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Spatiotemporal dynamics near a supercritical Turing-Hopf bifurcation
in a two-dimensional reaction-diffusion system
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Pattern formation in semiconductor heterostructures is studied on the basis of a spatially two-dimensional
model of reaction-diffusion type. In particular, we investigate the neighborhood of a codimension-two Turing-
Hopf instability by analytical methods. Amplitude equations are derived which predict the absence of mixed
modes but extended ranges of bistability between homogeneous oscillatory states and hexagonal Turing pat-
terns. Our results are confirmed by numerical simulations. The features are not confined to a neighborhood of
the bifurcation point so that the conclusions of the weakly nonlinear analysis explain the observations in large
portions of the parameter space at least qualitatively
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I. INTRODUCTION Ju
5 ~alio—(u—a)]+DAu,
Pattern formation in systems far from equilibrium is one
of the most challenging fields in modern nonequilibrium Jda
physics. There exists a variety of investigations in quite dif- E:f(u—a)—TaJrAa. @

ferent physical contexts such as optical, magnetic, or chemi-
cal systemg1,2] but a unifying perspective is still missing. I_-|ereA denotes the two—dimensiqnal Laplacian and the non-
Some universal aspects which are independent from the ufn€ar part of the transport equation reads

derlying microscopic and mesoscopic details appear usually

near stability thresholds and can be treated theoretically by f(v):= >
some kind of normal form approach. Thus one gets an effec- 1+v

tive motion for slow degrees of freedom which allows one 10}, ypysical terms the dynamical observables are given by the
understand the spatiotemporal dynamics to some extent.  gimensionless voltage across the heterostruatifret) and
Particularly interesting features appear if instabilities arean internal degree of freedom(r,t), e.g., the dimensionless
considered where different modes compete. One prominematerface charge density. Heaeandu play the roles of acti-
example is given by Turing-Hopf instabiliti¢8]. Here two  vator and inhibitor, respectivel\p denotes an effective dif-
modes exhibiting a purely spatially or temporarily periodic fusion constant and the tunneling rate. The two important
pattern, respectively, occur simultaneously giving rise tosystem parameters are given by the total curjgrand the
mixed spatiotemporal periodic patterns, domain structure&elaxation ratex. For additional physical background of the
displaying bistability between spatial and temporal modesModel we refer the interested reader to the literaf(/s].
and space-time chaos. Such features have been confirmE@Lerns in one spatial dimension near a codimension-two

. . : uring-Hopf bifurcation were analyzed in Refgl6-18.
even experllmentally_, €.g. In t_he hydrodynamic coné] Variants of Eqs(1) with a global constraint were studied in
or in chemical reaction-diffusion systerf,7].

H d with models which h b d Refs.[19,20. In contrast to previous investigations here we
Ere we are concermed with modeis which have been dgg,q s o the physically relevant spatially two-dimensional

; 'tase which is known in general to be much more challenging
heterostructure deviceg8]. These models are able to de- compared to one-dimensional pattern formation, see, for in-

scribe nonequilibrium patterns formation in Iayereq StruC-stance, results obtained for the globally coupled model
tures such as the heterostructure hot electron di®e [21,27 or investigations in reaction-diffusion-like systems
p-n-p-n diodes[10,11], andp-i-n diodes[12] or in impurity  [23]. We review the linear stability analysis of our model in
impact ionization breakdowfl3,14. The models we are Sec. Il in order to keep the presentation self-contained. We
concerned with fall in the larger class of reaction-diffusionare in particular interested in the behavior near the
models of activator-inhibitor type which have been exten-codimension-two Turing-Hopf point. Section IlI is devoted
sively studied throughout the last decade. to an analytical approach in terms of amplitude equations.
In particular, we focus on the following spatially two- Thus, we are able to predict which type of pattern appears
dimensional model of reaction-diffusion type which de- beyond the stability threshold. Those readers who are prima-
scribes pattern formation in layered semiconductor devicesrily interested in properties of the solutions of our systém
may skip the analytical part at the first inspection and may
consult directly Sec. IV where the analytical results are com-
*Present address: Instituf rflPhysik, TU-Chemnitz, D-09171 pared with numerical solutions. Some technical details are
Chemnitz, Germany. Email address: W.Just@gmw.ac.uk contained in two appendixes.
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Il. LINEAR STABILITY ANALYSIS
0.08 |
For our theoretical analysis we impose periodic boundary
conditions and consider eventually the limit of infinite sys-
tem size so that boundary effects are assumed to be negli- 0.06 |
gible. In order to study the pattern formation in systemlet &
us begin with the spatially homogeneous fixed point 0.04 |
o1 1
u*ZJO—i_?f(JO)i a*z?f(JO)i (3) 0.02 r
and dwell on its stability. Since a detailed analysis can be 0 1 1'5 2 2'5 3 3'5 == :
found in the literaturg 17] we just quote the necessary re- ' ' i '
sults and set up the notation for the weakly nonlinear analy- 0
sis. Considering small deviations from the fixed pdiit FIG. 1. Bifurcation lines for the Turinghick line) and the Hopf
instability (thin line) in the j,-a parameter plane fob=5 andT
Q;=u-u,, P=u-—u,—(a-a,) (4)  =0.05. Broken/solid lines indicate that the bifurcation is sub/
. . . supercritical(cf. Sec. Il). Grayshading marks the region where the
the equation of motioiil) up to third order reads trivial fixed point is unstable. The lefthand Turing—Hopf point is
indicated.
LN
- = DA(I)]__ Ct’q)z,
at a"HTHE () =0, (10)
P
—Z TR (D= DA, —[a+ T+1'(jo) |0, +AD, where
(5) wc=1a""T (11)

