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We report a novel mechanism for the formation of chimera states, a peculiar spatiotemporal pattern

with coexisting synchronized and incoherent domains found in ensembles of identical oscillators.

Considering Stuart-Landau oscillators, we demonstrate that a nonlinear global coupling can induce

this symmetry breaking. We find chimera states also in a spatially extended system, a modified

complex Ginzburg-Landau equation. This theoretical prediction is validated with an oscillatory

electrochemical system, the electro-oxidation of silicon, where the spontaneous formation of

chimeras is observed without any external feedback control. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4858996]

In the 17th century, Christiaan Huygens was the first

who encountered the phenomenon of synchronization,

when watching two coupled pendulum clocks adjusting

their oscillation phase to each other. Since then, a variety

of systems exhibiting synchronization were studied, e.g.,

the flashing of fireflies or networks of pacemaker cells

keeping our heart beating in time. In these systems, the

key aspect is that nonidentical oscillating elements, as na-

ture is never perfect, with a distribution of natural fre-

quencies become synchronized due to the mutual

coupling. In contrast, in 2002, Kuramoto and

Battogtokh1 found the opposite phenomenon: a perfect

symmetric system of identical oscillators coupled via a

nonlocal coupling (i.e., a coupling that somehow

decreases with the distance between two oscillators) may

undergo a transition to a state, where a synchronized

group of oscillators coexists with an unsynchronized one.

This situation was later named chimera state, since the

chimera was, according to Greek mythology, composed

of the parts of different animals. The nonlocality of the

coupling is believed to be indispensable for the formation

of chimera states. However, in the present article, we

show that this is a misbelief, as we found chimera states

under solely global coupling. Global coupling means that

each individual oscillator couples to the mean field of all

oscillators. In our case, the mean field is a nonlinear func-

tion of the state variables of each oscillator.

I. INTRODUCTION

An oscillatory medium experiencing a global coupling

or feedback mechanism may evolve towards a domain-like

structure, called a cluster state, in which each domain oscil-

lates uniformly with a defined phase difference to the

others.2 Several theoretical studies on nonlocally coupled

oscillatory systems predicted a strange domain-type pattern,

a so-called chimera state, where some domains are perfectly

synchronized, but others oscillate spatially

incoherently.1,3–11 Chimera states might be of importance

for some peculiar observations in different disciplines, such

as the unihemispheric sleep of animals,12,13 the need for

synchronized bumps in otherwise chaotic neuronal networks

for signal propagation,14 and the existence of turbulent-

laminar patterns in a Couette flow.15 Very recently, the exis-

tence of chimera states could be validated in two pioneering

experiments with chemical16 and optical oscillators.17 Both

experiments involved a specifically designed feedback algo-

rithm to generate the specific nonlocal coupling.

Subsequently, chimera states could be realized in systems of

mechanical18 and electrochemical23 oscillators. However,

experimental evidence of the spontaneous formation of chi-

mera states without the control from outside is still missing.

In this article, we demonstrate, both theoretically and

experimentally, that also under a strictly global coupling, if

being nonlinear, a coexistence of synchrony and asynchrony

can be found. We start with an ensemble of Stuart-Landau

oscillators interacting solely via a nonlinear global coupling.

An initially random distribution splits for given parameters

into two groups, one being synchronized and the other one

being desynchronized. We then discuss spatially extended

oscillatory media. We show that a modified complex

Ginzburg-Landau equation (MCGLE) with nonlinear global

coupling, originally proposed to explain special cluster pat-

terns observed during the oscillatory electro-oxidation of sil-

icon in fluoride containing electrolytes,19,20 describes a

transition from cluster patterns to a state with coexisting

synchronized and incoherent domains. The results are indeed

confirmed experimentally with the oscillating Si-system,

where the separation of the electrode into coherently and

incoherently oscillating domains occurs spontaneously and

without external feedback control. Most remarkably, the

incoherent region does not contain any amplitude defects.a)krischer@tum.de
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All these are essential properties of chimera states and we

conclude that we have found a novel mechanism to this

symmetry-breaking state. Moreover, since a global coupling

is frequently encountered, chimera states might exist in

many more systems than anticipated so far.

II. RESULTS AND DISCUSSION

A. Chimera states in an ensemble of Stuart-Landau
oscillators

First, we consider an ensemble of N Stuart-Landau oscil-

lators21 under nonlinear global coupling

d

dt
Wj ¼ Wj � ð1þ ic2ÞjWjj2Wj

� ð1þ i�ÞhWi þ ð1þ ic2ÞhjWj2Wi ; (1)

where j 2 1;N½ � labels each individual oscillator and hWi
¼
PN

k¼1 Wk=N and hjWj2Wi ¼
PN

k¼1 jWkj2Wk=N denote en-

semble averages. The first term on the right hand side is the

linear instability leading to oscillations, while their magni-

tudes are controlled by the cubic term. The last two terms

represent the nonlinear global coupling. Taking the ensemble

average on both sides of Eq. (1) yields dhWi=dt ¼ �i�hWi
and thus hWi ¼ g expð�i�tÞ, i.e., the average hWi exhibits

conserved harmonic oscillations with amplitude g and fre-

quency �. As we will see later, this conservation law strongly

influences the dynamics. Altogether we have three parame-

ters, namely c2, � and g.

