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Spatiotemporal dynamics near a supercritical Turing-Hopf bifurcation
in a two-dimensional reaction-diffusion system

W. Just,1,2,* M. Bose,1 S. Bose,1 H. Engel,1 and E. Scho¨ll 1

1Institut für Theoretische Physik, Technische Universita¨t Berlin, Hardenbergstrasse 36, D-10623 Berlin, Germany
2School of Mathematical Sciences, Queen Mary and Westfield College, Mile End Road, London E1 4NS, United Kingdom

~Received 22 January 2001; published 23 July 2001!

Pattern formation in semiconductor heterostructures is studied on the basis of a spatially two-dimensional
model of reaction-diffusion type. In particular, we investigate the neighborhood of a codimension-two Turing-
Hopf instability by analytical methods. Amplitude equations are derived which predict the absence of mixed
modes but extended ranges of bistability between homogeneous oscillatory states and hexagonal Turing pat-
terns. Our results are confirmed by numerical simulations. The features are not confined to a neighborhood of
the bifurcation point so that the conclusions of the weakly nonlinear analysis explain the observations in large
portions of the parameter space at least qualitatively
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I. INTRODUCTION

Pattern formation in systems far from equilibrium is o
of the most challenging fields in modern nonequilibriu
physics. There exists a variety of investigations in quite d
ferent physical contexts such as optical, magnetic, or che
cal systems@1,2# but a unifying perspective is still missing
Some universal aspects which are independent from the
derlying microscopic and mesoscopic details appear usu
near stability thresholds and can be treated theoretically
some kind of normal form approach. Thus one gets an ef
tive motion for slow degrees of freedom which allows one
understand the spatiotemporal dynamics to some extent

Particularly interesting features appear if instabilities
considered where different modes compete. One promin
example is given by Turing-Hopf instabilities@3#. Here two
modes exhibiting a purely spatially or temporarily period
pattern, respectively, occur simultaneously giving rise
mixed spatiotemporal periodic patterns, domain structu
displaying bistability between spatial and temporal mod
and space-time chaos. Such features have been confi
even experimentally, e.g., in the hydrodynamic context@4,5#
or in chemical reaction-diffusion systems@6,7#.

Here we are concerned with models which have been
veloped in the context of semiconductor charge transpor
heterostructure devices@8#. These models are able to d
scribe nonequilibrium patterns formation in layered stru
tures such as the heterostructure hot electron diode@9#,
p-n-p-n diodes@10,11#, andp-i -n diodes@12# or in impurity
impact ionization breakdown@13,14#. The models we are
concerned with fall in the larger class of reaction-diffusi
models of activator-inhibitor type which have been exte
sively studied throughout the last decade.

In particular, we focus on the following spatially two
dimensional model of reaction-diffusion type which d
scribes pattern formation in layered semiconductor devic
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5a@ j 02~u2a!#1DDu,

]a

]t
5 f ~u2a!2Ta1Da. ~1!

HereD denotes the two-dimensional Laplacian and the n
linear part of the transport equation reads

f ~v !ª
v

11v2
. ~2!

In physical terms the dynamical observables are given by
dimensionless voltage across the heterostructureu(r,t) and
an internal degree of freedom,a(r,t), e.g., the dimensionles
interface charge density. Herea andu play the roles of acti-
vator and inhibitor, respectively.D denotes an effective dif-
fusion constant andT the tunneling rate. The two importan
system parameters are given by the total currentj 0 and the
relaxation ratea. For additional physical background of th
model we refer the interested reader to the literature@15#.
Patterns in one spatial dimension near a codimension-
Turing-Hopf bifurcation were analyzed in Refs.@16–18#.
Variants of Eqs.~1! with a global constraint were studied i
Refs.@19,20#. In contrast to previous investigations here w
focus on the physically relevant spatially two-dimension
case which is known in general to be much more challeng
compared to one-dimensional pattern formation, see, for
stance, results obtained for the globally coupled mo
@21,22# or investigations in reaction-diffusion-like system
@23#. We review the linear stability analysis of our model
Sec. II in order to keep the presentation self-contained.
are in particular interested in the behavior near
codimension-two Turing-Hopf point. Section III is devote
to an analytical approach in terms of amplitude equatio
Thus, we are able to predict which type of pattern appe
beyond the stability threshold. Those readers who are pri
rily interested in properties of the solutions of our system~1!
may skip the analytical part at the first inspection and m
consult directly Sec. IV where the analytical results are co
pared with numerical solutions. Some technical details
contained in two appendixes.
©2001 The American Physical Society19-1
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II. LINEAR STABILITY ANALYSIS

For our theoretical analysis we impose periodic bound
conditions and consider eventually the limit of infinite sy
tem size so that boundary effects are assumed to be n
gible. In order to study the pattern formation in system~1! let
us begin with the spatially homogeneous fixed point

u* 5 j 01
1

T
f ~ j 0!, a* 5

1

T
f ~ j 0!, ~3!

and dwell on its stability. Since a detailed analysis can
found in the literature@17# we just quote the necessary r
sults and set up the notation for the weakly nonlinear an
sis. Considering small deviations from the fixed point~3!

F15u2u* , F25u2u* 2~a2a* ! ~4!

the equation of motion~1! up to third order reads

]F1

]t
5DDF12aF2 ,

]F2

]t
5TF11~D21!DF12@a1T1 f 8~ j 0!#F21DF2

~5!
2

1

2
f 9~ j 0!F2F22

1

6
f-~ j 0!F2F2F21O~F4!.