1 1
_Ef"(lo)q)zq)z_gfm(lo)q)zq)zcbz"‘o(qﬂ)-
denotes the imaginary part of the eigenvalue. The corre-

Linear stability is easily analyzed in terms of Fourier modessPonding right and left eigenvectors are easily evaluated as
and is governed by the eigenvalues of the 2 matrix

—DKk? —a Uc=

T-(D-1)k?> —(a+T+f'(jo)—k?/’ ©®
We shall consider fixed values for the diffusion coefficiBnt

where k denotes the modulus of the wave number of theand the tunneling rat&. Then Egs.(7) and (10) describe
Fourier mode. bifurcation lines in the parameter plane being spanned by the

The condition for a Turing instability requires that the currentj, and the relaxation rate (see Fig. 1
matrix (6) admits a single zero eigenvalue at a critical wave Crossing these bifurcation lines the pattern formation can
number with modulusg).#0. Real parts of all other eigen- be studied by weakly nonlinear analysis in terms of ampli-
values have to be negative. These conditions result in  tude equations. In that context the intersection points of the
bifurcation lines, i.e., the Turing-Hopf bifurcations, are of

_a,H _
), Eé‘:(—T,—iwc). (12

e

L(k)=

JT+ /a_T 2+f’('T):0 R particular importance. Here the interaction of the different
D Jo weakly unstable modes causes interesting features which can
be studied within an analytical framework. Parameter values
with the critical wave number being given by of these degenerate bifurcations are obtained from Ef)s.
and(10)
aTT 1/4
qCZ(F) ' ® a™M+T+1/(j{M=0, 4DT=a™(D-1)%2, (13

Right and left eigenvectors of the matili{q.) correspond- where
ing to the critical eigenvalue read -

(_aT) al=\=—= oi"=\Ja™T (14

D-1
pg)r U=(T-[D-11a2.Dg). (9

Ues=

denote the critical wave number and the frequency at the
A Hopf bifurcation appears if the matri¢6) possesses a codimension-two point, respectively. The behavior of the
pair of purely imaginary complex conjugated eigenvalues asystem in the vicinity of this degenerate bifurcation point is
k=0. The condition on the parameters reads at the center of interest in the following section.
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lll. WEAKLY NONLINEAR ANALYSIS NEAR THE Let(---|---) denote the canonical inner product afid(0)
CODIMENSION-TWO POINT the change of the matrig6) due to the deviation of the pa-
The behavior in the vicinity of the bifurcation lines can be rameters from the Hopf bifurcation line. Then the linear co-

investigated by means of a weakly nonlinear analysis. Thé&fficient of Eq.(17) reads

spirit of such a standard approach is quite simple and we 5 5 ] 5 e

only quote the essential steps here. The solution of Bds (TeloL(0)Ue) i Toa—w(da+1"(jg)djo)

expanded as = — = :
P (Beltc) 202

(18
d=x, (A, exdig ru.+c.c)+ k(Bexfiwct]l.+c.c)
- 7 N N For the cubic coefficient we use the general expres@esn

+ K2q)(2)+ K3q)(3)+ o (15) e.g., Ref[24])
where the square of the expansion parametelenotes the .1 o=~ e
distance from the bifurcation line in parameter space, and the Y= @0 ><Ec|4C{E° La}+2C{T¢ o}
superscripts2),(3) mark second and third order terms, re- ==
spectively. The moduli of all wave vectogs coincide with +3D{U¢,U¢,TL}),

the critical valueq.
The type of mode which appears in the anddt3) de- -
pends on whether we are considering the Turing, the Hopf, Fa=— WC{EC ,’g’é}, (19
or the Turing-Hopf instability. For the analysis of Turing =
instabilities in more than one spatial dimension no general

approach exists. One has to fix the particular critical wave - " T

. . 1—‘b f C{uc .Uc}-
vectors beforehand. Here we are focusing on three prominent - g(O)—ZI ol ==
types of patternga) plane waves consisting of a single wave ) ] )
vector,(b) square patterns being determined by two orthogoEvaluation with the help of Eqs6), (12), and(16) yields
nal wave vectors, andc) hexagonal patterns where three ’

wave vectors irC; symmetric configuration appear. A @ [F(E) 12— Efm(jg) _ 20)
c

Substituting the ansata5) into Eq.(5) and expanding up Y72 3w,
to third order one obtains amplitude equations for the slowly
varying amplitudesA and B. To facilitate the notation we The crucial point is the sign of Rg. It determines whether

introduce the abbreviations the bifurcation is sub- or supercriticédee Fig. 1 The posi-
tive and negative signs correspond to sub- and supercritical,
wo respectively.
Clg.yt=- Ef (1 0)( ¢2,/,2) ' Let us now treat the vicinity of the Turing bifurcation line

1 (7).in the same way, thus?sa=a—a' and «%8jo=]j,

1 0 —jg. If we first confine ourselves to plane waves, i.e., a
Di{d,¢h.x}=— 51" single amplitudeA appears in the ansatt5), then the result-

Pathaxz ing amplitude equation reads
so that the quadratic and cubic contributions of E5).are
given by C{®,®} andD{®,P,P}. For some technical de- %:8A+F|A|2A (21)
tails of the derivation we refer the reader to Appendix A. aT '

In our analysis we discard sideband instabilities, i.e., we
only take a time dependence on slow time scalésto ac-  With the linear coefficient being given by
count. A full analysis containing also spatial dependencies on
slowly varying scales is much more cumbersome and seems (2.l 9L(Gc)Uc)
to be not necessary for our purpose since no sideband insta®~ — , [\

e . . . <EC|HC>
bilities show up in our simulations.
(Dg?)? al| ba
A. The codimension-one cases - \/?"” - +1"(Jo)dlo]|-
D(D+1)qs D/\{a™D

