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ABsTRAcr We consider a pair of differential equations whose solutions exhibit
the qualitative properties of nerve conduction, yet which are simple enough to be
solved exactly and explicitly. The equations are of the FitzHugh-Nagumo type,
with a piecewise linear nonlinearity, and they contain two parameters. All the pulse
and periodic solutions, and their propagation speeds, are found for these equations,
and the stability of the solutions is analyzed. For certain parameter values, there
are two different pulse-shaped waves with different propagation speeds. The slower
pulse is shown to be unstable and the faster one to be stable, confirming conjectures
which have been made before for other nerve conduction equations. Two periodic
waves, representing trains of propagated impulses, are also found for each period
greater than some minimum which depends on the parameters. The slower train is
unstable and the faster one is usually stable, although in some cases both are unstable.

1. INTRODUCTION

The nonlinear partial differential equation proposed by Hodgkin and Huxley (10)
is the most widely accepted mathematical description of the excitation and propaga-
tion of nerve impulses. The complexity of this equation led FitzHugh (6, 7) and
Nagumo, Arimoto, and Yoshizawa (14) to introduce the simpler equation

49v c2v
-= 2- f(v) -w

dt =bv, b>0. (1)

While they set f(v) = v(a - v)(l- v), we follow McKean (13) and choose

f(v) = v-H(v-a), 0 < a < , (2)
where H is the Heaviside step function. For this simplified FitzHugh-Nagumo
equation we determine all the periodic and pulse traveling wave solutions and
analyze their stability.
A traveling wave solution of Eq. 1 is a function v(x, t) = vr(z), where z = x + ct.
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It follows that v0 satisfies the ordinary differential equation

v"'-cvit -f' (V")v'- b
= 0, c -0 0. (3)

Withf given by Eq. 2, we find v, and its propagation speed c explicitly by solving a
few transcendental equations. For each value of b > 0 and each a in the interval,
0 < a < a,(b), we find two pulse solutions with different speeds of propagation.
By a linear stability analysis we show that the slower wave is unstable. For this un-
stable pulse, we determine the growth rate of the unstable mode and find it to be a
decreasing function of a. For a = a,(b) there is a unique pulse solution which is
neutrally stable.
We also find two periodic solutions of Eq. 3 having different speeds, for each period

larger than some minimum period Pmiu(a, b) provided that 0 < a < a"(b). As the
period becomes infinite, the periodic solutions tend to the pulse solutions. The
linear stability analysis of these wave trains shows that for each a and b, all these
solutions with speeds less than some speed co(a, b) are unstable.

In the special case b = 0 and w 0_ we find traveling change of state waveforms
which are stable. We also find unstable standing waves of periodic and pulse type.
Our results for the pulse solutions support the numerical results of Huxley

(11) and Cooley and Dodge (3). Their results suggest that, in addition to a solution
which resembles the nerve impulse, there is a slower wave which satisfies the Hodgkin-
Huxley equation. Similar calculations for the FitzHugh-Nagumo equation (see
references 2, 7, and 14) indicate that there are two pulse solutions for 0 < a < a,(b).
Nagumo et al. (14) report observing only the faster pulse on their electronic line.
These investigators all believe that the slower pulse is unstable. Our analysis has
confirmed this belief for the simplified FitzHugh-Nagumo equation.

Infinite wave trains have been obtained numerically for the Hodgkin-Huxley
(3) and FitzHugh-Nagumo (7) equations as solutions to appropriate initial bound-
ary value problems. These evidently correspond to the faster wave trains which we
have found for Eqs. 2 and 3. Casten, Cohen, and Lagerstrom (1) have obtained the
faster wave trains and the faster pulse solution for the FitzHugh-Nagumo equation
with b << 1 by using matched asymptotic expansions. Conley1 has shown the exist-
ence of pulse and recurrent solutions for more general functionsf and appropriate
values of b and c. Offner, Weinberg, and Young (17) have also considered a nerve
condition equation involving a piecewise constant coefficient.

2. SOLITARY TRAVELING PULSES

We shall now seek values of c 5d 0 for which Eq. 3 has a pulse-shaped solution. We
may take c > 0 since, for each wave v.,(z) with c < 0, which travels to the right,
IConley, C. On the existence of bounded progressive wave solutions of the Nagumo equation. To be
published.
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there is a corresponding solution v_0(-z) with - c > 0, which represents a wave
traveling to the left. Furthermore, because z does not appear in the equation explic-
itly, we can choose the origin z = 0 so that v¢(0) = a. We also assume that v0(z1) = a
for some z1 > 0. Therefore, the solutions we seek are of the form illustrated in
Fig. 1.

It follows from Eqs. 2 and 3 that these waves must satisfy the differential equation

,,itt it b =vc - cvc - vc --vc = ,

and the conditions

b > 0, c > 0

= -1, = 1,

vc(O) = v.(z1) = a, Z, > 0.

To represent pulses, they must also satisfy the condition

v.(z)-0 as I z I - o.