Linear stability is easily analyzed in terms of Fourier mod
and is governed by the eigenvalues of the 232 matrix

L~k!5S 2Dk2 2a

T2~D21!k2 2~a1T1 f 8~ j 0!!2k2D , ~6!

where k denotes the modulus of the wave number of
Fourier mode.

The condition for a Turing instability requires that th
matrix ~6! admits a single zero eigenvalue at a critical wa
number with modulusqcÞ0. Real parts of all other eigen
values have to be negative. These conditions result in

SAT1AaT

D D 2

1 f 8~ j 0
T!50 ~7!

with the critical wave number being given by

qc5S aTT

D D 1/4

. ~8!

Right and left eigenvectors of the matrixL(qc) correspond-
ing to the critical eigenvalue read

uc5S 2aT

Dqc
2 D , vc* 5~T2@D21#qc

2 ,Dqc
2!. ~9!

A Hopf bifurcation appears if the matrix~6! possesses a
pair of purely imaginary complex conjugated eigenvalues
k50. The condition on the parameters reads
02621
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aH1T1 f 8~ j 0
H!50, ~10!

where

vc5AaHT ~11!

denotes the imaginary part of the eigenvalue. The co
sponding right and left eigenvectors are easily evaluated

ũc5S 2aH

ivc
D , ṽc* 5~2T,2 ivc!. ~12!

We shall consider fixed values for the diffusion coefficientD
and the tunneling rateT. Then Eqs.~7! and ~10! describe
bifurcation lines in the parameter plane being spanned by
current j 0 and the relaxation ratea ~see Fig. 1!.

Crossing these bifurcation lines the pattern formation c
be studied by weakly nonlinear analysis in terms of amp
tude equations. In that context the intersection points of
bifurcation lines, i.e., the Turing-Hopf bifurcations, are
particular importance. Here the interaction of the differe
weakly unstable modes causes interesting features which
be studied within an analytical framework. Parameter val
of these degenerate bifurcations are obtained from Eqs.~7!
and ~10!

aTH1T1 f 8~ j 0
TH!50, 4DT5aTH~D21!2, ~13!

where

qc
TH5A 2T

D21
, vc

TH5AaTHT ~14!

denote the critical wave number and the frequency at
codimension-two point, respectively. The behavior of t
system in the vicinity of this degenerate bifurcation point
at the center of interest in the following section.

FIG. 1. Bifurcation lines for the Turing~thick line! and the Hopf
instability ~thin line! in the j 0-a parameter plane forD55 andT
50.05. Broken/solid lines indicate that the bifurcation is su
supercritical~cf. Sec. III!. Grayshading marks the region where th
trivial fixed point is unstable. The lefthand Turing–Hopf point
indicated.
9-2
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III. WEAKLY NONLINEAR ANALYSIS NEAR THE
CODIMENSION-TWO POINT

The behavior in the vicinity of the bifurcation lines can b
investigated by means of a weakly nonlinear analysis. T
spirit of such a standard approach is quite simple and
only quote the essential steps here. The solution of Eq.~5! is
expanded as

F5k(
l

~Al exp@ iql r#uc1c.c.!1k~Bexp@ ivct#ũc1c.c.!

1k2F (2)1k3F (3)1 . . . , ~15!

where the square of the expansion parameterk denotes the
distance from the bifurcation line in parameter space, and
superscripts~2!,~3! mark second and third order terms, r
spectively. The moduli of all wave vectorsql coincide with
the critical valueqc .

The type of mode which appears in the ansatz~15! de-
pends on whether we are considering the Turing, the H
or the Turing-Hopf instability. For the analysis of Turin
instabilities in more than one spatial dimension no gene
approach exists. One has to fix the particular critical wa
vectors beforehand. Here we are focusing on three promi
types of patterns:~a! plane waves consisting of a single wa
vector,~b! square patterns being determined by two ortho
nal wave vectors, and~c! hexagonal patterns where thre
wave vectors inC3 symmetric configuration appear.

Substituting the ansatz~15! into Eq.~5! and expanding up
to third order one obtains amplitude equations for the slo
varying amplitudesA and B. To facilitate the notation we
introduce the abbreviations

C$f,c%52
1

2
f 9~ j 0!S 0

f2c2
D ,

~16!

D$f,c,x%52
1

6
f-~ j 0!S 0

f2c2x2
D

so that the quadratic and cubic contributions of Eq.~5! are
given byC$F,F% andD$F,F,F%. For some technical de
tails of the derivation we refer the reader to Appendix A.

In our analysis we discard sideband instabilities, i.e.,
only take a time dependence on slow time scalest into ac-
count. A full analysis containing also spatial dependencies
slowly varying scales is much more cumbersome and se
to be not necessary for our purpose since no sideband in
bilities show up in our simulations.

A. The codimension-one cases

Let us first recall the features occurring near the bifur
tion lines. For the Hopf instability only modeB appears in
the ansatz~15!. If k2da5a2aH andk2d j 05 j 02 j 0

H denote
the distance from the Hopf bifurcation line~10! the just men-
tioned analysis results in the amplitude equation

]B

]t
5hB1ĝuBu2B. ~17!
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Let ^•••u•••& denote the canonical inner product anddL(0)
the change of the matrix~6! due to the deviation of the pa
rameters from the Hopf bifurcation line. Then the linear c
efficient of Eq.~17! reads

h5
^ṽcudL~0!ũc&

^ṽcuũc&
5

ivcTda2vc
2~da1 f 9~ j 0

H!d j 0!

2vc
2

.

~18!

For the cubic coefficient we use the general expression~see
e.g., Ref.@24#!