Let us first recall the features occurring near the bifurca-
tion lines. For the Hopf instability only modB appears in (22)
the ansatz15). If k?6a=a— o™ and«?8j,=j,— |} denote
the distance from the Hopf bifurcation liri&0) the just men-
tioned analysis results in the amplitude equation

For the cubic coefficient we make use of the general formula
(see e.g., Ref24))

B . . 1
——=7B+ y|B|2B. % B TR ><gc|4C{gc{a}+2C{gc,Eb}+3D{9c,gc,gc}>,
YclHce
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1 (22), whereas the cubic coefficienjsandf are again given
Ta=— EC{EC'“c}’ by Egs.(20) and (24). Of course, parameters:{,j§) and
- (aT,jg) have to be replaced by their values at the Turing-
B 1 Hopf point (@™,j{H). There appear in addition three new
Lo=- L(29c¢) Clue gl (23 coupling coefficients for which the general expressions

. . . A 1
Taking Egs.(6), (9), and(16) into account we end up with d= o ><Ec|4C{EClEa}+8C{HC'é}+6D{EC’EC’HC}>,

2 (Dq§)4 2 nriTy\12 1 mei T -

r=(D_1)qz(Dq2+aT) 9—qz[f (1) 17— 5 (o) |- ) 1 _ - -

C Cc Cc = —
ey S (odug (uel4Cite ol +4C(Te £ + (T )

The sign of this real coefficient determines whether the in- +6D{uc,Uc, Tz }),
stability is subcritical(positive sign or supercritical(nega-
tive sign. Since the coefficient does not depend on the par- - -
ticular pattern under consideration the conclusion holds for &=7=——(v[8C{uc,A}+4C{Uc,I'a} +6D{uc,Uc ,Uc})
squares and hexagons as well. 3°|—° 27)

Figure 1 reveals that two Turing-Hopf bifurcation points
appear at our parameter setting. Equatigf) tells us that \yhere
the type of Hopf instability is solely determined by the third
derivative of the nonlinear contributio(2). Since for our
particular choice?) the third derivative is negative for large A=- L(\2 {uc.uch,
current jo, the right-hand Turing-Hopf point corresponds L(v2qc)
typically to a subcritical Hopf bifurcation. Therefore we fo-
cus on the left-hand Turing-Hopf point. In order that both A=— ————C{u., .} (28)
codimension one lines yield supercritical behavior the criti- - L(Ge)—lwcl ==

cal wave number, has to be large enough in view of Eq.
(24). Thus, taking Eq(8) into account, the diffusion coeffi-
cient D should not exceed a certain threshold value. Alto-

are valid. Evaluation according to Eq&), (9), (12), and
(16) yields

gether, Egqs(20) and(24) result in the constraints D2(TH)2
s a: ((Dc ) — Z[f”(j-IO—H)]Z_fW(j-(I)—H)‘|:
ms-TH 2T 4[f (JO )] D+1 (qc )
f”(jo )>0, 51" o (T (25
JO D((OIH)Z

on the parameter values for the Turing-Hopf point to be su- S~ D+1
percritical. These conditions are met for our parameter set-
ting chosen in Fig. 1. In what follows we concentrate one the

2
(2D+1)(qTH)2[f"<13”>]2—f'"(jé“)],

THy2
left-hand Turing-Hopf point since the weakly nonlinear 5= Dlwc™) 2 [1—iyD(D+2)]
analysis gives meaningful results only in the vicinity of su- 2 (2D+1)(qi™?
percritical bifurcations.
mei THN92 _ gm; TH
B. Turing-Hopf point: square patterns X[ (o)1= "o )]' (29)

We are now going to investigate the vicinity of the . o )
Turing-Hopf point. Let us first concentrate on patterns with _1n€ numerical values of these coefficients determine
C, symmetry, i.e., consider solutioli5) containing a Hopf which type of solution of_the amphtgde equations turns out
mode and two Turing modes with orthogonal wave vectors?o b_e stfable. In ord_er to d|scus_s particular solutions a normal-
Then the coupled set of amplitude equations is obtained: 'Zation in Eq.(26) is useful. Since we focus on the super-
critical case, Rey <0 andfi <0, we normalize the principal
cubic coefficients to unity by using the rescaling

JV-FA—A, J-Reyexp—ilmyt)B—B. (30

dA - . . . -
—1=sA1+f|Al|2Al+ d|A,]?A;+8|B|?A; (1-2), Then the imaginary part of the linear coefficiepthas been

B n
Fr 7B+ ¥|B|*B+5(|A|*+]A5|%)B,

7 eliminated and
(26)
where the notation (4 2) indicates that the equation for the 1+ic= L o= i s= 5 d= i
amplitudeA, is obtained by interchanging subscripts 1 and Rey —7’ —Re¥y —f
2. Linear coefficientg and » coincide with Eqs.(18) and (31
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denote the rescaled cubic coefficients. Different types of so- e+sReyp
lutions of the amplitude equations and their stability is now Al=\7——=—,
. ; ) . 1-sReo
easily examined.We just summarize the result of such an
analysis. B
A2=O,

(i) Hopf mode: The solution develops no spatial depen-

dence: B Ren + Reo ¢ iAot
=\ — 5 expiAwt),
A;=A,=0, B=Re 7 exp(—ic Rent). (32 1-sReco

Existence of such a type of solution requires Aw=—c|B|?>+Ima|A|2. (42
Ren=0, (33)  Stability with respect to modé; andB requires
whereas stability with respect to perturbations of #he 1-sReo>0, (43

modes yields
whereas stability with respect A, yields again Eq(38).

