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Summary-To electronically simulate an animal nerve axon, the
authors made an active pulse transmission line using tunnel diodes.
The equation of propagation for this line is the same as that for a
simplified model of nerve membrane treated elsewhere. This line
shapes the signal waveform during transmission, that is, there being
a specific pulse-like waveform peculiar to this line, smaller signals
are amplified, larger ones are attenuated, narrower ones are widened
and those which are wider are shrunk, all approaching the above-
mentioned specific waveform. In addition, this line has a certain
threshold value in respect to the signal height, and signals smaller
than the threshold or noise are eliminated in the course of transmis-
sion. Because of the above-mentioned shaping action and the exist-
ence of a threshold, this line makes possible highly reliable pulse
transmission, and will be useful for various kinds of information-
processing systems.

I. INTRODUCTION
I N THE CASE of conventional pulse transmission

lines, provided they are of great length, signals
suffer attenuation and distortion as they travel

down the line, whereas an electric pulse signal which
is transmitted along an animal nerve axon suffers
neither attenuation nor distortion, regardless of the
distance covered. A pulse transmission line with such
qualities will be useful for pulse transmission in com-
munication systems, data processing systems, electronic
computers, etc.

It is our purpose to realize such a pulse transmission
line by simulating the animal nerve axon.

IL. EXCITATION OF NERVE AXON

A great deal of research on the electro-physiology of
the nerve axon has already been made,1 the most im-
portant being that of Hodgkin and Huxley.2 They have
made a quantitative study of the excitation of a nerve
axon and the propagation of the excitation, and have
derived the Hodgkin-Huxley equations (H-H equations)
which describe the phenomena.

In the case of a "space clamp," that is, in a case
where the excitation of a nerve axon is spacially uni-
form, the H-H equations describing the excitation of the
nerve axon are as follows (see Appendix):

* Received April 26, 1962; revised manuscript received July 9,
1962.

t Dept. of Applied Physics, Faculty of Engineering, University of
Tokyo, Tokyo, Japan.

1 Readers unfamiliar with the electro-physiology of the nerve
axon may wish to refer to J. W. Moore, "Electronic control of some
active bioelectric membranes," PROC. IRE, vol. 47, pp. 1869-1880;
November, 1959.

2 A. L. Hodgkin and A. F. Huxley, "A quantitative description of
membrane current and its application to conduction and excitation
in nerve," J. Physiol., vol. 117, pp. 500-544; August, 1952.
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where

I= the membrane current density (Ma/cm2) [in-
ward current positive],

V=the membrane voltage (mV) [difference from
resting potential, depolarization negative],

m = the sodium activation (dimensionless) [varying
between 0 and 1],

h= the sodium inactivation (dimensionless) [vary-
ing between 0 and 1],

n = the potassium activation (dimensionless) [vary-
ing between 0 and 1],

t =time (msec),
Co = the membrane capacitance (/Af/cm2),
gNa= 120, gK = 36, gL = 0.3 (mZ3/cm2),
VNa = - 15, VK= 12, VL = -10.5989 (m V).
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Several investigatioiis of the H-H equations b) the
use of analog coMpLters3'4 and digital com-iiputers5-l have
appeared in recent literature. Nevertheless, it is still
difficult to make an electronic sim-tulahtor of the H-H
equations on accouLnt of their complexities.

II1. TIm- BVP AIMODEL
Recently, FitzHugh ingeniously simplified the H-H

equations in case of a "space clamlp,"nmaking use of an
analog computer, an(l p)roposedl the following BVP
model (Bonhoeffer-van der Pol moldel).9

(2)
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c dt 3

dw
c + bw = a-u,
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where a, b and c are constants satisfying the relations

1 >b> O,c2 > b, I > a > 1 l2b. (3)

The variables u, w and J in the BVP model (2) cor-
respond to the pair of variables (V, m), the pair of vari-
ables (h, n) and I in (1), respectively.