ĝ5
1

^ṽcuũc&
^ṽcu4C$ũc ,G̃a%12C$ũc* ,G̃b%

13D$ũc ,ũc ,ũc* %&,

G̃aª2
1

L~0!
C$ũc ,ũc* %, ~19!

G̃b52
1

L~0!22ivc1
C$ũc ,ũc%.

Evaluation with the help of Eqs.~6!, ~12!, and~16! yields

ĝ5
vc

2

2 F2
i

3vc
@ f 9~ j 0

H!#22
1

2
f-~ j 0

H!G . ~20!

The crucial point is the sign of Reĝ . It determines whether
the bifurcation is sub- or supercritical~see Fig. 1!. The posi-
tive and negative signs correspond to sub- and supercrit
respectively.

Let us now treat the vicinity of the Turing bifurcation lin
~7! in the same way, thusk2da5a2aT and k2d j 05 j 0

2 j 0
T . If we first confine ourselves to plane waves, i.e.,

single amplitudeA appears in the ansatz~15!, then the result-
ing amplitude equation reads

]A

]t
5«A1 r̂ uAu2A, ~21!

with the linear coefficient being given by

«5
^v cudL~qc!uc&

^vcuuc&

52
~Dqc

2!2

D~D11!qc
4 F S AT1AaT

D
D da

AaTD
1 f 9~ j 0

T!d j 0G .

~22!

For the cubic coefficient we make use of the general form
~see e.g., Ref.@24#!

r̂ 5
1

^vcuuc&
^vcu4C$uc ,Ga%12C$uc ,Gb%13D$uc ,uc ,uc%&,
9-3
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Gaª2
1

L~0!
C$uc ,uc%,

Gb52
1

L~2qc!
C$uc ,uc%. ~23!

Taking Eqs.~6!, ~9!, and~16! into account we end up with

r̂ 5
~Dqc

2!4

~D21!qc
2~Dqc

21aT!
F 2

9qc
2 @ f 9~ j 0

T!#22
1

2
f-~ j 0

T!G .

~24!

The sign of this real coefficient determines whether the
stability is subcritical~positive sign! or supercritical~nega-
tive sign!. Since the coefficient does not depend on the p
ticular pattern under consideration the conclusion holds
squares and hexagons as well.

Figure 1 reveals that two Turing-Hopf bifurcation poin
appear at our parameter setting. Equation~20! tells us that
the type of Hopf instability is solely determined by the thi
derivative of the nonlinear contribution~2!. Since for our
particular choice~2! the third derivative is negative for larg
current j 0, the right-hand Turing-Hopf point correspond
typically to a subcritical Hopf bifurcation. Therefore we fo
cus on the left-hand Turing-Hopf point. In order that bo
codimension one lines yield supercritical behavior the cr
cal wave numberqc has to be large enough in view of Eq
~24!. Thus, taking Eq.~8! into account, the diffusion coeffi
cient D should not exceed a certain threshold value. Al
gether, Eqs.~20! and ~24! result in the constraints

f-~ j 0
TH!.0,

2T

D21
.

4@ f 9~ j 0
TH!#2

9 f-~ j 0
TH!

~25!

on the parameter values for the Turing-Hopf point to be
percritical. These conditions are met for our parameter
ting chosen in Fig. 1. In what follows we concentrate one
left-hand Turing-Hopf point since the weakly nonline
analysis gives meaningful results only in the vicinity of s
percritical bifurcations.

B. Turing-Hopf point: square patterns

We are now going to investigate the vicinity of th
Turing-Hopf point. Let us first concentrate on patterns w
C4 symmetry, i.e., consider solutions~15! containing a Hopf
mode and two Turing modes with orthogonal wave vecto
Then the coupled set of amplitude equations is obtained

]B

]t
5hB1ĝuBu2B1ŝ~ uA1u21uA2u2!B,

]A1

]t
5«A11 r̂ uA1u2A11d̂uA2u2A11 ŝuBu2A1 ~1↔2!,

~26!

where the notation (1↔2) indicates that the equation for th
amplitudeA2 is obtained by interchanging subscripts 1 a
2. Linear coefficients« and h coincide with Eqs.~18! and
02621
-
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r
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~22!, whereas the cubic coefficientsĝ and r̂ are again given
by Eqs. ~20! and ~24!. Of course, parameters (aH, j 0

H) and
(aT, j 0

T) have to be replaced by their values at the Turin
Hopf point (aTH, j 0

TH). There appear in addition three ne
coupling coefficients for which the general expressions

d̂5
1

^vcuuc&
^vcu4C$uc ,Ga%18C$uc ,D%16D$uc ,uc ,uc%&,

ŝ5
1

^vcuuc&
^vcu4C$uc ,G̃a%14C$ũc ,D̃* %14C$ũc* ,D̃%

16D$uc ,ũc ,ũc* %&,

ŝ5
1

^ṽcuũc&
^ṽcu8C$uc ,D̃%14C$ũc ,Ga%16D$uc ,uc ,ũc%&

~27!

where

D52
1

L~A2qc!
C$uc ,uc%,

D̃52
1

L~qc!2 ivc1
C$uc ,ũc% ~28!

are valid. Evaluation according to Eqs.~6!, ~9!, ~12!, and
~16! yields

d̂5
D2~vc

TH!2

D11 F 4

~qc
TH!2

@ f 9~ j 0
TH!#22 f-~ j 0

TH!G ,

ŝ5
D~vc

TH!2

D11 F 2

~2D11!~qc
TH!2

@ f 9~ j 0
TH!#22 f-~ j 0

TH!G ,

ŝ5
D~vc

TH!2

2 F 2

~2D11!~qc
TH!2

@12 iAD~D12!#

3@ f 9~ j 0
TH!#22 f-~ j 0

TH!G . ~29!