We numerically solved Eqs. (1) (for details, see the

Appendix). Starting from a random distribution, for

c2 ¼ �0:6, � ¼ 0:02, g ¼ 0:7, and N ¼ 1000, the ensemble

splits into two groups as depicted in Fig. 1, where we show

the real parts of Wj for all oscillators. One group is synchron-

ized (red, light gray) and the other group is desynchronized

(blue, dark gray). The synchronized oscillators perform col-

lective and nearly harmonic oscillations, while the asynchro-

nous ones exhibit incoherent and irregular motions.

Although the oscillations of this latter group present a seem-

ingly regular spiking, the oscillators in this group are

strongly uncorrelated both in time and in their simultaneous

amplitudes and phases. We observe strong amplitude

fluctuations in the incoherent group, as this is also the case

for chimeras found in a nonlocally coupled system in a pa-

rameter region, where the weak-coupling approximation

does not apply.22

The regularity of the spiking can be explained by a sec-

ond time-scale inherent in the system. As discussed for the

continuous system in Ref. 20, in the parameter regime,

where clustering occurs, the nonlinear global coupling leads

to two dominant time-scales: the frequency � of the oscilla-

tion of the spatial average and a frequency, which may be

called the cluster frequency. The contribution to the oscilla-

tions in the two phases at this cluster frequency shows a

phase shift of p (between the two phases). The time-scale of

the spiking in Fig. 1 is given by the cluster frequency

described above as the clustering mechanism leads to the

separation into the two groups. Interestingly, chimera states

found in an electrochemical experiment with individual elec-

trodes arranged on a ring and coupled nonlocally exhibit a

similar spiking behaviour: the desynchronized oscillating

elements drift some time with the mean-field, interrupted by

fast 2p phase slips.23

In essence, we have found the coexistence of synchrony

and asynchrony, i.e., a kind of a chimera state, evolving

under a solely global coupling. This contradicts the assump-

tion that a nonlocal coupling is indispensable for the occur-

rence of these states. Contrarily to the findings in Ref. 24,

the chimera state is stable independently of the population

size and forms spontaneously25 from a random distribution.

The co-existing synchronized state is unstable, which is also

the case for the chimera states described in Refs. 22 and 25.

In the latter work, it is argued that this is connected with

strong fluctuations of the amplitude in the incoherent region,

as they did not consider the weak-coupling limit. The type of

chimera states found here are absent under linear global cou-

pling.26 Note, however, that linear global coupling may

induce other types of chimera states, also in an ensemble of

Stuart-Landau oscillators involving large amplitude varia-

tions,27 or in a globally coupled map lattice.28 The former

state can also be found in our model, Eq. (1), and will be dis-

cussed elsewhere.

B. Transition to a chimera state in the modified CGLE

In order to describe experiments on a spatially

extended oscillatory medium, we consider now the

MCGLE,19,20

@tW ¼ W þ ð1þ ic1Þr2W � ð1þ ic2ÞjWj2W

� ð1þ i�ÞhWi þ ð1þ ic2ÞhjWj2Wi : (2)

Here, Wðr; tÞ is the complex order parameter describing the

dynamical state at each point r ¼ ðx; yÞ at time t and h…i
now denotes the spatial average. The original complex

Ginzburg-Landau equation without the nonlinear global cou-

pling is a generic model for extended systems at the onset of

oscillations and has a wide range of applications.29 The

MCGLE, Eq. (2), was proposed to explain experimental

results of the electro-oxidation of n-Si(111) under illumina-

tion.19 In fact, the emergence of subharmonic cluster patterns

FIG. 1. Time series for the real parts of Wj for all oscillators are shown. The

synchronized oscillators (red, light gray) perform collective and nearly har-

monic oscillations, while the asynchronous oscillators (blue, dark gray) ex-

hibit incoherent and irregular dynamics. For parameters see text.
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in the oxide-layer thickness at the silicon-electrolyte inter-

face can successfully be described by Eq. (2).20 An important

experimentally observed feature is a nearly harmonic oscilla-

tion of the spatially averaged oxide-layer thickness. This is

captured by the conservation law for the homogeneous mode

hWi ¼ g expð�i�tÞ in the theory.20

We numerically solved Eq. (2) (for details, see the

Appendix) for fixed parameters c1 ¼ 0:2, � ¼ 0:1, and

g ¼ 0:66. For appropriate values of c2, the system splits into

two phases, as presented in Fig. 2(a) for c2 ¼ �0:7.