Fig. l(a) shows the trajectories on the (u, w)-plane
of the BVP model (2) in the case where J=0, while Fig.
l(b) shows the trajectories on the (u*, w*)-plane of (1)
in the case where I=0. Here,

u* = V - 36m, w-2(n - h). (4)

0

0.2

--150 -100 -50

(b)
Fig. 1-The qualitative similarity of (a) and (b) suggests that the

BVP model can be considered as belonging to the same class of
excitable systems as the [lodgkin-IlL.iley model. (Reproduced
from FitzHugh,9 courtesy of the author.)

dv
j = C-- i-f(e),

dT

di
L -- + Ri = - v = e - Eo,

dT

wheref(e) is a function, as shown in Fig. 3, which repre-
sents the voltage vs current characteristic of the tunnel
diode. For simplicity, we assume

(5)

Comparing Fig. 1(a) to Fig. 1(b), it is observed that
there is fairly good correspondence between the H-H
equations and the BVP model. We shall therefore try
to simulate (2) instead of (1).

1 (e - eo)3(f(e) = io- e - 3Ko
2

where
io = f(eo).

IV. AN ELECTRONIC SIMULATION OF THE BVP MODEL

Let us consider the two-terminal circuit of Fig. 2,
where TD is a tunnel diode.'0 From Kirchhoff's law

3 G. A. Bekey and B. Paxon, "Analog Simulation of Nerve Ex-
citation," presented at the 2nd National Simulation Conference,
Houston, Texas; April, 1957.

4 R. FitzHugh, "Thresholds and plateaus in the Hodgkin-Huxley
nerve equations," J. Gen. Physiol., vol. 43, pp. 867-896; May, 1960.

6 K. S. Cole, H. A. Antosiewicz, and P. Rabinowitz, "Automatic
computation of nerve excitation," J. Soc. Indust. A ppl. Math., vol. 3,
pp. 153-172; September, 1955.

6 "Automatic computation of nerve excitation, correction,"
J. Soc. Indust. Appl. Math., vol. 6, pp. 196-197; June, 1958.

7R. FitzHugh and H. A. Antosiewicz, "Automatic computation
of nerve excitation, detailed corrections and additions," J. Soc.
Indust. Appl. Math., vol. 7, pp. 447-458; December, 1959.

8 R. FitzHugh, "Computation of impulse initiation and saltatory
condition in a myelinated nerve fiber," Biophysical J., vol. 2, pp.
11-21; January, 1962.

9 R. FitzHugh, 'Impulses and physiological states in theoretical
models of nerve membrane," Biophysical J., vol. 1, pp. 445-466;
July, 1961.

10 J. Nagumo, et al., "An Active Line Using Esaki Diodes," Inst.
Elec. Commun. Engrs. Japan, Professional Group on Nonlinear Cir-
cuiit Theory, Rept.; February 7, 1961 (in Japanese).

By the introduction of new variables

r v + (eo-Eo) p
t1= _, u I w =-(i+io),

-VLC K K

p Rio + (eO -Eo) R
J=--j, a=R0(0IE) b=-R

1 /Lp c~~~~~

it is seen that (5) is reduced to (2).
Next, we shall examine the conditions in (3) for the

constants a, b and c.

The first condition: 1 > b >0 is eqluivalent to

p> R.

The second condition: c2>b is equivalent to

L

(7)

->pC. (8)
R

(p > 0, K> 0), (6)

U.
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Since c2> b, 1 > b >0, c>0, this differential equation
belongs to the Lienard type1' which represents self-
oscillations.

Therefore it is concluded that the BVP model can be
simulated by the monostable circuit shown in Fig. 2.
However, condition (10) which restricts the bias voltage
Eo is too severe; since even if the bias voltage is set as

e2 < Eo < e,, (12)
Fig. 2-An electronic simulator of the BVP model.

in Fig. 4, the circuit in Fig. 2 remains monostable. The
condition in (12) is written as

2 > a > 1 -23

and hence we shall employ the conditions

0 eo

Fig. 3-The voltage-current characteristic of the tunnel diode.

I~~ @
cotO=R~~~

io+2K

e2 e3el eo e4
eo-2K eo-K

Fig. 4-When bias voltage Eo is set between ei and e2, the circuit
shown in Fig. 2 is monostable. Whereas, if Eo=e4, the circuit
oscillates spontaneously.

1 > b >0O, c2> b, 2 > a > 1-23b, (13)

instead of (3), for the constants in the BVP model.