e +sRen<O. (34 Finally the condition for existence of the solution simplifies
to
(ii) Turing mode(plane wavég The time independent pattern
is determined by e+sRen=0, Ren+Rece=0. (44
A= Je, A,=0, B=0. (35 (v) Mixed mode(squares The solution reads
Its existence calls for e+sRey
A1=A2= V1= 4" sReo’
e=0. (36)
Stability with respect to the Hopf mod® results in B \/Re 7(1-d)+2 Reoe expliAwt)
1-d-sReco '
Ren+Reoe <0, (37)
Aw=—c|B|?+2 Ima|A|2. (45)

whereas stability with respect t#, yields a constraint for
the nonlinear coupling coefficient Stability of the solution yields two constraints involving the
nonlinear coefficients only

d<-1. (38
d>-1, 1-d-2sRec>0 (46)
(iii ) Turing mode(squares Square patterns are described by
the solution and one condition on the linear coefficiertsand Ren
e (1-d+2 Reo)e+(1+s)(1-d)Ren>0. 47
- Then, existence of the solution calls for
The two complex phases of the amplitudes remain unde- e+sRen=0, (1-d)Renp+2Resce=0. (48

termined because of the translation invariance of the system.
Stability with respect to the modées, yields the constraint Using the explicit expressiond 8), (20), (22), (24), and
(29 the coefficientg31) are easily evaluated. The list just
|d]<1. (40) described presents an overview over @€gesymmetric pat-
terns in the vicinity of the Turing-Hopf point. The spatially
one—dimensional casesee, e.g., Ref[25]) is covered by
items(i), (i), and(iv) as well, if one discharges the condition
on the coefficiend. This latter quantity determines solely the
stability of the spatially two-dimensional patterns.

Then the condition for existence reduces to 8%) whereas
stability with respect to th& mode results in

Re7+2¢ Rea<0. (42)

(iv) Mixed mode (plane waves The solution of the spa- . .
tiotempora' periodic pattern reads C. Turing-Hopf point: hexagonal patterns
Let us consider patterns consisting of three wave vectors
havingC5; symmetry. Then, using the ansdi®) we finally
our stability analysis is restricted to E¢R6). Such a type of Obtain the set of amplitude equatiofsee Appendix A
stability is sometimes termed internal stability since wave vectors B
which are not present in the pattern are discarded. The condition is — 7B+ 3/|B|ZB+ 6'(|A1|2+ |A2|2+ |A3|2)B,

a necessary stability criterion. orT
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A3 e et 12 . ) 5 Discussion of particular solutions is now almost straightfor-
W=8A3+bA1A2+r|A3| Ag+9(|AL]*+]Az*)Ag ward.
(i) Hopf mode: Conditions coincide with the previous
+3|B|?A5 (490  case, Egs(32), (33), and(34).
(ii) Turing mode(plane wavég The pattern and its condi-
(1-2—3—-1). (50) tion for existence coincides with the previous cgsee Egs.
(35 and(36)]. Stability with respect to the modés,; andB
The equations for the Turing mode amplitudes are obtainetesults in one constraint for the cubic coupling coefficient
by cyclic permutation (+2—3—1). Because of reso-
nances at second order the amplitude equations contain qua- g<-1 (55)
dratic contributions too, if a resummation of different orders
is performed. The coefficienty, ¢ 7, %, and ¢ coincide and two conditions on the linear coefficients, namely, Eq.
with the expressions given in Eg4.8), (22), (20), (24), and  (37) and
(29). For the new coupling coefficients we obtain the general

expressions e(1+g)2>b?. (56)
- 2 c (iii ) Turing mode(hexagonal pattermsThe solution is given
= <EC|EC> <Zc {Hc aEc}>1 by
R 1 A, =|alexpie,), B=0. (57)
9= W(ﬂc"SD{Ec Ue !EC}+4C{E’EE\}+4C{HC 'Ec}
—cl=e Because of translation invariance two of the complex phases
+4C{u,,0}), (51) ¢, of the amplitudesA, are arbitrary. The pattern is com-
- pletely specified by the sum of the phasks- ¢+ ¢, + ¢3.
where the abbreviatioAs For =0 the pattern ha€g symmetry, i.e., it consists of
symmetric hexagons, whereas f@¢r= 0 only C; symmetry
1 survives(“triangles”).
Igi=— ——=—C{uc,Uc}, The fixed point condition for the phask and its stability
L(+/30,) yields (see Appendix B
(52)
0= — Clu, ,u b>0, ¢=0 (‘‘hexagons’),

b<O0, = “triangles’ ).
have been introduced. Using E@6), (9), (12), and(16) the ¢=m ( g )

straightforward evaluation yields The remaining existence and stability conditions condense
after some algebrésee Appendix Bin one condition on the

b — D(QZH)Zf,, TH cubic coefficients alone
- D+1 (JO )!
1-29>0 (59
2/ TH\2
g= D™(we™) ! § (F"(joM)? and three conditions involving the linear coefficients
D1 12\ 4 (D+1)
4(1-2g)e>—b?
— (5 |- (53
b|+(1+g)[al>0, (60)
For the investigation of solutions of Eggl9) it is again
useful to perform the scaling30), (31) in the supercritical Ren+ 3 Reo|a]?<0,
regime. Hence the new coupling coefficients are replaced by
where
° & (54)
b=—, g=—. 54 |b|+ Vb?+4s(1-29)
V- ~f =029 (61

denotes the amplitude of the pattern.

A 1/L(qc) ] denotes the inverse according to principal decompo-  (iv) Mixed mode(plane wavé The solution and its sta-
sition, i.e., the inverse where in the spectral decomposition the sinbility with respect toA; andB modes reads as in the previ-
gular contributionuc®v? is left out. ous casécf. see Eqs(42) and(43)]. Stability with respect to
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modesA,,3 yields one constraint involving the coupling co- 0.004 [
efficient between the Turing modes p 0002

0
g<-1 (62) -0.002 \__./

and a condition on the linear coefficients

28+SRe7]
1-sReo’

b2<(1+g) (63)

Finally the condition for the existence of the solution reduces
to Eq. (44).