The numerical values of these coefficients determ
which type of solution of the amplitude equations turns o
to be stable. In order to discuss particular solutions a norm
ization in Eq.~26! is useful. Since we focus on the supe
critical case, Reĝ ,0 and r̂ ,0, we normalize the principa
cubic coefficients to unity by using the rescaling

A2 r̂ A→A, A2Reĝ exp~2 i Im ht !B→B. ~30!

Then the imaginary part of the linear coefficienth has been
eliminated and

11 ic5
ĝ

Reĝ
, s5

ŝ

2 r̂
, s5

ŝ

2Reĝ
d5

d̂

2 r̂
~31!
9-4
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denote the rescaled cubic coefficients. Different types of
lutions of the amplitude equations and their stability is n
easily examined.1 We just summarize the result of such a
analysis.

~i! Hopf mode: The solution develops no spatial dep
dence:

A15A2[0, B5ARe h exp~2 ic Reht !. ~32!

Existence of such a type of solution requires

Reh>0, ~33!

whereas stability with respect to perturbations of theAl

modes yields

«1s Reh,0. ~34!

~ii ! Turing mode~plane wave!: The time independent patter
is determined by

A15A«, A2[0, B[0. ~35!

Its existence calls for

«>0. ~36!

Stability with respect to the Hopf modeB results in

Reh1Res«,0, ~37!

whereas stability with respect toA2 yields a constraint for
the nonlinear coupling coefficient

d,21. ~38!

~iii ! Turing mode~squares!: Square patterns are described
the solution

A15A25A «

12d
, B[0. ~39!

The two complex phases of the amplitudesAl remain unde-
termined because of the translation invariance of the sys
Stability with respect to the modesAl yields the constraint

udu,1. ~40!

Then the condition for existence reduces to Eq.~36! whereas
stability with respect to theB mode results in

Reh12« Res,0. ~41!

~iv! Mixed mode ~plane waves!: The solution of the spa
tiotemporal periodic pattern reads

1Our stability analysis is restricted to Eq.~26!. Such a type of
stability is sometimes termed internal stability since wave vec
which are not present in the pattern are discarded. The conditio
a necessary stability criterion.
02621
o-

-

m.

A15A«1s Reh

12s Res
,

A2[0,

B5AReh 1 Res «

12s Res
exp~ iDvt !,

Dv52cuBu21Im suA1u2. ~42!

Stability with respect to modeA1 andB requires

12s Res.0, ~43!

whereas stability with respect toA2 yields again Eq.~38!.
Finally the condition for existence of the solution simplifie
to

«1s Reh>0, Reh1Res«>0. ~44!

~v! Mixed mode~squares!: The solution reads

A15A25A «1s Reh

12d2s Res
,

B5ARe h ~12d!12 Res«

12d2s Res
exp~ iDvt !,

Dv52cuBu212 ImsuA1u2. ~45!

Stability of the solution yields two constraints involving th
nonlinear coefficients only

d.21, 12d22s Res.0 ~46!

and one condition on the linear coefficients« and Reh

~12d12 Res!«1~11s!~12d!Reh.0. ~47!

Then, existence of the solution calls for

«1s Reh>0, ~12d!Reh12 Res«>0. ~48!

Using the explicit expressions~18!, ~20!, ~22!, ~24!, and
~29! the coefficients~31! are easily evaluated. The list jus
described presents an overview over theC4 symmetric pat-
terns in the vicinity of the Turing-Hopf point. The spatiall
one–dimensional case~see, e.g., Ref.@25#! is covered by
items~i!, ~ii !, and~iv! as well, if one discharges the conditio
on the coefficientd. This latter quantity determines solely th
stability of the spatially two-dimensional patterns.

C. Turing-Hopf point: hexagonal patterns

Let us consider patterns consisting of three wave vec
havingC3 symmetry. Then, using the ansatz~15! we finally
obtain the set of amplitude equations~see Appendix A!

]B

]t
5hB1ĝuBu2B1ŝ~ uA1u21uA2u21uA3u2!B,

s
is
9-5
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]A3

]t
5«A31b̂A1* A2* 1 r̂ uA3u2A31ĝ~ uA1u21uA2u2!A3

1 ŝuBu2A3 ~49!

~1→2→3→1!. ~50!

The equations for the Turing mode amplitudes are obtai
by cyclic permutation (1→2→3→1). Because of reso
nances at second order the amplitude equations contain
dratic contributions too, if a resummation of different orde
is performed. The coefficientsh, « r̂ , ĝ, and ŝ coincide
with the expressions given in Eqs.~18!, ~22!, ~20!, ~24!, and
~29!. For the new coupling coefficients we obtain the gene
expressions

b̂5
2

^vcuuc&
^vcuC$uc ,uc%&,

ĝ5
1

^vcuuc&
^vcu6D$uc ,uc ,uc%14C$u,Ga%14C$uc ,Gc%

14C$uc ,V%&, ~51!

where the abbreviations2

Gcª2
1

L~A3qc!
C$uc ,uc%,

~52!

Vª2S 1

L~qc!
D

^c&

C$uc ,uc%

have been introduced. Using Eqs.~6!, ~9!, ~12!, and~16! the
straightforward evaluation yields

b̂52
D~qc

TH!2

D11
f 9~ j 0

TH!,

ĝ5
D2~vc

TH!2

D11 F 1

~qc
TH!2 S 3

4
1

1

~D11!2D ~ f 9~ j 0
TH!!2

2 f-~ j 0
TH!G . ~53!