The specific interaction between these two phases via

the nonlinear global coupling leads to a symmetry-breaking

transition, as we will show in the following. Let us call the

two phases A and B, respectively. Simulations show that the

system evolves according to a minimization of the interface

between A and B. This leads to a demixing of the phases. As

the diffusional coupling between A and B acts only near the

boundaries, for large domain sizes, it can be neglected.

Under this assumption, the dynamics in each phase is

governed by

@tWXðr; tÞ ¼ WXðr; tÞ þ ð1þ ic1Þr2WXðr; tÞ
�ð1þ ic2ÞjWXðr; tÞj2WXðr; tÞ þ ZðWA;WBÞ ;

(3)

where X¼A, B and ZðWA;WBÞ is the coupling between A

and B and has to be determined. Exploiting the conservation

law for the homogeneous mode, one finds

ZðWA;WBÞ ¼ �ð1þ i�Þg expð�i�tÞ

þð1þ ic2Þ
1

2
hjWAj2WAi þ hjWBj2WBi
� �

: (4)

We can further write for the spatial averages over phases

A and B RA exp �iað Þ � hjWAj2WAi and RB exp �ibð Þ
� hjWBj2WBi, respectively, and Kexp icð Þ � ð1þ ic2Þ=2,

where c ¼ cðc2Þ. With the phase difference D/ � b� a
between A and B, one can now show that the intra-group

coupling differs from the inter-group coupling. Note that D/
is generally unequal to p as we are dealing with subharmonic

two-phase clusters.19,20 One obtains in terms of a

ZðWA;WBÞ ¼ �ð1þ i�Þge�i�t

þKRAeiðc�aÞ þ KRBeiðc�D/�aÞ : (5)

We see that phases A and B experience each a different

influence from the intra- and inter-group couplings. This is not

due to a difference in coupling strength defined a priori, but is

the result of the intrinsic dynamics causing the phase difference.

As studies of two subpopulations in Refs. 7 and 16 with global

intra- and inter-group couplings of different strength show the

existence of chimera states, we conclude that the similar situa-

tion arising here renders the emergence of chimeras possible.

The coupling can be tuned with the parameter c2, where the

influence is different on inter- and intra-group coupling if D/
depends also on c2, which is a reasonable assumption.

As presented in Fig. 2, we find three remarkable, stable

states. As already mentioned, for c2 ¼ �0:7, Fig. 2(a), we

observe two-phase clusters. By changing to c2 ¼ �0:67,

shown in Fig. 2(b), one finds A being homogeneous and B

exhibiting two-phase clusters as a substructure. Finally, we

observe a chimera state for c2 ¼ �0:58, where B becomes

turbulent. This is depicted in Fig. 2(c). All these states were

also found in Ref. 16, but there the two subpopulations were

man-made and the system had to be initialized in a special

manner. In contrast, in our case, the system splits spontane-

ously into the two groups.

To further illustrate the characteristics of the chimera state,

we show the spatio-temporal dynamics in a cut along the y-

direction versus time in Fig. 2(d). It demonstrates the separa-

tion into two parts, one being perfectly synchronized, while the

other one exhibits asynchronous behaviour. The individual

oscillators in the homogeneous region oscillate periodically,

while in the inhomogeneous region, the dynamics is irregular,

but still slaved to the oscillation of the mean value hWi due to

the conservation law. As in the ensemble of Stuart-Landau

oscillators, the chimera state is stable in the MCGLE.

Now, we turn towards the experimental situation, which

had led to the formulation of the modified CGLE, Eq. (2).

C. Experimental validation of theoretical prediction

The system investigated is the photoelectrochemical dis-

solution of n-type doped silicon in fluoride containing

electrolytes. Here, the silicon sample is oxidized electro-

chemically via the following dominant reaction:30

Siþ 4H2Oþ �VBhþ ! Si OHð Þ4 þ 4Hþ þ ð4� �VBÞe�

Si OHð Þ4 ! SiO2 þ 2H2O; (6)

where (�VB) represents the number of charge-carriers trans-

ferred through valence-band processes and ð4� �VBÞ the

FIG. 2. (a)–(c) Snapshots of the three cluster-states. Shown is the real part

of the complex order parameter Re W, calculated from Eq. (2), indicating

the dynamical states of each local oscillator. (a) Two-phase clusters obtained

for parameter c2 ¼ �0:7. Both phases are homogeneous. (b) Sub-clustering

at c2 ¼ �0:67. In this case, one phase is homogeneous, while the other one

splits again into two-phase clusters. (c) Two-dimensional chimera state

found for c2 ¼ �0:58. The inhomogeneous phase shows strongly incoherent

dynamics. (d) Temporal evolution of the real part of W in a cut along the y-

direction at x¼ 0 in (c). Perfectly synchronized motion coexists with asyn-

chronous behaviour, separated by a sharp boundary.
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number of charge-carriers transferred through conduction-