(v) Mixed mode (hexagonal patternis The equations
which determine the spatiotemporal pattern read

FIG. 2. The cubic coefficient at the Turing Hopf point, the
_ . S . critical wave numbeqlH and the critical frequenc;olH in depen-
A =lalexpie,), B=|plexplidwt). (64) dence on the diffusion coefficiet (see Eqs(13), (14), and(24)].

Turing-Hopf points disappear iD<(1++/8T)/(1—+/8T), i.e., at
As already mentioned above only the sum of the phases o |§t hazdpend of the%ri’agram. (L+VBT)/(1-VBT)

=@+ @, + @3 characterizes the type of the pattern. Evalua-

tion of the _condition of ex_istence and stability is not com- IV. RESULTS OF NUMERICAL SIMULATIONS
pletely straightforward. It is therefore referred to Appendix
B. One finally finds for the amplitudes of the modes We shall now illustrate our findings by simulations of

Egs.(1). For the numerical investigation we fik=0.05 in
order to enable a comparison with previous work in one spa-
b|+b?+4(1—-2g—3sRec)(e +sRen) tial dimension[17]. Usually two Turing-Hopf points appear
o= 2(1-2g-3sReo) (€9 if the diffusion coefficientD is not too small(see Fig. L
First of all we have to locate a parameter setting which yields
and a supercritical Turing-Hopf bifurcation.
In view of Eq.(20) the condition for a supercritical Hopf
instability, Re ¥ <0, calls forf”(jo)>0. Taking the choice

| B|2=Ren+3 Reo|al?, (2) into account we arrive at the constrainye[(3
_ 1/2 1/ H
(66) J8)¥2 (3+/8)Y?] on the current. Thus the right-hand
Turing-Hopf point turns out to be subcritical for most values
Aw=3Imo|al?—c|BJ2 of D. We therefore entirely focus on the left-hand Turing-

Hopf point where the Hopf instability can be expected to be

The stability and existence constraints lead to one conditio§UPercritical. To check for supercriticality of the Turing in-
involving the nonlinear coupling coefficients only stability we have to consider the coefficie@4).
Figure 2 reveals that supercriticality of the Turing insta-

bility is ensured in an intermediate range of diffusion only.
1-29—3sReoc>0 (67) Here we fixD=5 which is close to the minimum of the
cubic coefficient. Then the location of the supercritical

and four conditions which contain in addition the linear co- Turing-Hopf point in the parameter plane is according to

efficients Eqgs.(13) given by
— _ _h2
4(1-2g9~3sReo)(e+sRer)>—b% oM=0065..., jy=142D.... (69
Ib|+(1+g)[a]>0, The nonlinear coefficients of the amplitude equations are

(68) easily evaluated from Eq$29) and(53) taking the rescaling
Egs.(31) and(54) into account. We obtain

Ren+ 3 Reo|a]?>0,

Res=-1567..., Img=-3.988...,
|bl[a]-2(1-2g)|a]*~2|B|*<0.

The selection rulg58) for the phase applies as well. s=-2.86%...,
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oorsf ~ T T T 7T t=150 t=200 t=250 =300

0.07 (A) o .
o 0.065 |

FIG. 5. Coexistence pattern between Turing and Hopf state at

0.06
jo=1.43 anda=0.045. The density plots show the current density
j(r,t) at four different times. The time labels refer to Fig. 6.
0.055 |, . . . . . .
186 1.38 14 142 144 146 148 for the validity of the weakly nonlinear analysis we may take
Jo the region in parameter space where the tangent approxi-

_ B _ ) o _ mates well the full bifurcation line, since curvature correc-
FIG. 3. Different stability regimes in the vicinity of the Turing- tjgns are neglected in the amplitude equations.
Hopf point(full circle) in the (o, ) parameter plane. Gray: Turing  concerning the Turing patterns we observe that the stabil-
(broken) and Hopf(full) bifurcation line(see Fig. 1. Existence of i oqnsiraints(60) are satisfied throughout the whole do-
Hopf modefull line, see Eq.33)], stability of Hopf modddotted iy byonded by the Turing instability lines, mainly because
line, see.Eq(M)]’ and Saddle.' node b'f.urcat'on 9f Turing patterns Re o is negative. Hence stable hexagonal patterns exist be-
[broken line, see EG80)]. Region(A): trivial solution, region(B): ond the Turing instability and no further constraint is im-
coexistence between trivial solution and Turing pattern, reg@n y g Y .
posed. In fact, because of the presence of the quadratic co-

Turing pattern, regionD): coexistence between Hopf mode and ™~ " .
Turing pattern.X andO mark the parameter settings used in Figs. efficient b the condition(60) determines a boundary layer

4 and 7, respectively. beyond the Turing instability where stable hexagonal pat-
terns also exist. There we expect bistability between the
d=6.29% ..., b=0220t..., g=-1222.... trivial solution and stationary hexagonal patterns. Crossing