For the investigation of solutions of Eqs.~49! it is again
useful to perform the scaling~30!, ~31! in the supercritical
regime. Hence the new coupling coefficients are replaced

b5
b̂

A2 r̂
, g5

ĝ

2 r̂
. ~54!

2@1/L(qc)#^c& denotes the inverse according to principal decom
sition, i.e., the inverse where in the spectral decomposition the
gular contributionuc^ vc* is left out.
02621
d
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Discussion of particular solutions is now almost straightf
ward.

~i! Hopf mode: Conditions coincide with the previou
case, Eqs.~32!, ~33!, and~34!.

~ii ! Turing mode~plane wave!: The pattern and its condi
tion for existence coincides with the previous case@see Eqs.
~35! and~36!#. Stability with respect to the modesA2/3 andB
results in one constraint for the cubic coupling coefficien

g,21 ~55!

and two conditions on the linear coefficients, namely, E
~37! and

«~11g!2.b2. ~56!

~iii ! Turing mode~hexagonal patterns!: The solution is given
by

Al 5uāuexp~ iw l !, B[0. ~57!

Because of translation invariance two of the complex pha
w l of the amplitudesAl are arbitrary. The pattern is com
pletely specified by the sum of the phasesfªw11w21w3.
For f50 the pattern hasC6 symmetry, i.e., it consists o
symmetric hexagons, whereas forfÞ0 only C3 symmetry
survives~‘‘triangles’’ !.

The fixed point condition for the phasef and its stability
yields ~see Appendix B!

b.0, f50 ~ ‘ ‘hexagons’’!,
~58!

b,0, f5p ~ ‘ ‘ triangles’’ !.

The remaining existence and stability conditions conde
after some algebra~see Appendix B! in one condition on the
cubic coefficients alone

122g.0 ~59!

and three conditions involving the linear coefficients

4~122g!«.2b2,

ubu1~11g!uāu.0, ~60!

Reh13 Resuāu2,0,

where

uāu5
ubu1Ab214«~122g!

2~122g!
~61!

denotes the amplitude of the pattern.
~iv! Mixed mode~plane wave!: The solution and its sta

bility with respect toA1 andB modes reads as in the prev
ous case@cf. see Eqs.~42! and~43!#. Stability with respect to

-
n-
9-6
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modesA2/3 yields one constraint involving the coupling co
efficient between the Turing modes

g,21 ~62!

and a condition on the linear coefficients

b2,~11g!2
«1s Reh

12s Res
. ~63!

Finally the condition for the existence of the solution reduc
to Eq. ~44!.

~v! Mixed mode ~hexagonal patterns!: The equations
which determine the spatiotemporal pattern read

Al 5uāuexp~ iw l !, B5ub̄uexp~ iDvt !. ~64!

As already mentioned above only the sum of the phasef
ªw11w21w3 characterizes the type of the pattern. Evalu
tion of the condition of existence and stability is not com
pletely straightforward. It is therefore referred to Append
B. One finally finds for the amplitudes of the modes

uāu5
ubu1Ab214~122g23s Res!~«1s Reh!

2~122g23s Res!
~65!

and

ub̄u25Reh13 Resuāu2,
~66!

Dv53 Imsuāu22cub̄u2.

The stability and existence constraints lead to one condi
involving the nonlinear coupling coefficients only

122g23s Res.0 ~67!

and four conditions which contain in addition the linear c
efficients

4~122g23s Res!~«1s Reh!.2b2,

ubu1~11g!uāu.0,
~68!

Reh13 Resuāu2.0,

ubuuāu22~122g!uāu222ub̄u2,0.

The selection rule~58! for the phase applies as well.
02621
s

-

n
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IV. RESULTS OF NUMERICAL SIMULATIONS

We shall now illustrate our findings by simulations
Eqs. ~1!. For the numerical investigation we fixT50.05 in
order to enable a comparison with previous work in one s
tial dimension@17#. Usually two Turing-Hopf points appea
if the diffusion coefficientD is not too small~see Fig. 1!.
First of all we have to locate a parameter setting which yie
a supercritical Turing-Hopf bifurcation.

In view of Eq. ~20! the condition for a supercritical Hop
instability, Re ĝ ,0, calls for f-( j 0).0. Taking the choice
~2! into account we arrive at the constraintj 0P@(3
2A8)1/2,(31A8)1/2# on the current. Thus the right-han
Turing-Hopf point turns out to be subcritical for most valu
of D. We therefore entirely focus on the left-hand Turin
Hopf point where the Hopf instability can be expected to
supercritical. To check for supercriticality of the Turing in
stability we have to consider the coefficient~24!.

Figure 2 reveals that supercriticality of the Turing inst
bility is ensured in an intermediate range of diffusion on
Here we fix D55 which is close to the minimum of the
cubic coefficient. Then the location of the supercritic
Turing-Hopf point in the parameter plane is according
Eqs.~13! given by

a
TH

50.0625 . . . , j 0
TH

51.4279 . . . . ~69!

The nonlinear coefficients of the amplitude equations
easily evaluated from Eqs.~29! and~53! taking the rescaling
Eqs.~31! and ~54! into account. We obtain

Res521.5677 . . . , Ims523.9848 . . . ,

s522.8676 . . . ,

FIG. 2. The cubic coefficientr̂ at the Turing Hopf point, the
critical wave numberqc

TH
and the critical frequencyvc

TH
in depen-

dence on the diffusion coefficientD ~see Eqs.~13!, ~14!, and~24!#.
Turing-Hopf points disappear ifD,(11A8T)/(12A8T), i.e., at
the left hand end of the diagram.
9-7
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d56.2974 . . . , b50.2204 . . . , g521.2221 . . . .
~70!