band processes. The second reaction is solely chemical, i.e.,

no charge-carriers are transferred for the reaction. It has

to be noted that the initial charge transfer is always a

valence-band process rendering illumination necessary for

the reaction to occur at n-type doped silicon samples. The

illumination also limits the total current, which is a likely

source of the non-linear global coupling.31

The generated oxide is etched away by the fluoride spe-

cies present in the electrolyte, e.g., HF,32 in another solely

chemical process

SiO2 þ 6HF! SiF2�
6 þ 2Hþ þ 2H2O: (7)

As silicon oxidation and the etching of silicon oxide

have opposite effects on the oxide-layer thickness, a steady

state can be reached for suitable experimental conditions.

Already in the 1950s, it was found that the system can also

be oscillatory, which has drawn a lot of attention since then

(for a review, see chapter 5 in Ref. 33). The current oscilla-

tions are accompanied by an oscillating oxide-layer thick-

ness with an amplitude in the nm-range.34–38

To investigate the spatial distribution of the oxide-layer

thickness during the oscillations, we use spatially resolved

ellipsometric imaging, a technique first established by

Rotermund et al.,39 with a setup described in the Appendix.

The elliptical polarization of a light beam is distorted upon

reflection from the working electrode surface by the silicon

oxide layer and these distortions are translated into a two-

dimensional representation of the oxide-layer thickness on

the surface.

It was found that spatial pattern formation with a rich

variety of different patterns occurs on n-type doped silicon

samples at intermediate illumination intensities.19,40 An

external resistor in series with the working electrode acts as

an additional linear global coupling.41

In Figs. 3(a)–3(c), we present experimentally measured

snapshots of the oxide-layer thickness. Consistent with the

theory, Fig. 2(a), the case of two-phase clusters is shown in

Fig. 3(a).

As visible in Fig. 3(b), we also observe a sub-clustering

in the experiment as in Fig. 2(b). A stripe exhibiting two-

phase clusters is embedded in an otherwise homogeneous

region, which oscillates twice as fast as the two-phase

clusters.

Finally and most remarkably, also the spontaneous for-

mation of a two-dimensional chimera state occurs in the

experiments, Figs. 3(c) and 3(d). As apparent in the snapshot

(Fig. 3(c)) and the time evolution of a one-dimensional cut

(Fig. 3(d)), the upper right corner of the electrode constitutes

the synchronized region, whereas the remaining part displays

turbulent dynamics. A one-dimensional snapshot of the

oxide-layer thickness in Fig. 4(b), with corresponding distri-

bution visualized by a histogram, shows the strong variations

in the incoherent region.

We found the coexistence of synchrony and incoherence

for several experimental parameters. For sufficiently long

measurement times, we observed a transient nature. On the

contrary, for all considered simulation durations, the chimera

state remains stable in the ensemble of Stuart-Landau oscil-

lators, Eq. (1), and in the MCGLE, Eq. (2), for the given pa-

rameter values.

We have to point out that, as in the simulations, nothing

is imposed onto the system to introduce the splitting into two

domains. This separation arises solely from the intrinsic dy-

namics. We remark as well that there is no Turing-Hopf

bifurcation42 or an analogous situation that would trigger the

splitting. Furthermore, great care was taken to assure that the

FIG. 3. Spatio-temporal evolution of the oxide-layer thickness during the electrodissolution of silicon: two-phase clusters, sub-clustering and chimera state.

Shown are snapshots, colours indicate the thickness of the oxide layer, x and y represent spatial coordinates and t denotes time. (a) Two-phase cluster state,

where both parts oscillate uniformly with a phase difference to the respective other. (b) The oxide-layer thickness exhibits sub-clustering: a stripe of two-phase

clusters is embedded in an otherwise uniformly oscillating background. The clusters in the stripe oscillate at half the frequency of the background oscillation.

(c) Chimera state: the coexistence of synchrony and asynchrony is apparent. (d) Cut along y (black line in (c)) showing the sharp separation into coherent and

incoherent regions. For experimental parameters, see the Appendix.
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experimental conditions are spatially uniform. To this end,

the electrolyte is stirred continuously and the counter elec-

trode is placed symmetrically in front of the silicon working

electrode.

Finally, we make a direct comparison of the theoretical

and experimental spatial profiles of the real part of W in Fig.

4(a) and the oxide-layer thickness n in Fig. 4(b), respec-

tively. These plots show an excellent qualitative agreement.