The jump conditions (5 a) result from the discontinuity inf(v), which yields a delta
function in f'(v). From Eq. 1 and the requirement that w vanish at z = - cc, we
have

wC(z) = b L vc(r) dD. (7)

In order that w,(+ Xc) = 0, the integral of vc must vanish.
Solutions to Eq. 4 are linear combinations of the three exponentials exp (aiz)

Vc

0.2 -

4.0

z

FiGuRE 1 Solitary pulse traveling wave solution of Eqs. 1 and 2, v.(z), where z = x + ct,
given by Eq. 11. The pulse illustrated here is for a - 0.27, b = 0.2, c = 0.7, and zi - 2.7.

RINZEL AND KELLER Traveling Wave Solutions of Nerve Conduction Equation

(4)

(5 a)

(5 b)

(6)

a

I/c

1315



i = 1, 2, 3, where the as are zeros of the cubic

p(a) =a -ca2 a _ b (8)

It follows from Eq. 8 that either:

ai > 0, a3 < 0a2 <O (9)
or

al >O, a3= 2, Rea2 < 0 (10)

according as (1 - 4b)c4 + 2(2 - 9b)c2 -27b2 is positive or nonpositive. We
shall treat only the case in which the a, are distinct. The special case a2 = a3 can
be treated in a similar way, but it is not necessary to do so because the results for
it can be obtained by continuity.
From conditions 9, 10, and 6, we see that, for z < 0, the pulse is given by v,(z) =

a exp (aiz). Then, by using the continuity and jump conditions, we obtain vc, in
the form:

v,(z) = a*exp (aiz), z < 0

- (a - l/pp) exp (aiz) - (p')- exp (a2z) - (psY' exp (a3z),

0 < z < Z1

= [(exp (-a2zi) - l)/p2] exp (a2z) + [(exp (-az3z) - 1)/pp] exp (a3z),

z1.z. (11)
Here

pi = p (as), i- 1, 2, 3. (12)

The continuity of v' and the conditions of Eq. 5 lead to the following transcendental
equation relating a, b, and c, previously given by McKean (13):

F(a, b, c) 2 - S + (p/pl2)Sa2Ia + (PlI/P)s-a3a1 - 0 (13)

where

s= 1-apl. (14)

The parameter zi is determined by the equation

1-ap, = exp (-alzi). (15)

Since alzi is positive, a value of s which satisfies Eqs. 13 and 14 must lie in the
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interval (0,1). As an equation for s, Eq. 13 does not depend on a. In terms of s, a
is given by Eq. 14.

In the Appendix we prove the following theorem.

Theorem 1

For given positive values of b and c, a necessary and sufficient condition for Eq.
13 to have a root s, 0 < s < 1, is that

ca > b(l + 2b12)-l. (16)

The root s is unique.
To each such root s there corresponds a pulse solution v, of Eqs. 4-6. Hence the

following existence theorem is a direct consequence of Theorem 1.

Theorem 2

For given b > 0 and each value of the propagation speed c > 0 satisfying con-
dition 16, the simplified FitzHugh-Nagumo Eqs. 1 and 2 have a unique nontrivial
pulse-shaped traveling wave solution. The appropriate value of a(b, c) is determined
by Eq. 14 where s solves Eq. 13.
From the inequality 16 we see that there are pulses corresponding to every

c > cmin(b) where

Cmin(b) = 61/2(1 + 2b1/2)-1/2 (17)

From Eq. 17 Cmin '-' (b14)14 for b >> 1 and Cmin b1/2 for b << 1. This behavior
differs from that of the cubic FitzHugh-Nagumo equation for which there are no
pulses with c > 2-1/2 (2, 13).

Since s > 0, we have a bound on the value of a obtained from Eq. 14, namely
a < (pl)-l. From Eq. 8 and the fact that p(cai) = 0, we obtain p' = 2 + cai +
3b/cal. Then we can write the preceding inequality as

a < (2 + cal + 3b/cal) < (2+ b1/2)l, (18)

where we get the last inequality from Eq. B.5 of Rinzel (16) and the neglect of the
positive quantity 3b/cal . Hence, it follows that pulse solutions do not exist for a >
M. Moreover, for given b > 0, condition 18 establishes a bound on the largest va-
lue of a for which pulses can exist.
We have solved Eq. 13 numerically with values of b and c which satisfy condition

16. The corresponding value of a for each pulse is obtained from Eq. 14. The results
of these calculations are illustrated in the speed diagram, Fig. 2. It displays the
various speed curves, c versus a for fixed b > 0. McKean (14) previously determined
a portion of this diagram. Each speed curve has a clearly defined knee (a,, c,)
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FIGURE 2 Propagation speed c(a, b) of a pulse as a function of a for various positive values
of b, determined numerically from Eqs. 13 and 14. The point a,, c, determined by Eq. 19
is indicated by x. As a -+ , the upper branch cf(a, b) - X For b = 0, Cis the speed of a
transition waveform and is given by Eq. 55.

characterized by

F(a,, b, c.) = 0, F (a, b, c,) = 0. (19)

For each value of a < a, we find two pulse solutions with speeds cf(a, b) and
c,(a, b), with cf > c..
We observe that cmin(b), the minimum value of c on each speed curve, occurs at

a = 0. However, there are no pulse solutions with a = 0. Therefore cmin(b) is just
the limit of c.(a, b) as a tends to zero:

cmin(b) = lim c.(a, b). (20)
a-0

We demonstrate this in Appendix C of Rinzel (16) by considering the behavior of
F(a, b, c) for a << 1.
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We summarize our numerical and analytic results in the following statement.