These numerical values enable us to discuss in detai
outcome of the weakly nonlinear analysis. Since the coup
between orthogonal wave vectorsd is fairly large, Eqs.~38!
and ~40! tell us that all Turing patterns consisting of plan
waves or squares are unstable. Furthermore, the pro
s Re s violates the conditions~43!, ~46!, and~67! so that all
kinds of mixed modes are unstable as well. Sinceb is posi-
tive Eq. ~58! implies that hexagons but no triangles appe
Thus we are left with studying the Hopf mode and the Tur
mode with hexagonal symmetry. Since the condition~59!
involving solely nonlinear coefficients is satisfied, we are l
with checking for the conditions on the linear coefficien
@Eqs.~33!, ~34!, and~60!#. Expressing« and Reh in terms
of the deviation from the Turing-Hopf point@see Eqs.~18!
and ~22!# the stability conditions result in bifurcation line
which are valid in a neighborhood of the Turing-Hopf poin
Our findings are summarized in Fig. 3.

The constraint~33! caused by the existence of the Ho
mode obviously results in the tangent to the full Hopf bifu
cation line~10! @see Eq.~18!#. Thus as a first rough estimat

FIG. 3. Different stability regimes in the vicinity of the Turing
Hopf point ~full circle! in the (j 0 ,a) parameter plane. Gray: Turin
~broken! and Hopf~full ! bifurcation line~see Fig. 1!. Existence of
Hopf mode@full line, see Eq.~33!#, stability of Hopf mode@dotted
line, see Eq.~34!#, and saddle-node bifurcation of Turing patter
@broken line, see Eq.~60!#. Region~A!: trivial solution, region~B!:
coexistence between trivial solution and Turing pattern, region~C!:
Turing pattern, region~D!: coexistence between Hopf mode an
Turing pattern.3 ands mark the parameter settings used in Fig
4 and 7, respectively.
02621
he
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ct
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for the validity of the weakly nonlinear analysis we may ta
the region in parameter space where the tangent appr
mates well the full bifurcation line, since curvature corre
tions are neglected in the amplitude equations.

Concerning the Turing patterns we observe that the sta
ity constraints~60! are satisfied throughout the whole d
main bounded by the Turing instability lines, mainly becau
Re s is negative. Hence stable hexagonal patterns exist
yond the Turing instability and no further constraint is im
posed. In fact, because of the presence of the quadratic
efficient b the condition~60! determines a boundary laye
beyond the Turing instability where stable hexagonal p
terns also exist. There we expect bistability between
trivial solution and stationary hexagonal patterns. Cross
the boundary determined by Eq.~60! the Turing pattern is
destroyed in a saddle node bifurcation. For the Hopf mo
the stability condition~34! confines the region in phase spa
where stable oscillations appear. However, there exist
wide region beyond the Turing line where hexagonal patte
and homogeneous oscillations coexist.

We compare these results with direct numerical simu
tions of the full system~1! in the vicinity of the Turing Hopf
point. First we concentrate on the region where bistabi
between hexagonal Turing patterns and Hopf modes are
dicted @region ~D! in Fig. 3#. Indeed we find stable Turing
patterns and Hopf oscillations, depending on the initial co
dition ~see Fig. 4!. Close to the Hopf instability lines the
Hopf mode has apparently a small basin of attraction a
mostly Turing patterns are observed. That is in accorda
with the geometry of the bifurcation diagram~Fig. 3! since
the Turing patterns are born in a saddle node bifurcation
have already developed a large basin of attraction if par
eter values close to the Hopf line are considered. Never
less, deep within the bistability region we observe dom
patterns which consist of coexisting patches of hexago
Turing structures and Hopf oscillations~see Figs. 5 and 6!.

.

FIG. 5. Coexistence pattern between Turing and Hopf stat
j 051.43 anda50.045. The density plots show the current dens
j (r,t) at four different times. The time labels refer to Fig. 6.
he
FIG. 4. ~a! Density plot of stationary Turing
pattern for the current densityj (r,t)5u(r,t)
2a(r,t). ~b! Relaxation of a Hopf mode. Time
dependence of the spatial average^ j & of the cur-
rent and the corresponding variances j5^ j 2&
2^ j &2. Parameter settings for both parts are t
same (j 051.43, a50.062, D55, andT50.05,
see Fig. 3!, but different initial conditions had
been chosen.
9-8
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SPATIOTEMPORAL DYNAMICS NEAR A . . . PHYSICAL REVIEW E64 026219
Even above the Turing instability line@region ~B! in Fig.
3#, where the trivial fixed point is stable we are still able
observe hexagonal Turing patterns~see Fig. 7!. Hence bista-
bility between the trivial homogeneous state and Turing p
terns prevails in this parameter domain.

Altogether, the features reported so far are in comp
agreement with our analytical investigation of the Turin
Hopf instability. However, at larger distance from the Turin
Hopf point scenarios may appear which are not captured
the weakly nonlinear analysis. As a particularly interest
example we mention a transition between two different ty
of hexagonal patterns, so called cold and hot spots~see Fig.
8!. We observe different kinds of time independent sta
patterns on changing the total currentj 0. With increasing
current the hexagonal structure at low current~hot spots!
transforms to a stripe pattern and then changes to a hex
nal pattern where the amplitudes are inverted~cold spots!.
Upon decreasing the current hysteresis is found. We sh
mention that this scenario depends on the boundary co
tions and the system size and hence might be a genuine
ture of the finite system.