Furthermore, we quantified the incoherence in the turbu-

lent regions of the chimera state: we calculated the correla-

tion function Cðx; tÞ ¼ h ~Wðx; tÞ ~W
�ð0; 0Þix0;t0=hj ~Wð0; 0Þj

2ix0;t0
(the asterisk denotes complex conjugation and the average is

performed over space and time) in a cut in the incoherent

region for both theory and experiment, where ~W is obtained

by subtracting the average of this cut. From the experimental

data, Wðx; tÞ was obtained via a Hilbert transformation. The

resulting jCðxÞj � jCðx; 0Þj is shown in Fig. 4(c) (theory) and

4(d) (experiment). As seen in the figures, jCðxÞj drops very

fast to approximately zero, demonstrating that after this dis-

tance, the individual oscillators behave uncorrelated. Note

that the fluctuations of jCðxÞj are due to the finiteness of the

sample. We point out that neither in the theoretical nor in the

experimental profiles, amplitude defects are present. This sit-

uation contrasts with the so-called localized turbulence

found under linear global coupling.43

III. CONCLUSIONS

In this article, we demonstrate that two-dimensional chi-

mera states and other spatial symmetry breakings may spon-

taneously occur in systems with nonlinear global coupling,

both theoretically and experimentally. Simulations of an en-

semble of Stuart-Landau oscillators, coupled solely via the

nonlinear global coupling, provide evidence that a nonlocal-

ity of the coupling is dispensable for the formation of chi-

mera states. The spontaneity of the formation of chimeras is

astonishing and affirms earlier theoretical observations.25

The theoretical description is very general and a nonlin-

ear global coupling seems to be essential for the modelling

of subharmonic cluster patterns, where the clusters oscillate

at a lower frequency than the homogeneous mode.20

Subharmonic clusters were observed in a number of

experiments,19,44–47 suggesting that also the type of symme-

try breaking described here, especially the chimera state,

may occur spontaneously in many physical and chemical

systems. Furthermore, as shown in Ref. 48, the proposed

nonlinearity of the global coupling may also arise effectively

in systems of linearly coupled relaxational oscillators.
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APPENDIX: NUMERICAL AND EXPERIMENTAL
METHODS

1. Simulations of the ensemble of Stuart-Landau
oscillators

We numerically solve Eqs. (1) in the main text using an

implicit Adams method with timestep dt ¼ 0:01. The system

consists of N ¼ 1000 oscillators, initialized with random real

numbers (with the condition on their average fulfilled). Note

that the equation is dimensionless.

2. Simulations of the modified complex
Ginzburg-Landau equation

Simulations of Eq. (2) in the main text are carried out

using a pseudospectral method and an exponential time step-

ping algorithm.49 We use 512 � 512 Fourier modes and a

system size of L ¼ 800. Note that the equation is dimension-

less. The system is initialized with a two-dimensional

FIG. 4. Comparison of theoretical and

experimental chimera states. The one-

dimensional spatial profiles and

histograms in theory (a) and experi-

ment (b) are in excellent agreement.

Furthermore, both correlation func-

tions jCðxÞj (for details, see text) ex-

hibit a fast drop to nearly zero. This

shows the fast decrease of spatial

correlations in theory (c) and experi-

ment (d).
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circular perturbation and additional noise. The dynamics is

analyzed between t ¼ 500 and t ¼ 1000 and we use a com-

putational timestep of Dt ¼ 0:05.

3. Experiments

The experiments are carried out in a custom made PTFE

three electrode electrochemical cell with a monocrystalline

n-Si ((111) surface, 3–5 Xcm) working electrode, a

HgjHg2SO4 reference electrode and a ring-shaped platinum

counter electrode placed symmetrically in front of the work-

ing electrode.19 The working electrode has an ohmic alumi-

num back contact annealed at 250 �C for 15 min and is

otherwise prepared as described in an earlier work.50 We use

a NH4F solution as electrolyte, adjust the pH value by adding

H2SO4, and stir with a magnetic stirrer at about 10 Hz. For

illumination, a He-Ne Laser (633 nm) is used, whose inten-

sity I is tuned by a polarizer. For all experiments, a voltage

of 8.65 V vs. SHE (Standard Hydrogen Electrode) is applied

and the current response is recorded. For the spatially

resolved ellipsometric imaging, elliptically polarized light

(LED, 470 nm) is reflected from the working-electrode sur-

face at an angle of 70�, close to the Brewster angle, which is

to maximize the contrast. The reflected light then passes

another polarizer that converts changes of the polarization

upon interaction with the surface into intensity changes, and

is imaged on a CCD chip (640� 480 pixels). For a schematic

setup, see Fig. 5.