Proposition 1

For given positive values of a and b where a < a,(b) < , the simplified Fitz-
Hugh-Nagumo Eqs. 1 and 2 have precisely two pulse-shaped traveling wave solu-
tions. Their propagation speeds cf(a, b) and c.(a, b) satisfy cf > c,(b) > Ca >
Cmin(b). For a = a, there is a unique pulse which travels with speed c, . There are no
traveling pulses for a > a,(b) or for a < 0.

Figs. 3 and 4, respectively, are graphs of the pulse height sup, v0(z) and pulse
width z1 versus a for fixed values of b. They show that the slower pulses are low
amplitude or subthreshhold waves. This is consistent with the numerical results
for the Hodgkin-Huxley and FitzHugh-Nagumo equations. The curves for b = 0
correspond to solutions discussed in section 6. Fig. 5 shows curves of c versus b for a
few values of a. The curve for a = 0 is just the graph of cmin(b).

In Fig. 2, the propagation speed is not shown for c > 2. To complete this speed
diagram, we provide an asymptotic description of the fast branches of the speed
curves for large c. Thus we find a(b, c) for c >» 1. In this region s << 1 since, from
Fig. 4, z1 becomes infinite and, from Appendix A of Rinzel (16), ai '-. c + c-.
Retaining only the dominant exponential in Eq. 13 and using the asymptotic ex-
pressions for a i and p' from Appendix A (16), we find that s is exponentially small:

[2(1( 4b)l12j(cS+l)[1-(1-4b)112 c». (21)

b=0.0
1.0-. 0.0 /

sup ii

0 0.1 0.2 0.3 0.4 0.5
a

FIGURE 3 Pulse height sup, vc(z) versus a for various positive values of b, determined from
Eq. 11 for 0 < z < z1 . For b = 0, the upper branch corresponds to a transition waveform
given by Eq. 54 for which sup v. = vc( Xo) = 1. The lower branch for b = 0 corresponds
to a standing pulse given by Eq. 56, for which sup. vc(x) = v,,(x1/2).
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a

Rouas 4 Pulse width zi(a, b, c) versus a for various positive values of b, determined by
Eq. 15. As a -- 0, the upper branch zi(a, b, cf) °OFor b = 0, z1 is the width xi(a) of a
standing pulse and is determined by Eq. 57.

Hence from Eq. 14 we obtain,

a,- c-2 3c-4. (22)

To this order, a(b, c) is independent of b.
By a similar argument we obtain an asymptotic description of the knee region of

the speed curves in Fig. 2 for b << 1. From Eq. 17 we have c = 0(bl2) so that we
use the expressions for ai and p' from Appendix A (16) for (b/c) << 1, c << 1.
Taking s << 1 leads to an asymptotic expression for s and, consequently, for a:

a [1 - 2lb (2 + c + 3 )](2 + c + 3-) (23)

From Eq. 23 we obtain an approximation to a, for b << 1:

a,,,,.- 21[1 + (3b) /2] , b << 1. (24)
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FIGURE 5 Propagation speed c(a, b) of a pulse versus b for various values of a. Only portions
of the double branched curves for a = 0.05, 0.1 can be shown with the limits of b and c
chosen here. For a = 0, c = Cmin(b) and is given by Eq. 17.

These asymptotic results, along with similar results for c = 0(1) and b << 1, pro-
vide excellent initial guesses for the numerical procedure to solve Eq. 13.

3. STABILITY ANALYSIS OF PULSES

We introduce the traveling coordinate frame (z, t) in which Eq. 1 takes the form

Vt = Vm - CV9-f(v) - w

Wt = bv-cw. (25)

The pulse v,, w, is a t-independent solution of this equation. To study its stability
we consider the variational equation

=t= Flom-c-f'((vc) - T

wt = bTr - cJr. (26)
where

f'(v,) = 1- (v - a). (27)
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Since v¢(0) = a = v,(z1), the z-dependence of Eq. 27 is explicitly

f(vC) = 1 -'y15(z) - 75(z - Zi) (28)
where

Yo= vC(0) = aa,

71 = - vC (z1) = (al/lp) + (a2/p') exp (a2z1) + (a3/p3) exp (aZi). (29)

We now look for solutions of Eq. 26 having the form

P'(z, t) = eXtV(z), W1(z, t) = eXtW(z). (30)

It follows from Eqs. 26 and 30 that V = (V, V, W) must satisfy the ordinary dif-
ferential equation

( I c z)( ) z0,1zi (31)

and the jump conditions

= -7zIV(0), V']I = -y1V(z1). (32)
1

The pulse v, is unstable if Eqs. 31 and 32 have a bounded solution with ReX > 0.
This solution is an unstable mode with growth parameter Rex. On the other hand,
vC is stable if Eqs. 31 and 32 have no bounded solutions with ReX > 0. For X = 0,
there is always a solution of Eqs. 31 and 32: V = V' = (vt, v"C, bv,/c). This is
because any translate of vc, is also a solution of Eq. 25.