V. CONCLUSIONS

Combining a linear stability analysis with the weakly no
linear analysis of Turing-Hopf points we have been able
uncover the structure of the solutions of the reactio
diffusion system~1! on two-dimensional spatial domain
The results have been condensed in a bifurcation diag
which can be confirmed quantitatively by numerical simu
tions. Because of the size of coupling coefficients betw
Turing and Hopf modes no mixed modes are observed
addition, the coupling between the different spatial mod
favors hexagonal patterns compared to plane waves
square patterns. There exist large regions of bistability in

FIG. 6. Time dependence of the spatial average of the cur
density for the state displayed in Fig. 5.

FIG. 7. Density plot of the current densityj (r,t) for j 051.47
anda50.07.
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neighborhood of the Turing-Hopf point.
Though only valid locally, our analysis applies to muc

larger parts of the parameter plane from a qualitative poin
view. In fact, domainlike coexistence patterns between he
gons and Hopf modes are observed for typical param
values beyond the linear stability thresholds.

Our findings show that mixed Turing-Hopf modes are u
likely to occur in two spatial dimensions, while pure hexag
nal Turing patterns or coexistence modes between Tu
patterns and oscillations can easily be found. In terms of
layered semiconductor model this means that spatiotemp
spiking, i.e., the mixed subharmonic Turing-Hopf mod
which has been found in one-dimensional simulations a
observed in several semiconductor experiments, is s
pressed if the sample has two lateral dimensions of com
rable size. It is, however, preferred in samples with one lo
and one short lateral dimension. Current filamentation
two-dimensional devices thus occurs in form of regular h
agonal stationary Turing patterns rather than spatiotemp
spiking modes. This may be of interest since it allows for t
self-organized ordering of small localized current filame
in regular arrays. Also, with increasing current density, t
transition between arrays of high-current filaments~hot
spots! via stripes to low-current filaments~cold spots! may
occur.

Our model describes charge transport in layered semic
ductor structures, but is also of more general interest beca
of its simple generic form. From our approach we can de
mine the parameter ranges for the various stable spa
temporal patterns on two-dimensional domains. Since
have derived general expressions for the coupling coe
cients, it is not necessary to go through the tedious analyt
derivation for each model separately. One can just plug in
details of the particular system in our final expressions@e.g.,
Eq. ~19!#. Thus the results of our calculation are not limite
to the special model~1!,~2! but can be easily applied to othe
nonlinear reaction-diffusion systems.

The actual values of the coupling coefficients determ
the type of Turing-Hopf instability, e.g., whether mixe
modes, or coexistence solutions appear. We expect tha
different parts of the whole parameter space, e.g., u
variation of the diffusion coefficientD or the tunneling rate
T, other types of spatiotemporal patterns may be found. A
lyzing the corresponding transition points of codimensi
three along the lines of our paper one may shed more l
on the properties of the full model. In this way, instabilitie
of increasing codimension may finally yield a skeleton
possible bifurcation scenarios, a strategy which has alre
proven to be successful in understanding low-dimensio

FIG. 8. Time independent patterns appearing for different val
of the total currentj 0 at a50.075,T50.05, andD55: Transition
from hot spots~left! to cold spots~right!. Simulations have been
performed on a system of size 2003200 with Neumann boundary
conditions.

nt
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dynamical systems~see Ref.@26# for some examples!.
Our approach can be generalized to include the effec

sideband instabilities. The corresponding calculations
come even more tedious although no principal difficult
arise. Such a complete analysis is required if one aims
check the full stability of the patterns under considerati
For our present model such advanced approaches appe
be dispensable since no sideband instabilities have show
in numerical investigations.
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APPENDIX A: DERIVATION OF THE AMPLITUDE
EQUATION

For the most cumbersome case, namely the Turing-H
instability involving hexagonal patterns, we sketch the de
vation of the amplitude equations. The other cases are
pler and follow along similar lines.

Introducing slow time scalest i5k i t on which the ampli-
tudesAl andB may depend, the evolution equations~5! and
the ansatz~15! yield in first order the eigenvalue problem o
the marginally stable modes

L~qc
TH!uc50, L~0!ũc5 ivc

THũc. ~A1!

Here L(k) denotes the matrix~6! evaluated at the Turing
Hopf point. Using the abbreviations~16! and assuming tha
the Hopf modeB will not depend ont1, we obtain in second
order

]F (2)

]t
1(

l

]Al

]t1
exp@ iql r#uc

5LF (2)1(
l l 8

Al Al 8exp@ i ~ql 1ql 8!r#C$uc ,uc%

12(
l

Al exp@ iql r#~Bexp@ ivc
THt#C$uc ,ũc%
02621
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1c.c.!12uBu2C$ũc ,ũc* %1~B2exp@2ivc
THt#

3C$ũc ,ũc%1c.c.!. ~A2!

L denotes the linear part of the right hand side in Eq.~5!. For
simplicity the complex conjugate contributions of the ans
have been taken into account by adopting the conven
A2l 5Al* , q2l 52ql with l ranging between23 and 3.
The secular condition with respect to the Turing modes le
to

^vcuuc&
]A3

]t1
52^vcuC$uc ,uc%&A1* A2* ~1→2→3→1!

~A3!

since the wave vectors are resonant at second order,2q1
2q25q3. Herevc denotes the left-eigenvector according
vc* L(qc

TH)50. Then, the nonsecular solution of Eq.~A2!
reads

F (2)5 (
l Þl 8.0

$Al Al 8 exp@ i ~ql 1ql 8!r#1c.c.%V

1 (
l Þl 8.0

$Al Al 8
* exp@ i ~ql 2ql 8!r#1c.c.%Gc

1 (
l .0

$2uAl u2Ga1~Al
2 exp@2iql r#Gb1c.c.!%

12uBu2G̃a1~B2 exp@2ivc
THt#G̃b1c.c.!