V. PROPAGATION OF EXCITATION

The equations which describe the propagation of the
excitation along the nerve axon are easily obtained from
the equations of the "space clamp.""2

Denoting the distance along the nerve axon by S (cm),
the radius of the nerve axon by Ro (cm) and the specific
resistance of the axoplasm by ro (KQcm), we find that

Ro a2VI=- . (14)
2ro aS2

Consequently, taking (1) into account, the H-H
partial differential equations describing the propagation
of the excitation become as follows:

The last condition: 1 >a> 1- -b is equivalent to

Rio + (eo - K) < Eo < R +io+-) + (eo - K), (9)

or

e3 <Eo < ei, (10)

in Fig. 4.
The conditions in (7), (8) and (10) imply that in the

case of the "current clamp," j=0, the circuit shown in
Fig. 2 is nothing but the well-known monostable circuit
of the tunnel diode. In particular, the condition in (8)
means that the circuit oscillates spontaneously if the
bias voltage is set at e4 in Fig. 4. In fact, if E0==e4, then
a=0, and in the case of j=O0, (2) becomes as follows:

d2u b du
-- 1- -u2-

dt2 c2 dt

( b b
+ j(1-b)u +-3 =0 . ( 1)

d2V 2ro aV
=2=- CO- + gNam3h(V - VNa)

as2 Ro a-t

+ gKn4(V - VK) + gL(V -VL

am
+

at

ah

at
an
+

At

(15)Itam(V) +/m(V)}m = am(V),

{ah(V) + Ah(V) } h = ah(V),

tan(V) + f,(V) }n = a,n(V).

Similarly, let us consider the circuit shown in Fig. 5(a)
or Fig. 5 (b), which is constructed by cascading the
many two-terminal circuits of Fig. 2 through interstage
coupling resistances.

11 S. Lefschetz, "Differential Equations: Geometric Theory," In-
terscience Publishers, New York, N. Y., pp. 249-254; 1957.

12 Hodgkin and Huxley, op. cit., p. 522.
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Regar(ling the a)ove circuit as a distributed line, we
have

1 G2v

r=-r as2
(16)

corresponding to (14), provided the interstage coupling
resistance per unit lengtlh of the line is r. From (2) and
(16), it follows that

a32u 1 au ( U3)
h-= --w-{ u-
aS2 c at 3 (7

cw
c +bw= a-u,(
lat

where h = p/r.
The system of partial differential equations (17) is the

distributed BVP model which may be considered as a
simplified system of the H-H partial differential
equations (15).

TD L
Eo R

(a)

+Eo

TD C

L

R

1))

Fig. 5-A distributed active liie is obtime(l b)V cascading the two-
terminal cirCuits in Fig. 2 throtugh interstitge coLupling resistances.
The circuit shown in (b) is equivalent to that in (a).

L

TD C

Fig. 6-Electronic model corresponding to (22).

(19) is transformed as follows:

a3z d2z
±+i(l Z +Ez2)aotax2 - at2

By eliminating w from (17), a single partial differen-
tial equation for u is obtained as follows:

d3U d2u a2u ba\u
chl +bh-= - c 1-- -U22

atas2 as2 at2 k c2/ dt

b
+ j(1- b)u+ u3 - a. (18)

az 3
-+ z, > O, -> c >O.
at 16

(22)

It seems likely that the partial differential equation
(22) is one of the simplest mathematical models of the
nerve axon. The structure of the electronic model which
corresponds to (22) is shown in Fig. 6.

VI. A BOUNDARY-VALUE PROBLEM

We now procee(i to investigate the following
boundary-value problem for the partial differential
equation (22) (Fig. 7).

For simplicity, let us consider a case where
R=O (b=O). In such a case, (18) takes the form

a3u a2u au
ch = -c(l-U2) +u-a,atas2 at2 at (19)

where

c > 0, 2 > a > 1, h > 0. (20)

By setting

s 2a
x = , z= (a-u),

.\Ich a2-1
,u= c(a2 - 1),

a2 - 1

4a2

z = z(x, t), x 0, t 0O,

'a z a2z c

2= d +,u(1-z +ez) + z,atax2 aar2 at

3
Atu> 0, -> E-> 0,

16

oz
on the line I = O, z = 0, - =O,

on the line x = 0, z = F(t): given.

(23)

Some results of the numerical calculation using a
digital computer are given below. We chose '=10,
E=0.I and

F(t) =-(1-cos-)

= 0,

to _ t_ (,

(21)
t _ to. (24)
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z

14

12

io

Fig. 7-A schematic display of the boundary-value problem (23).

