos(ly) + cos(l)

+ cos(l) cos(ly) + cos(ly) cos(l.)
+ cos(ly) cos(l;) — 6} .
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Minimizing the expression in brackets over allowed
values of the wavenumbers gives that —8 is the most
negative value possible for the expression in brack-
ets and this occurs with I, = m, [, = m, [, = 0,
or any permutation of I, Iy, [,. Thus the most
negative eigenvalue of A is A = 1 — 16At/3h2. Set-
ting this to the limiting value, A = —1, and solving
for At gives At = (3/8)h?. For any smaller At all
eigenvalues satisfy |A\| < 1 and so this sets the nu-
merical stability limit.

Note that the most dangerous numerical modes
for the 19-point formula are in fact 2D modes,
e.g. Y = cos(mi)cos(mj). This is not the case
for the 7-point stencil where the most danger-

ous numerical modes are ;;, = cos(mi)cos(mj)
cos(mk).

Finally we note the 19-point Laplacian formula
reduces to, in 2D, the the 9-point Laplacian formula
considered in [Barkley et al., 1990; Barkley, 1991].
This can be seen by applying the 19-point formula
to a field that is independent of z, and hence index
k. The result is to sum weights in the 3D stencil
over k and this gives the 9-point 2D stencil. The
stability limit for the 9-point 2D representation is
the same as that just obtained: At = (3/8)h?. This
can be derived using the same method, but it fol-
lows simply because the most dangerous modes are
the same in each case.