The data are then recorded using a suitable LabVIEW pro-

gram and analyzed with MATLAB. The parameters varied in

the experiments are: the concentration of NH4F, NH4F½ �, the

surface area of the working electrode, A, the external resist-

ance, Rext, and the illumination intensity, I. Values read:

NH4F½ � ¼ 35 mM, pH ¼ 1, A ¼ 22:73 mm2, Rext ¼ 40 kX,

and I ’ 0:7 mW=cm2 (two-phase clusters), NH4F½ � ¼ 50 mM,

pH ¼ 2:3, A ¼ 23:06 mm2, Rext ¼ 0 X, and I ’ 1 mW=cm2

(sub-clustering), and NH4F½ �¼50mM, pH¼3, A¼22:42mm2,

Rext¼0X, and I’0:5mW=cm2 (chimera).

1Y. Kuramoto and D. Battogtokh, “Coexistence of coherence and incoher-

ence in nonlocally coupled phase oscillators,” Nonlinear Phenom.

Complex Syst. 5, 380–385 (2002).
2A. S. Mikhailov and K. Showalter, “Control of waves, patterns and turbu-

lence in chemical systems,” Phys. Rep. 425, 79–194 (2006).
3D. M. Abrams and S. H. Strogatz, “Chimera states for coupled oscillators,”

Phys. Rev. Lett. 93, 174102 (2004).

4S.-i. Shima and Y. Kuramoto, “Rotating spiral waves with phase-

randomized core in nonlocally coupled oscillators,” Phys. Rev. E 69,

036213 (2004).
5E. A. Martens, C. R. Laing, and S. H. Strogatz, “Solvable model of spiral

wave chimeras,” Phys. Rev. Lett. 104, 044101 (2010).
6G. C. Sethia, A. Sen, and F. M. Atay, “Clustered chimera states in delay-

coupled oscillator systems,” Phys. Rev. Lett. 100, 144102 (2008).
7D. M. Abrams, R. Mirollo, S. H. Strogatz, and D. A. Wiley, “Solvable

model for chimera states of coupled oscillators,” Phys. Rev. Lett. 101,

084103 (2008).
8I. Omelchenko, Y. Maistrenko, P. H€ovel, and E. Sch€oll, “Loss of coher-

ence in dynamical networks: Spatial chaos and chimera states,” Phys. Rev.

Lett. 106, 234102 (2011).
9I. Omelchenko, B. Riemenschneider, P. H€ovel, Y. Maistrenko, and E.

Sch€oll, “Transition from spatial coherence to incoherence in coupled cha-

otic systems,” Phys. Rev. E 85, 026212 (2012).
10S. Nkomo, M. R. Tinsley, and K. Showalter, “Chimera states in popula-

tions of nonlocally coupled chemical oscillators,” Phys. Rev. Lett. 110,

244102 (2013).
11I. Omelchenko, O. E. Omel’chenko, P. H€ovel, and E. Sch€oll, “When non-

local coupling between oscillators becomes stronger: Patched synchrony

or multichimera states,” Phys. Rev. Lett. 110, 224101 (2013).
12N. C. Rattenborg, C. J. Amlaner, and S. L. Lima, “Behavioral, neurophys-

iological and evolutionary perspectives on unihemispheric sleep,”

Neurosci. Biobehav. Rev. 24, 817–842 (2000).
13C. G. Mathews, J. A. Lesku, S. L. Lima, and C. J. Amlaner,

“Asynchronous eye closure as an anti-predator behavior in the western

fence lizard (Sceloporus occidentalis),” Ethology 112, 286–292 (2006).
14T. P. Vogels, K. Rajan, and L. F. Abbott, “Neural network dynamics,”

Annu. Rev. Neurosci. 28, 357–376 (2005).
15D. Barkley and L. S. Tuckerman, “Computational study of turbulent lami-

nar patterns in Couette flow,” Phys. Rev. Lett. 94, 014502 (2005).
16M. R. Tinsley, N. Simbarashe, and K. Showalter, “Chimera and phase-

cluster states in populations of coupled chemical oscillators,” Nat. Phys. 8,

662–665 (2012).
17A. M. Hagerstrom, T. E. Murphy, R. Roy, P. H€ovel, I. Omelchenko, and

E. Sch€oll, “Experimental observation of chimeras in coupled-map

lattices,” Nat. Phys. 8, 658–661 (2012).
18E. A. Martens, S. Thutupalli, A. Fourrire, and O. Hallatschek, “Chimera

states in mechanical oscillator networks,” Proc. Natl. Acad. Sci. U.S.A.

(2013).
19I. Miethe, V. Garc�ıa-Morales, and K. Krischer, “Irregular subharmonic

cluster patterns in an autonomous photoelectrochemical oscillator,” Phys.