A. Signal A mplification
The case of to = 3.0, zo = 5.0 is shown in Fig. 8. In this

case the signal is amplified in the course of transmission.

6

4-

2-

Pt=10 x=2.8
t=O.l x=0.8 _7

3.5t~~~~~~~~~~~~~~~~
Fig. 8-A signal above the threshold value and below the

asymptotic value is amplified during transmission.

B. Signal Attenuation
The case of to = 1.0, zo = 20.0 is shown in Fig. 9.

this case the signal is attenuated in the course
transmission.

In
of

C. Signal Elimination
The case of to= 3.0, zo=3.0 is shown in Fig. 10. In

this case the signal is eliminated in the course of
transmission.
From these results, it is expected that with respect to

the signal height (there being an asymptotic value and
a threshold value),

1) a signal with a height between the asymptotic
value and the threshold value is amplified during
transmission,

2) a signal higher than the asymptotic value is at-
tenuated to the asymptotic value during trans-
mission,

3) a signal lower than the threshold value is elimi-
nated during transmission (see Fig. 11).

These actions may be called "shaping" with respect
to signal height. In order to clarify the situation, we
shall try to seek for the asymptotic waveform in
Section VII.

VII. ASYMPTOTIC WAVEFORM

If the partial differential equation (22) has a wave-
form, as its solution, which is transmitted along a line
without suffering distortion and with a constant velocity
(say 0), then the solution must be a function of
T =t-x/I. In such a case the substitution

x

0

reduces the partial differential equation (22) to an
ordinary differential equation for t:

0t tt - C - ,u(1 - t + 42)' - t = 0,

where i'= dl/dr and

(25)

Fig. 9-A signal above the asymptotic value is
attenuated during transmission.

t.1'=10

Fig. 10-A signal below the threshold value is
eliminated during transmission.

pulse height.

1T7 -ifi

Attenuation

L-- Sasymptotic value

Amplif ication

..i-I-1-L.. ',threshold value

-[LII__ Elimination
distance

Fig. 11-Signals are amplified or attenuated or
eliminated according to their heights.

( = -2 > 0.

- . . . .

I
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For the time being, A remains an unknown constant.
In fact, its determination constitutes a part of the object
of the following procedure. Now, it is obvious that (25)
has a resting solution t_ O. If (25) has a solution, except
for =0, such as (T)-> when r- + oc for some 0, then
the solution corresponds to the asymptotic waveform
which we are seeking, and the transmission velocity of
the asymptotic waveform is determined from d.
The behavior of t(r) in the neighborhood of the rest-

ing solution is determined approximately by a linear
differential equation

0(tt_// tt_O I - t = 0. (27)

The characteristic equation of (27)

H(X) = $X3-X2-,AX-1 = 0 (28)

has one real positive root, since H(0) =-1 < 0,
H'(0) = -,u<0 and H(+xlc )>0. By denoting this root
as Xo(Xo>0), H(X) is factorized as

H(X) = (X-o)(3X2 + yX + X 0-1),
where

y = fi0- 1 =X+ - .'Y 0 +

Since y >0, it is apparent that both of the other two
roots are either real negative or complex conjugate with
negative real parts.
From a more precise examination it is easily seen that

when ,>2 and O3<o(g), they are real negative; other-
wise they are complex conjugate with negative real
parts, where

fo(A) =- (2u2- 9/ + 2V t4 - 9tI3 + 27,L2 - 27).
27

Now, if t(r)-*O when r-o-oc, as shown in Fig. 12,
then t(r)-AeXor (A is an arbitrary constant), when r
has a negative large value. Therefore we have

We shall perform numerical calculations for the third-
order ordinary differential equation (25) with the fol-
lowing initial conditions:

(0) = A,

{'(0) = o'A1
tt"(0) = 2A,o5

where A(A>0) is the smallest step of t. It is noted that
Xo depends on /3.

In general, the solution of (25) corresponding to the
initial conditions in (29) depends on the value of /3; and
we are seeking for exactly the for t(r)-*0 when
T- 4+ cc as shown in Fig. 12.

When ,u= 3.0, e-=0.1, two such values of d were ex-
pected to exist from the results of digital computations.
One of them is ,_. 0.44488, which corresponds to a
stable asymptotic waveform (Fig. 13), and this is what
we are aiming at. The other is A 0.938 and correspon(ds
to an unstable asymptotic waveform (Fig. 14), which is
a critical signal traveling down the line along the
threshold and being physically unrealizable.