(70) the boundary determined by E(0) the Turing pattern is
destroyed in a saddle node bifurcation. For the Hopf mode
These numerical values enable us to discuss in detail thihe stability conditior(34) confines the region in phase space
outcome of the weakly nonlinear analysis. Since the couplingvhere stable oscillations appear. However, there exists a
between orthogonal wave vectatss fairly large, Eqs(38)  wide region beyond the Turing line where hexagonal patterns
and (40) tell us that all Turing patterns consisting of plane and homogeneous oscillations coexist.
waves or squares are unstable. Furthermore, the product We compare these results with direct numerical simula-
sRe o violates the condition$43), (46), and(67) so that all  tions of the full systengl) in the vicinity of the Turing Hopf
kinds of mixed modes are unstable as well. Sibde posi-  point. First we concentrate on the region where bistability
tive Eq. (58) implies that hexagons but no triangles appearbetween hexagonal Turing patterns and Hopf modes are pre-
Thus we are left with studying the Hopf mode and the Turingdicted [region (D) in Fig. 3]. Indeed we find stable Turing
mode with hexagonal symmetry. Since the conditi&®) patterns and Hopf oscillations, depending on the initial con-
involving solely nonlinear coefficients is satisfied, we are leftdition (see Fig. 4 Close to the Hopf instability lines the
with checking for the conditions on the linear coefficientsHopf mode has apparently a small basin of attraction and
[Egs.(33), (34), and(60)]. Expressings and Ren in terms  mostly Turing patterns are observed. That is in accordance
of the deviation from the Turing-Hopf poirisee Eqs(18)  with the geometry of the bifurcation diagrathig. 3) since
and (22)] the stability conditions result in bifurcation lines the Turing patterns are born in a saddle node bifurcation and
which are valid in a neighborhood of the Turing-Hopf point. have already developed a large basin of attraction if param-
Our findings are summarized in Fig. 3. eter values close to the Hopf line are considered. Neverthe-
The constraini(33) caused by the existence of the Hopf less, deep within the bistability region we observe domain
mode obviously results in the tangent to the full Hopf bifur- patterns which consist of coexisting patches of hexagonal
cation line(10) [see Eq(18)]. Thus as a first rough estimate Turing structures and Hopf oscillatiorisee Figs. 5 and)6

(b)
FIG. 4. (a) Density plot of stationary Turing

15§ | ' ' pattern for the current density(r,t)=u(r,t)

1451 —a(r,1). (b) Relaxation of a Hopf mode. Time

14 dependence of the spatial averdge of the cur-

1aS : : : rent and the corresponding varianeg=(j?)

— ::gg M —(j)2. Parameter settings for both parts are the

© ol same {,=1.43, «=0.062, D=5, andT=0.05,
fe-11 | see Fig. 3 but different initial conditions had

0 5000 10000 15000 20000 been chosen.
t

<j>
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o r .'...o > (] .o.o.o 11
8 00,00 L0’
<i> | r ™) '.' NS ..
> [ c ': !.’A': ...-.:
140 jo=1.55  j,=1.6 jo=1.7 jo=1.8 jo=1.9 j=2.0
128 i FIG. 8. Time independent patterns appearing for different values
2 100 200 300 400

t of the total currenf, at «=0.075,T=0.05, andD =5: Transition

from hot spots(left) to cold spots(right). Simulations have been

FIG. 6. Time dependence of the spatial average of the Currer}serformed on a system of size 20200 with Neumann boundary
density for the state displayed in Fig. 5. conditions

Even above the Turing instability lingegion(B) in Fig.  neighborhood of the Turing-Hopf point.
3], where the trivial fixed point is stable we are still able to  Though only valid locally, our analysis applies to much
observe hexagonal Turing patterfsge Fig. 7. Hence bista- larger parts of the parameter plane from a qualitative point of
bility between the trivial homogeneous state and Turing patview. In fact, domainlike coexistence patterns between hexa-
terns prevails in this parameter domain. gons and Hopf modes are observed for typical parameter
Altogether, the features reported so far are in completealues beyond the linear stability thresholds.
agreement with our analytical investigation of the Turing-  Our findings show that mixed Turing-Hopf modes are un-
Hopf instability. However, at larger distance from the Turing- likely to occur in two spatial dimensions, while pure hexago-
Hopf point scenarios may appear which are not captured byial Turing patterns or coexistence modes between Turing
the weakly nonlinear analysis. As a particularly interestingpatterns and oscillations can easily be found. In terms of the
example we mention a transition between two different typesayered semiconductor model this means that spatiotemporal
of hexagonal patterns, so called cold and hot sfgge Fig. spiking, i.e., the mixed subharmonic Turing-Hopf mode,
8). We observe different kinds of time independent stableyhich has been found in one-dimensional simulations and
patterns on changing the total curret With increasing observed in several semiconductor experiments, is sup-
current the hexagonal structure at low curréndt spoty  pressed if the sample has two lateral dimensions of compa-
transforms to a stripe pattern and then changes to a hexagrable size. It is, however, preferred in samples with one long
nal pattern where the amplitudes are invertedld spots. and one short lateral dimension. Current filamentation in
Upon decreasing the current hysteresis is found. We shoultivo-dimensional devices thus occurs in form of regular hex-
mention that this scenario depends on the boundary condagonal stationary Turing patterns rather than spatiotemporal
tions and the system size and hence might be a genuine fegpiking modes. This may be of interest since it allows for the

ture of the finite system. self-organized ordering of small localized current filaments
in regular arrays. Also, with increasing current density, the
V. CONCLUSIONS transition between arrays of high-current filamergtsot

spots via stripes to low-current filamentgold spot may

Combining a linear stability analysis with the weakly non- occur.
linear analysis of Turing-Hopf points we have been able to Our model describes charge transport in layered semicon-
uncover the structure of the solutions of the reaction-ductor structures, but is also of more general interest because
diffusion system(1) on two-dimensional spatial domains. of its simple generic form. From our approach we can deter-
The results have been condensed in a bifurcation diagrammine the parameter ranges for the various stable spatio-
which can be confirmed quantitatively by numerical simula-temporal patterns on two-dimensional domains. Since we
tions. Because of the size of coupling coefficients betweeave derived general expressions for the coupling coeffi-
Turing and Hopf modes no mixed modes are observed. lgients, it is not necessary to go through the tedious analytical
addition, the coupling between the different spatial modeslerivation for each model separately. One can just plug in the
favors hexagonal patterns compared to plane waves ardktails of the particular system in our final expressiang.,
square patterns. There exist large regions of bistability in thé&q. (19)]. Thus the results of our calculation are not limited
to the special moddll),(2) but can be easily applied to other
nonlinear reaction-diffusion systems.