Rev. Lett. 102, 194101 (2009).
20V. Garc�ıa-Morales, A. Orlov, and K. Krischer, “Subharmonic phase clus-

ters in the complex Ginzburg-Landau equation with nonlinear global

coupling,” Phys. Rev. E 82, 065202 (2010).
21Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence (Dover

Publications, Inc., Mineola, New York, 2003).
22G. C. Sethia, A. Sen, and G. L. Johnston, “Amplitude-mediated chimera

states,” Phys. Rev. E 88, 042917 (2013).
23M. Wickramasinghe and I. Z. Kiss, “Spatially organized dynamical states

in chemical oscillator networks: Synchronization, dynamical differentia-

tion, and chimera patterns,” PLoS One 8, e80586 (2013).
24M. Wolfrum and O. E. Omel’chenko, “Chimera states are chaotic transi-

ents,” Phys. Rev. E 84, 015201 (2011).
25O. E. Omel’chenko, Y. L. Maistrenko, and P. A. Tass, “Chimera states:

The natural link between coherence and incoherence,” Phys. Rev. Lett.

100, 044105 (2008).
26N. Nakagawa and Y. Kuramoto, “From collective oscillations to collective

chaos in a globally coupled oscillator system,” Physica D 75, 74–80

(1994).
27H. Daido and K. Nakanishi, “Diffusion-induced inhomogeneity in globally

coupled oscillators: Swing-by mechanism,” Phys. Rev. Lett. 96, 054101

(2006).
28K. Kaneko, “Clustering, coding, switching, hierarchical ordering, and con-

trol in a network of chaotic elements,” Physica D 41, 137–172 (1990).
29I. S. Aranson and L. Kramer, “The world of the complex Ginzburg-

Landau equation,” Rev. Mod. Phys. 74, 99–143 (2002).
30R. Memming and G. Schwandt, “Anodic dissolution of silicon in hydro-

fluoric acid solutions,” Surf. Sci. 4, 109–124 (1966).
31M. Matsumura and S. R. Morrison, “Anodic properties of n-Si and n-Ge

electrodes in HF solution under illumination and in the dark,”

J. Electroanal. Chem. 147, 157–166 (1983).

FIG. 5. Optical setup of the custom-made ellipsometric microscope. The

blue (dark gray) line represents the light path for the imaging and the red

(light gray) line for the illumination.

013102-6 Schmidt et al. Chaos 24, 013102 (2014)

 12 June 2024 12:32:59

http://dx.doi.org/10.1016/j.physrep.2005.11.003
http://dx.doi.org/10.1103/PhysRevLett.93.174102
http://dx.doi.org/10.1103/PhysRevE.69.036213
http://dx.doi.org/10.1103/PhysRevLett.104.044101
http://dx.doi.org/10.1103/PhysRevLett.100.144102
http://dx.doi.org/10.1103/PhysRevLett.101.084103
http://dx.doi.org/10.1103/PhysRevLett.106.234102
http://dx.doi.org/10.1103/PhysRevLett.106.234102
http://dx.doi.org/10.1103/PhysRevE.85.026212
http://dx.doi.org/10.1103/PhysRevLett.110.244102
http://dx.doi.org/10.1103/PhysRevLett.110.224101
http://dx.doi.org/10.1016/S0149-7634(00)00039-7
http://dx.doi.org/10.1111/j.1439-0310.2006.01138.x
http://dx.doi.org/10.1146/annurev.neuro.28.061604.135637
http://dx.doi.org/10.1103/PhysRevLett.94.014502
http://dx.doi.org/10.1038/nphys2371
http://dx.doi.org/10.1038/nphys2372
http://dx.doi.org/10.1103/PhysRevLett.102.194101
http://dx.doi.org/10.1103/PhysRevLett.102.194101
http://dx.doi.org/10.1103/PhysRevE.82.065202
http://dx.doi.org/10.1103/PhysRevE.88.042917
http://dx.doi.org/10.1371/journal.pone.0080586
http://dx.doi.org/10.1103/PhysRevE.84.015201
http://dx.doi.org/10.1103/PhysRevLett.100.044105
http://dx.doi.org/10.1016/0167-2789(94)90275-5
http://dx.doi.org/10.1103/PhysRevLett.96.054101
http://dx.doi.org/10.1016/0167-2789(90)90119-A
http://dx.doi.org/10.1103/RevModPhys.74.99
http://dx.doi.org/10.1016/0039-6028(66)90071-9
http://dx.doi.org/10.1016/S0022-0728(83)80063-1


32S. Cattarin, I. Frateur, M. Musiani, and B. Tribollet, “Electrodissolution of

p-Si in acidic fluoride media: Modeling of the steady state,”

J. Electrochem. Soc. 147, 3277–3282 (2000).
33X. G. Zhang, Electrochemistry of Silicon and Its Oxides (Kluwer

Academic, New York, 2001).
34D. J. Blackwood, A. Borazio, R. Greef, L. M. Peter, and J. Stuper,

“Electrochemical and optical studies of silicon dissolution in ammonium

fluoride solutions,” Electrochim. Acta 37, 889–896 (1992).
35J.-N. Chazalviel, C. da Fonseca, and F. Ozanam, “In situ infrared study of

the oscillating anodic dissolution of silicon in fluoride electrolytes,”