Because the stable asymptotic waveform is peculiar
to this line, it may be expected that the line will show a
waveform shaping action, in respect not only to the
signal height but also to the signal width.

Fig. 15(a) shows the relation between ,u and signal
propagation velocity 0 in the case of e-= 0.1. The velocity
of the stable asymiptotic waveform seems to be a mono-
tonically increasing function of A.

Since

I=-a/ch 0
at

(30)
1 j/L+(e0-Eo)2-K2 L/

-\/r1/C pK2 '/C)

the propagation velocity is inversely proportional to
r1/2. Furthermore, it may be concluded that the velocity
increases with increasing L and/or decreasing C, pro-
vided 0(u) is monotonically increasing.

Fig. 15(b) shows the relation between A and pulse
height in case of e-=0.1. The shape of the stable asymp-
totic waveform approaches to a rectangular pulse as ,
increases, although its height hardly depends on ,u.

It may be expected that the stable asymptotic wave-
form coincides with the unstable one at I,= 2.

VIII. EXPERIMENTS

We fabricated a lumped constant cascaded circuit
with nine stages as shown in Fig. 16 and the expected
results were obtained. In particular, it was observed
that the shaping action in respect to the signal height
was completed at the first stage, while the shaping
action in respect to the signal width was very weak in
comparison with the former (Fig. 17).

In order to make the shaping action in respect to
pulse height more moderate, it is effective to add some
inductance to each interstage coupling resistance in
series. The circuit (Fig. 18, page 2068), in the case of
C= 0.05 ,uf, shapes traveling signals witlh respect to the
height (Fig. 19). On the other hand, Fig. 20 illustrates
the shaping action with respect to the width of the cir-
cuit shown in Fig. 18, in the case of C-. 20 pf (junction
capacitance of TD).

Since this line has a symmetrical structure, the signal
transmission is bidirectional, that is, a signal applied to
the right (left) end is transmitted to the left (right) and
a signal applied to the middle of the line is transmitted
in both directions. An interesting phenomenon is that
two signals traveling in opposite direction from both
ends vanish at the collision point.

October2066
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-, %I

,- ---------o S,s, 1

Fig. 12-If (25) has a solution, except for t(r)=O, such as t(r) 0
when r-*+ oo for some ,3, then the solution corresponds to the
sought-for asymptotic waveform, and the transmission velocity of
the asymptotic wav-eform is determined from the 1.

(D P=3
I '=0.1
T3O= 0.0157

qt \ (,i=044457
C-i),i=o.4u B7

"\\ P=0.4"83

Fig. 13-For 3.3 0.44488, it is expected that a
stable asymptotic waveform exists.

10

a

6

4

2

+E.
L

R

bput 7D + + ()

(a)

(b)

ci).-.1.
3ji=0944

.-3 3ji= 0.93?
_=0.1 ®,i= 0./3 3

'0

1 2 3 6

11)

(c)

Fig. 16-The circuit used in our experiments. L=4 mh,
R=70 S2, r=500 El, En=100 mv, C=0.01 pzf.

Fig. 14-For , *. 0.938, it is expected that an unstable asymptotic
waveform exists, which travels down the line along the threshold
and is physically unrealizable.

0

4

3 t£ o.0.

2

UA' STABL,

0

2 4 6 t'o

(a)

pulse height

-SA BLE

1 2

_

4-

0 2 4 6 8 10

(b)

Fig. 15-The relation between ju and the signal propagation velocity
and the relation between p and pulse height in case of e=0.1. It

seems that the stable asymptotic waveform coincides with the

unstable one at IA=2. (a) The velocity of the stable asymptotic
waveform seems to be a monotonically increasing function of pu.

(b) The pulse height of the stable asymiptotic waveform hardly
depends on IA.

(a)

(b)
Fig. 17-The circuit in Fig. 16 shapes a signal waveform during

transmission. In each figure, the first waveform is that of the
input signal; the second, third, fourth and the fifth waveforms
are those observed at the first, fourth, seventh and the ninth
stages in the circuit in Fig. 16(a), respectively. In both cases, the
signals achieve the same waveform. (a) A narrow signal (6 usec)
is widened in the course of transmission. (b) A wide signal
(32 psec) is narrowed in the course of transmission.
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Fig. 18-By adding some inductance to each coupling resistance
in series, the shaping action can be made more moderate.