Solutions of Eq. 31 are sums of the exponentials Xi exp (Bi,z), i = 1, 2, 3. The
PiB are zeros of the cubic

Q(0, X) + c1(X -c2)p-(1 + 2X)3 - c-1(X2 + X + b), (33)
and the vector Xi is given by

Xi = (1,i,, b(X + cih)-), i = 1, 2, 3.

Since the slower pulses are expected to be unstable, we take c = c,(a, b) and con-
sider X real and non-negative. When X = 0, Q reduces to p so that we may then
take f3i = ai. For X > 0, we conclude from Eq. 33 that the ,i can be indexed so
that they are distributed in the same manner as the ai in relations 9 and 10. By
continuity, this is also true for X < 0 in some interval containing X = 0.
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When the p3i are distributed in the above manner, we can determine a bounded
solution to Eqs. 31 and 32 as follows. Using V(O) = 1 as a normalization condition,
we must have V = X1 exp (aiz) for z < 0. We use the continuity of V and W and
the jump condition 32 to continue the solution through the interval 0 < z < z1 .
In a similar way, we match across z = zi and then set the coefficient of X1 exp (aiz)
equal to zero to complete the definition of V. Thus we are left with a transcendental
equation for X in terms of a, b, and c:

F(X, a, b, c) = 0 (34)
where a, b, and c satisfy Eqs. 13 and 14. Here P is defined by

F(X, a, b, c) = [o -( + c13)(cQY)']yi - (X + cll)(cQ') ']

+ exp [(0 - 01)ZlI(X + c,32)(X + cI3l)(c2Q2Q1)

+ exp [(38- Oi)zil(X + c33)(X + cf81)(C2Q3Q1') (35)
where

Qi = Q'(Q, X), i = 1, 2, 3. (36)

For each set of values a, b, c = c,(a, b) satisfying Eqs. 13 and 14, we solve Eq.
34 numerically for X > 0. The growth curves X = X(a, b, c.) are illustrated in Fig. 6.
The special case b = 0, c = 0 is treated in section 6. The positive branch (X > 0).
of each growth curve corresponds to the lower branch of the respective speed curve
in Fig. 2. We notice that X -O 0 as a -+ a,. Thus the knee of the speed curve cor-
responds to neutral stability. Moreover, we see that OX/da < 0, for a < a,, with
X -a ) as a -O 0. Thus the instability, as measured by X, becomes more severe as
a gets further from a,. These calculations indeed verify the instability conjecture,
that the slow pulse is unstable, for the present nerve conduction model. In addi-
tion, we find, corresponding to some initial portion of the upper branch of each
speed curve in Fig. 2, values of X = X(a, b, cf) < 0 which satisfy Eq. 34. Thus the
growth curves in Fig. 6 are continued below X = 0. Each curve terminates at the
point where the,i are no longer distributed in a manner consistent with our assump-
tion, in conditions 9 or 10. These curves could be continued by seeking a solution
V to Eqs. 31 and 32 corresponding to some other distribution of the ,i .
We now proceed to demonstrate analytically that the pulse vi,, corresponding to

the speed curve knee, is neutrally stable. As we have pointed out, V,' is a solution
to Eqs. 31 and 32 with X = 0. Correspondingly, X = 0 is a root of Eq. 34. We ob-
serve further that if the transition from instability to stability on any particular
speed curve is evidenced by X passing from positive to negative values, then X = 0
characterizes neutral stability. Consequently, X = 0 should appear as a double
root of F = 0. More precisely, if the knee is a point of neutral stability, under these
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FIGURE 6 Growth rate X(a, b, c,) of unstable mode for a slow pulse versus a for various
positive values of b, determined numerically from Eqs. 34 and 35. As a-* 0, X(a, b, c.) -~ W.

For the neutrally stable pulse, X(a,, b, c,) = 0. Negative values of X correspond to a fast
pulse. For b = 0, X is determined numerically from Eq. 64.

hypotheses, then a,, c, must satisfy the pair of equations

APx(O, a,, b, c,) = 0 and F(a,, b, c,) = 0. (37)

With a great deal of algebra we have verified that Eq. 37 is equivalent to Eq. 19.
and therefore that the knee is a point of neutral stability. This characterization of
neutral stability obviously does not require the actual calculation of the growth rate
of the unstable mode.
As a result of the above demonstration and numerical results, we state the fol-

lowing proposition.

Proposition 2

Each slow traveling pulse solution v,8 of the simplified FitzHugh-Nagumo Eqs. 1
and 2 is unstable. The exponential growth rate X(a, b, c,) of its unstable mode satis-
fies Eq. 34. The unique pulse v, is neutrally stable.
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The preceding proof that v,, is neutrally stable depended on the fact that the
growth rate X satisfies a transcendental equation. To demonstrate this result for
the cubic FitzHugh-Nagumo equation, as well as other nerve conduction models
with double-branched speed curves, an alternate characterization of neutral stabil-
ity is useful. It can be described as follows. We assume that at neutral stability the
growth rate X vanishes. However, except for a constant factor, v', w' is the unique
solution of Eq. 26 having the form of Eq. 30 with X = 0. Hence, for the neutrally
stable pulse, there must be a nontrivial solution to the inhomogeneous equation
obtained by replacing the left-hand side of Eq. 26 by v', we. The solvability condi-
tion for this equation is

l: (vvt + w w') dr = 0. (38)