The actual values of the coupling coefficients determine
the type of Turing-Hopf instability, e.g., whether mixed
modes, or coexistence solutions appear. We expect that in
different parts of the whole parameter space, e.g., upon
variation of the diffusion coefficiend or the tunneling rate
T, other types of spatiotemporal patterns may be found. Ana-
lyzing the corresponding transition points of codimension
three along the lines of our paper one may shed more light
on the properties of the full model. In this way, instabilities
of increasing codimension may finally yield a skeleton of

FIG. 7. Density plot of the current densifyr,t) for j,=1.47  possible bifurcation scenarios, a strategy which has already
and «=0.07. proven to be successful in understanding low-dimensional
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dynamical systemésee Ref[26] for some examplgs +c.c) +2|B|?C{Ti T } + (BZexf 2i ! M't]
Our approach can be generalized to include the effect of -
sideband instabilities. The corresponding calculations be- X C{U¢,Uc}+c.c). (A2)

come even more tedious although no principal difficulties

arise. Such a complete analysis is required if one aims tg denotes the linear part of the right hand side in . For
check the full stability of the patterns under considerationsimplicity the complex conjugate contributions of the ansatz
For our present model such advanced approaches appearHgve been taken into account by adopting the convention
be dispensable since no sideband instabilities have shown yp —a* q_,=—q, with / ranging between-3 and 3.
in numerical investigations. The secular condition with respect to the Turing modes leads

to
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A
APPENDIX A: DERIVATION OF THE AMPLITUDE (A3)

EQUATION .
since the wave vectors are resonant at second ordey,

For the most cumbersome case, namely the Turing-Hopf qz—q3 Herev denotes the left-eigenvector according to
instability involving hexagonal patterns, we sketch the deriv¥L(q;")=0. Then, the nonsecular solution of EGA2)
vation of the amplitude equations. The other cases are Slmeads
pler and follow along similar lines.

Introducing slow time scaleg = 't on which the ampli-
tudesA, andB may depend, the evolution equatidigs and PO
the ansatz15) yield in first order the eigenvalue problem of -
the marginally stable modes

{AA, exdi(q,+0q,)r]+c.ciQ
/+/">0

+ A A* exdi(q,—q,)r]+c.cil
g(qIH)ECZO, E(O)EC:HJ)IHEC (Al) /#;>0{ Ny d (q/ q/) ] }_C

Here L(k) denotes the matrix6) evaluated at the Turing-
Hopf point. Using the abbreviationd6) and assuming that
the Hopf modeB will not depend onrq, we obtain in second

+/2 {2|A 2T 4+ (AZ exd 2iq, r]T,+c.c)}
>0 - -

order +2|B|2T ,+ (B?ex 2i T, +c.C)
@ A, +2> A, exdig rl(Bexdiol"t]A+c.c),
——+ >, —exdiqr]u. 7 B
ot vl Lal =
(Ad)
=L0@+ > AA exdi(q,+q,)r]C{u.,u
— /E/:, A XA+ G )rC{Ue, Uk where the abbreviationd9), (23), (28), and(52) have been
employed.
+23 A ; B i Mt1Clu, T If we proceed to third order, the equation of motion re-
2 Acexdlirl(Bexiig "t1C{ue e} sults
ag(3>+z n, JB .
ot 4 a—Tzexp{lq/r]EC a exp{uu t]u C.C.

=LDB)+ 5;(@*)2 A, exfigrluc+oL(0)(B exfiwd t]lc+c.c)+2C

2 Asexdigru,

+(Bexdio™t]u.+c.c), 0@} +D E A exdig rluc+ (B exdiol tl.+c.c), 2 A, expig r]ug

+(Bexp[iw Ml +c.c), > A, exdig rlus+(Bexdiol ], +c.c)}. (A5)
u - u, u
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Collecting all contributions containing a single factor Inspecting the equation for the phagewe conclude that
exp[iwIHt] we obtain for the secular condition of the Hopf stationary solutions requiré=0 or ¢= . Linearization of

mode the phase equation then yields the stability constréssy.
Thus, for stable stationary solutions the conditiotos(g)
(ol = (5| BL(0)TI)B+ (5| 3D (T, T T} =lol is valid.
YelZe 7, Ul 0=1Y) Ze e —cr—cc Inserting the solution64) into Egs.(B1) we get Eqs(66)
and

+4C{T,, T} +2c{ur Ty} |B|?B
- - O0=g+sRep+|b||a]—(1-2g—3sReo)|al?. (B2)
+ <Ec| 6D{Hc U 1Ec} + 4C{Ec 1£a}
Employing the notationB= 8 expfAwt)(1+45B) and |A |
+8C{us, I B A2 (A6)  =|a](1+5A)), the linear stability of the solution is inves-
-0 /=0 tigated. The resulting five-dimensional linear system sepa-

In the same way, collecting all contributions containing arates into a two-dimensional coupled set of equations

plane wave factor eXm,r] the secular conditions of the ReSB o
Turing modes turn out to be d -2|BJ? 2 Reo|al?
oA dr| X slA L] | es[gl?  |bllal—2(1—2g)[al?
<Ec|ﬂc> 5_7_2 = <Rc| 5£(q-crH)Ec>A+ <Ec| 3D{Ec U vEc} .
5 RedB
+4C{u., 't +2C{u. T Asl°A
{_c _a} {_c _b}>| 3| 3 % E SIA (B3)
+<Rc|6D{EcvEC!Hc}+4C{Ec’£a} 7 A