(a)

(b)
Fig. 19-Waveform shaping action with respect to the signal height

of the circuit in Fig. 18 displayed on a CRO screen. L=l=4 mh,
R=115 12, r=200 n, Eo=150 mv, C=0.05 uf. In each figure,
the waveform in the first, second, third, fourth and fifth lines
are those observed at the first, third, fifth, seventh and ninth
stages in the circuit shown in Fig. 18, respectively. Pulse heights
in the bottom lines in (a) and (b) are equal and 150 mv. [Note
that vertical scales are different in (a) and (b)]. (a) A small
signal with 30-mv height is amplified in course of transmission.
(b) A large signal with 380-mv height is attenuated in course of
transmission.

(a)

IX. RELATED PROBLEMS
A. The Neuristor

Crane proposed a novel device termed neuristor.'3 A
neuristor may be visualized as a one-dimensional
channel along which signals may flow. The mode of sig-
nal propagation is somewhat analogous to that which
occurs along a nerve axon. The neuristor may be used
to synthesize all digital logic functions, so that any
digital logic system can be realized using arrays of
neuristors only. Neuristors are interconnected in two
basically different modes-T junctions and S junctions.
Our active pulse transmission line can lead to an

electronic realization of the neuristor. The T junction is
readily realized by connecting three active pulse trans-
mission lines at a point. The S junction is realized by
the circuit in Fig. 21. Corresponding to (22), the dif-
ferential equations which represent signal propagation
along the S junction are as follows:

d d = ±+ .(I - z, + eZl2)
ataX2 at2 at

1 k

1 -k2 1+ -k2,
d3z2 da2z2 az2
atax2 = - + IA(1 -Z2 + e22)-

1 k
+ - Z2 + - Zl,I1- k2 1 -k2

(31)

where k=M/L, O<k<1.
The storage ring of the neuristor was realized by

making a loop with forty stages of the monostable cir-
cuit and five stages of the S junction (Fig. 22).

Cote has published an active pulse transmission line
using p-n-p-n diodes toward an electronic realization of
the neuristor.'4 The use of current-controlled negative
resistance elements, however, seems to make the circuit
more complicated.

B. Active Surface
Our active pulse transmission line may easily be ex-

tended to an active surface with the structure shown in
Fig. 23. The differential equation of this active surface,
corresponding to (22), becomes

(b)
Fig. 20-Waveform shaping action with respect to the signal width

of the circuit in Fig. 18 displayed on a CRO screen. In this case,
C. 20 pf, other constants are the same as those in Fig. 19.
The correspondence of lines and stages is the same as that in
Fig. 19. Pulse width in the bottom lines of (a) and (b) is equal-
10 !ssec. (a) A narrow signal with 5-Msec width is widened in the
course of transmission. (b) A wide signal with 30-psec width is
narrowed in the course of transmission.

d3z d3z a2z dz
+ =-+ U(+-Z + ez2)-+ Z,atax2 atay2 at2 at

3
J> ->e> 0./1, ~16

(32)

13 H. D. Crane, "The neuristor," IRE TRANS. ON ELECTRONIC
COMPUTERS, vol. EC-9, pp. 370-371, September, 1960; also, "Neu-
ristor Studies," Solid-State Electronics Lab., Stanford University,
Stanford, Calif., Tech. Rept. No. 1506-2, July, 1960; also H. D.
Crane, 'Neuristor-a novel device and system concept," this issue,
p. 2048.

14 A. J. Cote, Jr., "A neuristor prototype," PROC. IRE (Corre-
spondence), vol. 49, pp. 1430-1431; September, 1961.

October2068

Authorized licensed use limited to: Saarl Universitaets. Downloaded on June 27,2024 at 07:36:42 UTC from IEEE Xplore.  Restrictions apply. 



Nagumo, et al.: Transmission Line Simulating Nerve Axon

(a)

(b)

(c)

Fig. 21-An S junction of the neuristor can be realized by coupling
two monostable circuits by a mutual inductance. L=358 mh,
M=355 mh, R=70 t2, Z=r+pl, 1=4 mh, r=70 fl, Eo=70 mv,
C=0.01 ttf.