Here vt, wt is the bounded solution to the homogeneous adjoint equation for the
i-independent version of Eq. 26. This is the condition for neutral stability in the
general case.
For the simplified FitzHugh-Nagumo equation we have obtained vt, wt in terms

of a, b, and c which satisfy Eq. 13. The solvability condition 38 in this case reduces
to a transcendental equation. Together with Eq. 13 it provides a pair of equations
for the point of neutral stability on each speed curve. We have shown that this pair
of equations is indeed equivalent to Eq. 19.
We now consider the FitzHugh-Nagumo equation with a generalf which depends

on a parameter a. We assume that a(b, c) describes a double-valued speed curve.
To demonstrate that vcv is neutrally stable we first substitute vi,, wc into Eq. 25
and differentiate with respect to c. Next, we set c = c, and form the inner product
with the vt, wt corresponding to v,, to obtain a scalar equation. Since da/dc = 0
at c,, one term drops out of this equation. After performing an integration by
parts and using the fact that vt and wt satisfy the homogeneous t-independent
adjoint equation for Eq. 26, we see that vc, satisfies Eq. 38. Assuming that Eq. 38
determines neutral stability uniquely, we conclude that vi, is neutrally stable.
Knight (unpublished) uses a similar argument to show that neutral stability occurs
at the speed curve knee.

4. PERIODIC WAVE TRAINS

Repetitive firing behavior of many nerve fibers suggests that there should be periodic
traveling wave solutions to nerve conduction equations. Cooley and Dodge (3)
computed solutions to the Hodgkin-Huxley equation for an initial boundary value
problem and found wave trains which appeared to become periodic as t increased.
FitzHugh (7) calculated a periodic solution of his equation 3. Wave trains were
also obtained asymptotically by Casten, Cohen, and Lagerstrom (1) for the Fitz-
Hugh-Nagumo equation 3 with b << 1.
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For the simplified FitzHugh-Nagumo equation we seek a periodic traveling solu-
tion with period P and propagation speed c. The general form of such a wave over
one period, Z-1 < z < Z1 where Z-1 < 0 and Z1 > 0, is illustrated in Fig. 7. Since
wC,, a multiple of the integral of vi,, must also be periodic, v0 must be negative over

some portion of its period so that its integral over a period is zero. We have again
used the translation invariance of Eq. 3 to fix the origin z = 0, requiring v0(O) = a.
A solution having this form, with vc and v,' continuous, will satisfy Eq. 4 and the
conditions

vc]O-= -1, v'(Zit) - vO(ZT) = 1, (39)

vC(Z-1) = vc(O) = a, (40)

vc(Z) = vc(Z + P), (41)

P = Z- Z-1. (42)

Thus v, can be written as

vc(z) = E Ai exp (aiz), Z_1 < z < 0, (43)

8

= E Bi exp (aiz), O< z < Z1.

Here

Ai = [1 - exp (aiZO)](pi)K[exp (aiZ1) -exp (aiZi)] ', (44)

Bi = [1 - exp (aiZ-i)](p')-'[exp (aciZ- -exp (ajZ7]-1, i = 1, 2, 3,

vc
0.2'

4'.0ZC

FIGURE 7 Periodic traveling wave solution of Eqs. 1 and 2, v0(z) with period P, given by
Eqs. 43 and 44. Here z = x + ct and P = - Z-1 . The wave illustrated here is for
a = 0.2, b = 0.1, c = 0.75, Zi 5.97, Z-1 -14.5, and P - 20.5.
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where the ai are the zeros ofp given by Eq. 8 and the pi are defined by Eq. 12. The
two conditions Eq. 40 yield the following transcendental equations for Z-1 and Zi:

G1(Z_1, ZI) = 0, G2(Z-1, Z1) = 0. (45)
Here

G (Z1, Zi) exp (aiZ1) - 1 + exp (a2ZR[l -exp (-a2Z-1)]
P1 [exp (-acP) - 1] p [1 - exp (a22P)]

+ exp (asZi)[1 - exp (-aZZ-1)] + a (46)
P8' [1 - exp (asP)]

G2(Z_1,Z) - [exp (aZ_i) - 1][1 - exp (-aiZi)]

+ [1 - exp (-a2Z..)] [exp (a2Zi)-1]
P2 [1- exp (a22P)]

+ [1-exp (-asZ_)] [exp (asZi) -1] (47)
pa[I - exp (asP)]

The period P(a, b, c) as defined in Eq. 42 is determined by Eq. 45.
Since, with Z1 fixed, Eq. 45 reduces to Eqs. 13 and 14 when P -* co, the solitary

pulse is a limiting case of the periodic wave with infinite period. In Appendix D of
Rinzel (16) this observation is used to obtain asymptotic expressions for parame-
ters which describe large period waves in terms of those for the solitary pulses.
These expressions provide initial guesses for the numerical procedure to solve
Eq. 45.
We have solved Eq. 45 numerically for Z-1 and Z1 for various values of a, b, and

c. We find that for 0 < b < 0.1 the region in the a - b plane for which there are
pulses is also the region in which there are wave trains. Fig. 8 represents a typical
example of our results. It shows the propagation speed c(a, b, P) of each wave train
as a function of its period P for b = 0.05 and several values of a in the interval
0 < a < a,(0.05) r 0.35. Each curve is double valued. For P > Pmin(a, b) there
are two wave trains with speeds of propagation cf(a, b, P) and c,(a, b, P), cf > C8.
The curves show that limp._ cf(a, b, P) =cf(a, b) and lim1.O c8(a, b, P) = c.(a, b)
consistent with the observations in the preceding paragraph. For some values of a,
the wave train with minimum period travels slower than the pulse with speed c8(a, b).
On the fast branch, the propagation speed increases with the period. In other words,
densely packed wave trains travel more slowly. While this is intuitively expected,
we have not seen it reported previously.