12(
l

Al exp@ iql r#~B exp@ ivc
THt#D̃1c.c.!,

~A4!

where the abbreviations~19!, ~23!, ~28!, and~52! have been
employed.

If we proceed to third order, the equation of motion r
sults in
]F (3)

]t
1(

l

]Al

]t2
exp@ iql r#uc1S ]B

]t2
exp@ ivc

THt#ũc1c.c.D
5LF (3)1dL~qc

TH!(
l

Al exp@ iql r#uc1dL~0!~B exp@ ivc
THt#ũc1c.c.!12CH(

l
Al exp@ iql r#uc

1~B exp@ ivTHt#ũc1c.c.!,F (2)J 1DH(
l

Al exp@ iql r#uc1~B exp@ ivc
THt#ũc1c.c.!,(

l
Al exp@ iql r#uc

1~Bexp@ ivc
THt#ũc1c.c.!,(

l
Al exp@ iql r#uc1~B exp@ ivc

THt#ũc1c.c.!J . ~A5!
9-10
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Collecting all contributions containing a single fact
exp@ivc

THt# we obtain for the secular condition of the Ho
mode

^ṽcuũc&
]B

]t2
5^ṽcudL~0!ũc&B1^ṽcu3D$ũc ,ũc ,ũc* %

14C$ũc ,G̃a%12C$ũc* ,G̃b%&uBu2B

1^ṽcu6D$uc ,uc ,ũc%14C$ũc ,Ga%

18C$uc ,G̃c%&B (
l .0

uAl u2. ~A6!

In the same way, collecting all contributions containing
plane wave factor exp@iql r# the secular conditions of th
Turing modes turn out to be

^vcuuc&
]A3

]t2
5^vcudL~qc

TH!uc&A1^vcu3D$uc ,uc ,uc%

14C$uc ,Ga%12C$uc ,Gb%&uA3u2A3

1^vcu6D$uc ,uc ,uc%14C$uc ,Ga%

14C$uc ,Gc%14C$uc ,V%&A3 (
l 51,2

uAl u2

1^vcu6D$uc ,ũc ,ũc* %14C$uc ,G̃a%

1~4C$ũc ,D̃* %1c.c.!&uBu2A3

~1→2→3→1!. ~A7!

If we resum the secular conditions Eqs.~A3! and ~A7! of
different order we finally obtain the amplitude equations~49!
together with the general expressions Eqs.~18!, ~19!, ~22!,
~23!, ~27!, and~51! for their coefficients.

APPENDIX B: STABILITY OF HEXAGONAL PATTERNS

The analysis of hexagonal patterns is most convenie
performed by rewriting Eqs.~49! in terms of moduliuAl u
and total complex phasef. After rescaling according to Eq
~30! we obtain

]B

]t
5RehB2~11 ic !uBu2B1s~ uA1u21uA2u21uA3u2!B,

]uA3u
]t

5«uA3u1buA1A2ucos~f!2uA3u31g~ uA1u2

1uA2u2!uA3u1suBu2uA3u ~1→2→3→1!,

~B1!

]f

]t
52buA1A2A3uS 1

uA1u2
1

1

uA2u2
1

1

uA3u2
D sin~f!.
02621
ly

Inspecting the equation for the phasef we conclude that
stationary solutions requiref50 or f5p. Linearization of
the phase equation then yields the stability constraint~58!.
Thus, for stable stationary solutions the conditionbcos(f)
5ubu is valid.

Inserting the solution~64! into Eqs.~B1! we get Eqs.~66!
and

05«1s Reh1ubuuāu2~122g23s Res!uāu2. ~B2!

Employing the notationB5b̄ exp(iDvt)(11dB) and uAl u
5uāu(11dAl ), the linear stability of the solution is inves
tigated. The resulting five-dimensional linear system se
rates into a two-dimensional coupled set of equations

d

dt S RedB

(
l

duAl u D 5S 22ub̄u2 2 Resuāu2

6sub̄u2 ubuuāu22~122g!uāu2D
3S RedB

(
l

duAl u D ~B3!

and three uncoupled equations for Imd B, dA32dA1, and
dA32dA2. These three equations give rise to a single~de-
generate! constraint

«1sub̄u22ubuuāu23uāu2,0. ~B4!

If we eliminateubu2 using Eq.~66! and then employ Eq.~B2!
to eliminate the linear parameters«1s Reh condition ~B4!
simplifies to Eq.~68!. The stability conditions for the system
~B3! require the trace of the matrix to be negative and
determinant to be positive. The condition on the trace co
cides with Eq.~68! whereas the condition on the determina
gives

ubu,2~122g23s Res!uāu. ~B5!

If we use condition~B5! in Eq. ~B2! we obtain the inequality

«1s Reh.2~122g23s Res!uāu2, ~B6!

whereas Eq.~B2! itself tells us that

«1s Reh,~122g23s Res!uāu2 ~B7!

holds. From both inequalities we conclude that conditi
~67! is required. Finally we are solving the quadratic equ
tion ~B2!. Existence of a real solution requires Eq.~68! if the
inequality~67! is taken into account. Equation~65! then de-
notes one of the solutions of the quadratic equation. T
other solution is ruled out by the inequality~B5!. Now in-
equality~B5! can be dropped since Eq.~65! always satisfies
this constraint.
9-11
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