Fig. 22-Signals eniter fromi the "enitrv" and continue to circulate

aloiig the "storage riing." The contents of the storage ring can

be obtained from the "read outit line.

Fig. 23-The structure of the active surface
represented by (32).

X. CONCLUSIONS
To electronically simulate the distributed BVP

model, which may be considered as a simplified Hodgkin-
Huxley model describing the propagation of the excita-
tion of the nerve axon, we have made an approximately
distributed active pulse transmission line using tunnel
diodes. The line behaves similarly to the living axon,
but the representation is gross.
The line is constructed by cascading many mono-

stable circuits and consists essentially of the following
four parts:

1) transverse power voltage supply,
2) transverse inductance,
3) transverse tunnel diode,
4) longitudinal coupling resistance.

The active line shows the following characteristics in
the transmission of signals:

1) There is a certain threshold value in respect to the
signal height, and signals below the threshold
(or noise) are eliminated during transmission.

2) The line shapes signal waveforms. Namely, there
being a specific pulse-like waveform peculiar to
this line, signals above the threshold approach it
during transmission.

3) Since this line has a symmetrical structure, the
signal transmission is bidirectional. Two signals
traveling in opposite directions from both ends
vanish at the collision point.

On account of the existence of the threshold and the
shaping action, this line makes possible highly reliable
pulse transmission, and will be useful for various kinds
of information-processing systems.
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PROCEEDINGS OF THE IRE

APPENDIX

We shall briefly sketch the electrical behavior of the
surface membrane of a nerve axon following Hodgkin
and Huxley.2
The electrical behavior of the membrane in the case

of a "space clamp" may be represented by the network
shown in Fig. 24. Current can be carried through the
membrane either by charging the membrane capacity
(CO) or by movement of ions through the resistances in
parallel with the capacity.
The capacity current Ic is given by

dE
c= Co

dt
(33)

Outside

I|I

t T. III, III'

E.T EK +T EL,
. 1

Et

Inside

Fig. 24-Equivalent circuit representing the
electric behavior of the membrane.

The ionic current is divided into components carried
by sodium and potassium ions (INa and IK) and a small
"leakage current" (IL) made up by chloride and other
ions. Each component of the ionic current is determined
by a driving force which may conveniently be measured
as an electrical potential difference and a permeability
coefficient which has the dimensions of a conductance.
Thus the sodium current INa is equal to the sodium con-
ductance (gNa) multiplied by the difference between the
membrane potential E and the equilibrium potential for
the sodium ion ENa:

(34)INa = gNa(E - ENa).

Similarly we have

IK = gK(E - EK),
IL = gL(E - EL).

Eqs. (34)-(36) may be rewritten

(35)

(36)

and ER is the absolute value of the resting potential.
V, Na, VK, and VL can then be measured directly as
displacements from the resting potential.
We then assuiie that the sodium condluctance gNa iS

represented by

(40)gNa = gNam3hI
dm

dt

dhd = ah(1- ) - ,h,
dt

(41)

(42)

where gNa is a constant with the dimensions of conduct-
ance/cm2; a's and O's are rate constants which vary
with voltage (V) but not with time (t) and have
dimensions of [time]-'; m and h are dimensionless vari-
ables which can vary between 0 and 1.

These equations may be given a physical basis if
sodium conductance is assumed to be proportional to
the number of sites on the inside of the membrane
which are occupied simultaneously by three activating
molecules but are not blocked by an inactivating mole-
cule. m then represents the proportion of activating
molecules on the inside and 1 -m the proportion on the
outside; h is the proportion of inactivating imolecules
on the outside and 1-h the proportion on the inside.
am or Oh and (m or ah represent the transfer rate con-
stants in the two directions.
The forms of a's and ,B's as functions of V are deter-

mined experimentally as shown in (1).
Similar equations for gK are

- 4 (43)

dn
-= an(l -n) - Onn.
dt

(44)

Summing up these equations, we have

I = IC + INa + IK + IL

dV
- Co d- + gNammh(V - VNa) + gKn4(V - VK)di

(45)+ gL(V - VL),
as shown in (1).

INa = gNa(V - VNa) , (3

IK = gK(V - VK), (3'
IL = gL(V - VL), (31

where

V = E - ER, VN, = ENa - ER, VK = EK - ER,

VL EL ER,
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