In Fig. 9 we display the amplitude max v,(z) of a wave train as a function of its
period. The upper branch of each curve corresponds to the faster train in Fig. 8.
Again we find that the slower waves have lower amplitudes.
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FiGuRE 8 Propagation speed c(a, b, P) of a periodic wave train as a function of its period
P for b = 0.05 and various positive values of a, determined numerically from Eqs. 42 and
45-47. As P -+ co, c1(a, b, P) --) cf1(a, b) and c.(a, b, P) --* c,(a, b). For a = 0, cf1(0, b, P)
and c,(0, b, P) are determined numerically from E.2 and E.9 of Rinzel (16).

p

FIGURE 9 Amplitude max v.(a) of a periodic wave train as a function of its period P for
b = 0.05 and various values of a. The amplitude is determined from Eqs. 43 and 44 for
a > 0, and from Eq. 59, for a = 0.
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Figs. 8 and 9 show certain results for a = 0. In this case P(O, b, c) can be deter-
mined by solving a single transcendental equation. As in the case of pulses, there
are no slow trains for a = 0 so that P(O, b, c,) is obtained by taking the limit as a
tends to zero, P(O, b, c8) = lim,o P(a, b, c8). These results for a = 0 are presented
in greater detail in Appendix E of Rinzel (16).
For each wave train, the firing frequency co = cP-' is the frequency of oscilla-

tion with respect to t. For given a and b we calculate the maximum possible firing
frequency,

Wmax (a, b) = max [sup c].
Cf,Cs P>Pmin

In Fig. 10 we illustrate, for b = 0.05, wma as a function of a, 0 < a < a,(0.05)e3
0.35. We also show the propagation speed corresponding to wmax
To illustrate clearly the range of parameter values a, b, and c for which there are

wave train solutions of Eqs. 1 and 2 we define

Cmin(a, b) = min c(a, b, P). (48)
P

We can now state the results of our numerical calculations as follows.

Proposition 3

For given b > 0 and a in the interval 0 < a < a,(b), the simplified FitzHugh-
Nagumo Eqs. 1 and 2 have periodic traveling wave solutions for each c in the

0.5

+ ~~cz
4.0 - 0.4

//
3.0 _

0_0
- 0.3

Wmax 2.0 / \ 0.2

//
1.0 -/ 0.1

0n
0 0.1 0.2 0.3 a., 0.4 0.5-

a

FIGURE10 Maximum frequency, comx(a, b) = max [ sup (cP')], of periodic wave trains
Cf,C* P>PminL

shown solid as a function of a, for b = 0.05. Propagation speed of the wave with w..(a, b)
plotted (dashed) versus a for b = 0.05.
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0 0.1 0.2 0.3 0.4 0.5
a

FIGURE 11 Various critical propagation speeds of periodic wave trains as functions of a
for b = 0.005 and 0.05. The speeds c1(a, b) of the fastest train and Cmjn(a, b) of the slowest
train are shown solid. The speed c,(a, b) ofthe unstable pulse is shown dashed. A lower bound
co(a, b) for the speed of the neutrally stable train is shown dotted.

interval

Cmin(a, b) < c S c,(a, b). (49)

The period of each wave tramn P(a, b, c) is determined by Eqs. 42 and 45. For b > 0.1
there may be other periodic solutions with c > c.,(a, b).
The inlterval 49 is indicated by double-branched curves in Fig. 11 for two values

of b. The dashed curves correspond to the propagation speed of the slower pulse
c,(a, b) and are reproduced from Fig. 2. The region in the a-c plane bounded by
C = CJ X C = Cmin,X and a = 0 corresponds to parameter values for which Eqs. 2
and 3 have two periodic solutions. For C > CJ there is only one periodic solution.

5. STABILITY ANALYSIS OF PERIODIC WAVE TRAINS

Because the slow pulse waves are unstable, we expect that the slower periodic
traveling waves are likewise unstable. Therefore we consider the linear variational
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equation 27, where now 29 is replaced by

00 00

(vc) = 1-FO-O E (nP) - E 5(Z1 + nP). (50)
n- X n-oo

Here -yo = v,'(0), yi = - v,(ZI). Considering solutions of Eq. 27 having the expo-
nential form of Eq. 31 leads to 32 which is a third order system of ordinary differ-
ential equations with periodic coefficients. An unstable mode V, W is a bounded
solution of Eq. 32, with ReX > 0, which is continuous for all z and which satisfies

(nP)- = -yoV(nP), V](zlnP)- = -7'1V(ZI + nP), (51)

n = 0, -l,1t2, ...