+4C{u, T +4C{u,, ONDA; > |A |2 and three uncoupled equations for 6B, 5A;— dA;, and
- - /=12 O0Az;— 6A,. These three equations give rise to a single-

~ eneratg constraint
+<£c|6D{Ec ,Ec :E:}+4C{Ec aEa} g d

~ nl2_ _ 2
+(4C{EC,A*}+CC)>|B|2A3 8+S|ﬁ| |b||E] 3|E] <0. (B4)
(1—2—3—1). (A7) If we eliminate| 8|2 using Eq.(66) and then employ EqB2)
to eliminate the linear parametesst s Re# condition (B4)
If we resum the secular conditions Eqé3) and (A7) of  simplifies to Eq.(68). The stability cpnditions for thg system
different order we finally obtain the amplitude equati¢#g)  (B3) require the trace of the matrix to be negative and its

together with the general expressions E@s$), (19), (22), determinant to be positive. The condition on the trace coin-

(23), (27), and(51) for their coefficients. cides with Eq(68) whereas the condition on the determinant
gives

APPENDIX B: STABILITY OF HEXAGONAL PATTERNS
|b|<2(1-2g—3sReo)|q]. (B5)
The analysis of hexagonal patterns is most conveniently
performed by rewriting Eqs(49) in terms of moduli|A,,| If we use conditionB5) in Eq. (B2) we obtain the inequality
and total complex phas¢. After rescaling according to Eq.

(30) we obtain s+sRep>—(1-2g—3sReo)|al?, (B6)
JB . h Eq(B2) itself tells us that
- =ReyB—(1+ic)|B|?B+ o(| A2+ |A 2+ |As)B, whereas Eq(B2) itself tells us tha
e+sRen<(1—2g—3sReo)|al? (B7)
J|As|
o =&|Ag| +b|ALAzcog B) — [Ag] >+ g(|Al? holds. From both inequalities we conclude that condition
(67) is required. Finally we are solving the quadratic equa-
+]A,%)|Agl +5|BI?|As] (1-2—-3—1), tion (B2). Existence of a real solution requires E69) if the
B1) inequality (67) is taken into account. Equatigf5) then de-
notes one of the solutions of the quadratic equation. The
P other solution is ruled out by the inequalit35). Now in-
_¢: —b|AAA,| + + sin(¢). equality (B5) can be dropped since E(65) always satisfies
ar A% A2 |A4)2 this constraint.

026219-11



W. JUST, M. BOSE, S. BOSE, H. ENGEL, AND E. SCHD PHYSICAL REVIEW E 64 026219

[1] M. C. Cross and P. C. Hohenberg, Rev. Mod. P85. 851 [14] J. Spangler, U. Margull, and W. Prettl, Phys. Rev® 12 137

(1993. (1992.
[2] A. S. Mikhailov and A. Y. LoskutovFoundations of Synerget- [15] E. Schdl, Nonlinear Spatio-Temporal Dynamics and Chaos in
ics Vol. 1I, 2nd ed.(Springer, Berlin, 1996 Semiconductor§Cambridge University Press, Cambridge, in
[3] H. Kidachi, Prog. Theor. Phy$3, 1152(1980. press.
[4] P. Kolodner, Phys. Rev. B8, R665(1993. [16] A. Wacker, S. Bose, and E. SdhoEurophys. Lett.31, 257
[5] D. P. Vallette, W. S. Edwards, and J. P. Gollub, Phys. Rev. E (1995.
49, R4783(1994. [17] M. Meixner, A. De Wit, S. Bose, and E. SdhdPhys. Rev. E
[6] J J. Perraud, A. De Wit, E. Dulos, P. De Kepper, G. Dewel, and 55, 6690(1997).
P. Borckmanns, Phys. Rev. Leftl, 1272(1993. [18] M. Meixner, S. Bose, and E. SchoPhysica D 109, 128
[7] P. De Kepper, J. J. Perraud, B. Rudovics, and E. Dulos, Int. J. (1997.
Bifurcation Chaos Appl. Sci. Engl, 1215(1994. [19] M. Meixner, P. Rodin, and E. SchpPhys. Rev. E58, 2796
[8] A. Wacker and E. ScHip Z. Phys. B: Condens. Matt&3, 431 (19998.
(19949. [20] M. Meixner, P. Rodin, E. Schip and A. Wacker, Eur. Phys. J.
[9] K. Hess, T. K. Higman, M. A. Emanuel, and J. J. Coleman, J. B 13, 157 (2000.
Appl. Phys.60, 3775(1986. [21] A. Alekseeyv, S. Bose, P. Rodin, and E. Sithehys. Rev. 557,
[10] F. J. Niedernostheide, M. Arps, R. Dohmen, H. Willebrand, 2640(1998.
and H. G. Purwins, Phys. Status SolidilB2, 249 (1992. [22] S. Bose, P. Rodin, and E. Sdh&hys. Rev. B62, 1778(2000.
[11] F. J. Niedernostheide, H. J. Schulze, S. Bose, A. Wacker, anf23] A. Rovinsky and M. Menzinger, Phys. Rev4s, 6315(1992.
E. Schdl, Phys. Rev. B54, 1253(1996. [24] H. Haken,SynergeticgSpringer, Berlin, 1983
[12] R. Symanczyk, S. Gaelings, and Dgéa Phys. Lett. AL60, [25] A. De Wit, G. Dewel, and P. Borckmans, Phys. Rev4§&
397 (199). R4191(1993.
[13] U. Rau, W. Clauss, A. Kittel, M. Lehr, M. Bayerbach, J. Parisi, [26] T. Traxler, W. Just, and H. Sauermann, Z. Phys. B: Condens.
J. Peinke, and R. P. Huebener, Phys. Re¥3B82255(1991). Matter 99, 285 (1996.

026219-12