J. Electrochem. Soc. 145, 964–973 (1998).
36F. Yahyaoui, T. Dittrich, M. Aggour, J.-N. Chazalviel, F. Ozanam, and J.

Rappich, “Etch rates of anodic silicon oxides in dilute fluoride solutions,”

J. Electrochem. Soc. 150, B205–B210 (2003).
37J.-N. Chazalviel, “Ionic processes through the interfacial oxide in the an-

odic dissolution of silicon,” Electrochim. Acta 37, 865–875 (1992).
38M. Aggour, M. Giersig, and H. Lewerenz, “Interface condition of n-

Si(111) during photocurrent oscillations in NH4F solutions,”

J. Electroanal. Chem. 383, 67–74 (1995).
39H. H. Rotermund, G. Haas, R. U. Franz, R. M. Tromp, and G. Ertl,

“Imaging pattern formation in surface reactions from ultrahigh vacuum up

to atmospheric pressure,” Science 270, 608–610 (1995).
40I. Miethe, “Spatio-temporal pattern formation during the anodic electrodis-

solution of silicon in ammonium fluoride solution,” PhD Thesis (TU

M€unchen, 2010).
41K. Krischer, H. Varela, A. B̂ırzu, F. Plenge, and A. Bonnefont, “Stability

of uniform electrode states in the presence of ohmic drop compensation,”

Electrochim. Acta 49, 103–115 (2003).

42A. De Wit, D. Lima, G. Dewel, and P. Borckmans, “Spatiotemporal dy-

namics near a codimension-two point,” Phys. Rev. E 54, 261–271 (1996).
43D. Battogtokh, A. Preusser, and A. Mikhailov, “Controlling turbulence in

the complex Ginzburg-Landau equation II. Two-dimensional systems,”

Physica D 106, 327–362 (1997).
44H. Varela, C. Beta, A. Bonnefont, and K. Krischer, “A hierarchy of global

coupling induced cluster patterns during the oscillatory

H2-electrooxidation reaction on a Pt ring-electrode,” Phys. Chem. Chem.

Phys. 7, 2429–2439 (2005).
45V. K. Vanag, A. M. Zhabotinsky, and I. R. Epstein, “Pattern formation in

the Belousov–Zhabotinsky reaction with photochemical global feedback,”

J. Phys. Chem. A 104, 11566–11577 (2000).
46M. Kim, M. Bertram, M. Pollmann, A. von Oertzen, A. S. Mikhailov, H.

H. Rotermund, and G. Ertl, “Controlling chemical turbulence by global

delayed feedback: Pattern formation in catalytic CO oxidation on

Pt(110),” Science 292, 1357–1360 (2001).
47M. Pollmann, M. Bertram, and H. H. Rotermund, “Influence of time

delayed global feedback on pattern formation in oscillatory CO oxidation

on Pt(110),” Chem. Phys. Lett. 346, 123–128 (2001).
48I. Z. Kiss, Y. Zhai, and J. L. Hudson, “Predicting mutual entrainment of

oscillators with experiment-based phase models,” Phys. Rev. Lett. 94,

248301 (2005).
49S. M. Cox and P. C. Matthews, “Exponential time differencing for stiff

systems,” J. Comput. Phys. 176, 430–455 (2002).
50K. Sch€onleber and K. Krischer, “High-amplitude versus low-amplitude

current oscillations during the anodic oxidation of p-type silicon in

fluoride containing electrolytes,” Chem. Phys. Chem. 13, 2989–2996

(2012).

013102-7 Schmidt et al. Chaos 24, 013102 (2014)

 12 June 2024 12:32:59

http://dx.doi.org/10.1149/1.1393895
http://dx.doi.org/10.1016/0013-4686(92)85040-R
http://dx.doi.org/10.1149/1.1838373
http://dx.doi.org/10.1149/1.1563652
http://dx.doi.org/10.1016/0013-4686(92)85038-M
http://dx.doi.org/10.1016/0022-0728(94)03723-G
http://dx.doi.org/10.1126/science.270.5236.608
http://dx.doi.org/10.1016/j.electacta.2003.04.006
http://dx.doi.org/10.1103/PhysRevE.54.261
http://dx.doi.org/10.1016/S0167-2789(97)00046-8
http://dx.doi.org/10.1039/B502027A
http://dx.doi.org/10.1039/B502027A
http://dx.doi.org/10.1021/jp002390h
http://dx.doi.org/10.1126/science.1059478
http://dx.doi.org/10.1016/S0009-2614(01)00936-8
http://dx.doi.org/10.1103/PhysRevLett.94.248301
http://dx.doi.org/10.1006/jcph.2002.6995
http://dx.doi.org/10.1002/cphc.201200230