A bounded solution is associated with a Floquet multiplier, i.e. eigenvalue of
the Floquet matrix, of absolute value one. Since the differential equation has piece-
wise constant coefficients, the Floquet matrix can be obtained explicitly in terms of
exponential solutions. We have examined the Floquet multipliers as functions of X
for the wave trains corresponding to regions near Cmin on the c versus P curves in
Fig. 8. We find typically two or three unstable modes with different values of X > 0.
Moreover, the multiplier associated with the largest growth rate is equal to one, so
that this unstable mode is periodic with period P.
The calculations described above led us to consider periodic solutions of Eqs.

32 and 51. Such a solution can be written as a sum of exponentials Xi exp (j3z),
i = 1, 2, 3, for Z-1 < z < Oand a different sum for 0 < z < Z1, where the ,B are
zeros of the cubic Eq. 33. The coefficients are determined by the continuity and
jump conditions along with the normalization condition V(O) = 1. This last require-
ment results in a transcendental equation which relates X to the parameters a, b, c,
and P. This complicated equation, which we omit, can be written as

G(A, a, b, c, P) F(X, a, b, c) + E(X, a, b, c, P) = 0, (52)

where F is given by Eq. 35 and.B = 0 for P = X . Thus as P -- oo, this equation
reduces to Eq. 34 which determines the growth rate of the unstable modes for the
slower pulses.
We have solved Eq. 52 numerically for various values of a and b < 0.1 and have

obtained the growth rates of periodic unstable modes for all trains with speeds less
than a certain speed co(a, b). Thus we have found instability for c in the interval
Cmin(a, b) < c < co(a, b). The results of these calculations are illustrated in Fig. 12
for the particular case b = 0.05, which corresponds to Fig. 8. For several values
of a, 0 < a < a,(b), the value of X is shown versus propagation speed. We find that
co(a, b) > c,(a, b). Consequently, whenever two periodic solutions exist with the
same speed c < c8(a, b), they are both unstable. This explains why some of the
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FiouRE 12 Growth rate M[a, b, c, P(a, b, c)] of a periodic unstable mode for a periodic
wave train versus c for b = 0.05 and various values of a, determined numerically from
Eq. 52. The growth rate x (a, b, c.) of the slow pulse for b = 0.05, obtained from Figs. 6
and 2, is shown dashed.

growth rate curves are double valued. Furthermore, it follows that for some values
of the parameters a, b, and P, both the fast and the slow trains are unstable.
The dashed curve in Fig. 12 corresponds to the unstable pulses. It is obtained

from Figs. 2 and 6. Because of the limiting form of Eq. 52 as P -+ 00, each curve
for constant a terminates at the dashed curve when c = c.(a, b). The other end of
the growth curve, c = co(a, b), seems to be characterized by the coalescence of the
two largest roots for X of Eq. 52. Since X(a, b, co) $ 0, co does not correspond to
neutral stability. However, since X(a, b, co) is close to zero, co provides a good lower
bound for the propagation speed of the neutrally stable wave train. We have shown
co(a, b) versus a for b = 0.05, 0.005, as dotted curves in Fig. 11. The instability
properties of the trains with c > co can be found by using the Floquet theory out-
lined above. In this case, there will be no Floquet multiplier with absolute value
one for X > 0. Hence an unstable mode will have X complex with Rex > 0.
We summarize our stability analysis of the periodic wave trains in the following

proposition.

Proposition 4

For positive values of b < 0.1 and a < a,(b), each nontrivial periodic traveling
wave solution of the simplified FitzHugh-Nagumo Eqs. 1 and 2 with speed
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c < co(a, b) is unstable. The exponential growth rate X(a, b, c, P) of its periodic
unstable mode satisfies Eq. 52.

6. WAVES AND THEIR STABILITY FOR b = 0 AND w - 0

The Waveforms

Wave solutions of the following types have been found (1, 2, 7, 12, and 15) for
the cubic FitzHugh-Nagumo equation: a traveling change of state waveform (the
Huxley solution), a family of periodic standing waves, and a solitary standing pulse.
McKean (13) found similar solutions for the simplified Eqs. 1 and 2 with b = 0
and w 0O, which is

Vt = V -V + H(v-a), 0< a < . (53)

The transition waveform for Eq. 53 is given by

v,(z) = a exp [zc/2 + z(l + c/4)1121, Z < 0

=1 + (a - 1) exp [zc/2 - z(l + c2/4)112], 0 < Z (54)
with

c = (I - 2a)[a( - a)]-112. (55)

The graph of c(a) is the b = 0 speed curve in Fig. 2. We notice that c -> X as a -> 0
which is to be expected since for a = 0 and v > 0, Eq. 53 is a linear parabolic
equation. The waveform Eq. 54 is a limiting case of the fast pulse solution found
in section 2. To see this we let zi tend to infinity in Eqs. 15 and 11 which then reduce
to Eqs. 55 and 54.
The standing pulse for Eq. 53 with vo(O) = a = vo(x1) is given by

vo(x) = ae', x < 0

1 + (a- )e'- e-, O < x < xi (56)

- aeX1, Xi < x

with

eX =l-2a. (57)

From Eq. 57 xi -X o as a 3-+ and the coefficients in Eq. 56 tend to those in Eq.
54. Thus the pulse solution tends to the transition wave as a - 2. The pulse (Eq.
56) is obtained from the slow pulse (Eq. 11) by taking the limit as b tends to zero
with zi finite. In this case Eq. 15 tends to Eq. 57.
There is a one parameter family of periodic standing waves vo,, with a/2 < a < a.
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The period P. = X1- X1 is determined by the two equations

exp (Xi) = (a - 1)(2o - 1)-i - (2o - l)-1[a2 - 4o(a - 0)1112
exp (X_1) = a/2o - (2o)-'a2 -4a(a - _)]112. (58)

The waveform is given by

vO,,(x) = aex + (a -a)e-Z, X-1 < x < 0

=(o- -)e' + (a - af - 2)e-x + 12 0 < x < Xi (59)

From Eqs. 58 and 57, X-1 X and X1 -- xi as a -- a, while the coefficients in
Eq. 59 tend to those in 56. In this sense, the solitary pulse (Eq. 56) is the limit of
the periodic waveform as Pa -->.

Stability

We first demonstrate that the transition waveform is linearly stable. We consider
the variational equation

= a,z - Cv-[1 - ''(z)J (60)
where

= v'(O) = a[c/2 + (1 + c/4)121. (61)

With V(z, t) = eXt V(z) we find that the only solution with V bounded and Re X > 0
is V = v' corresponding to X = 0. Thus there are no unstable modes.
To demonstrate the decay of initial perturbations we solve the initial value prob-

lem for Eq. 60 with v(z, 0) = +(z) by Laplace transforms. From a residue calcula-
tion we obtain the t-independent solution

lim i'(z, t) = Av'(z).
where

A = L: vc(-z4(z) dz (f [v (z)]2 dz)

Here v'(-z) satisfies the homogeneous t-independent adjoint equation for Eq. 60.
For bounded q which satisfies

L:I (z) exp (-cz/2)J dz < X

we can show that

v(z, t) - Av¢(z) < C exp (-X*t).
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Here C is a constant depending upon a and O, and X* can be chosen in the interval
O < X* < 1 independently of a. Thus we conclude that the transition waveform is
linearly stable.
The stability of the standing pulse (Eq. 56) can be analyzed in a manner similar

to that used by Lindgren and Buratti (12). The linear variational equation is

v t = Z- [1 -a- (x) - a-'(x -xi)v (62)

We assume a solution of the form V(x, t) = eXtV(x) and seek bounded V which
satisfies

V" -[x+ OwI)V= 0 -Xo <x< X. (63)
Here

(x)= 1a-l6(x) -a-l (x - x1).

Since vo is a solution of Eq. 63 with X = 0 and v' has one node, there must be
another solution of Eq. 63 with X > 0.
To find the growth rate X we let w = (1 + X)"12. Then the unstable mode can be

written in terms of the two exponentials, exp (4wx), where w satisfies

w2a -1 = (1- 2a)@. (64)

The solution X = X(a) of this equation was obtained numerically and is illustrated
in Fig. 6. Because (1 - 2a)@ must be positive, we obtain the following lower bound
on X

x >4a2-. (65)4a2

From Eq. 65 we see that X -- X as a -+0 and from Eq. 64 that X -+ 0 as a -+

This is consistent with our instability analysis of the slower pulses for b > 0.
To analyze the stability of the periodic waves we consider Eq. 63 on the finite

interval X-1 < x < X1 with 41(x) = 1 - (2r - a)-15(x) - (2c- a)- b(x - X).
We look for V(x) which is periodic. Since vo , has one node, we conclude as above
that there is an unstable mode with X > 0. Hence the periodic waveforms are un-
stable.

APPENDIX

Proof of Theorem 1

For fixed positive values of b and c, we consider the function

h(s) = 2 - s + (P1/P2)sa2Ia1 + (IA/p )sa31 0 < 1. (66)

We obtain necessary and sufficient conditions for the equation h(s) = 0 to have a
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root s in the interval (0, 1). Using the polynomial identities from Appendix A of
Rinzel (16), we evaluate h and its derivatives:

h(0)=2, h(l)=0, h'(1)=0 (67)
and

h"(1) = xX1j2pi - 2. (68)

We observe that the equation h" (s*) = 0 has a unique root s* > 0,

S = [_ ((as + ai)asp2]aiP(a2-aa) (69)
(a2 + al)a2p8

In the case as = L2, the unique determination of s* requires choosing a branch of
the logarithm function. From Eq. 67 and the uniqueness of s* it follows that h(s)
can have at most one zero in the interval (0, 1).
An obvious sufficient condition for h(s) = 0 to have a root s, 0 < s < 1, is that

h have a local maximum at s = 1, i.e. h"(l) < 0. On the other hand, if such an s
exists with h" (1) > 0, then we reach a contradiction to the uniqueness of s*. There-
fore the condition h"(l) < 0 is also necessary.

Evaluating Eq. 68 in terms of a, and using p(al) = 0, we see that our necessary
and sufficient condition can be expressed as

c-b11/2 < al. (70)

Since c'bW12 > 0, the condition cWb12 < al is equivalent to p(cVb"2) < 0. Evaluat-
ing the cubic we finally obtain the necessary and sufficient condition

c2 > b(l + 2192)-1 (71)

as stated in Theorem 1.
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