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How collectives remain coordinated as they grow in size is a fundamental challenge
affecting systems ranging from biofilms to governments. This challenge is particularly
apparent in multicellular organisms, where coordination among a vast number of cells
is vital for coherent animal behavior. However, the earliest multicellular organisms were
decentralized, with indeterminate sizes and morphologies, as exemplified byTrichoplax
adhaerens, arguably the earliest-diverged and simplest motile animal. We investigated
coordination among cells in T. adhaerens by observing the degree of collective order in
locomotion across animals of differing sizes and found that larger individuals exhibit
increasingly disordered locomotion. We reproduced this effect of size on order through
a simulation model of active elastic cellular sheets and demonstrate that this relationship
is best recapitulated across all body sizes when the simulation parameters are tuned to a
critical point in the parameter space. We quantify the trade-off between increasing size
and coordination in a multicellular animal with a decentralized anatomy that shows
evidence of criticality and hypothesize as to the implications of this on the evolution
hierarchical structures such as nervous systems in larger organisms.

multicellularity | collective | behavior | biophysics | simulation

Coordination in collective systems is an area of active research in disciplines as diverse
as biophysics, ecology, and engineering (1–4). Multicellular organisms, in particular,
require coordination among their constituent cells in order to execute coherent behaviors.
However, the earliest multicellular organisms were decentralized (5) and frequently
were of indeterminate size and morphology (6). Understanding whether and how
such decentralized body plans produce coordinated behaviors is thus essential for
understanding the evolution of multicellularity, especially as the earliest diverged animals
lacked nervous systems (7–9).

Trichoplax adhaerens, arguably the simplest multicellular animal (10, 11) found in the
very early diverged Placozoa phylum, faces such a coordination challenge. T. adhaerens
is a disk-shaped or amoeboid marine organism that can range in size from a hundred
micrometers to several millimeters, though it is only 20 micrometers thick (Fig. 1). It
is composed of three horizontally stacked layers of tissue consisting of six cell types,
including an upper and lower layer of ciliated cells and a middle layer of “fiber” cells
that could function as a connective or possibly even a protomuscular structure (12). The
animal has no axis of symmetry, no neurons, and crawls on surfaces through the collective
action of thousands of cilia on the ventral layer that can beat in any direction (13). How
T. adhaerens is able to coordinate the beating direction of tens of thousands of ciliated
cells in the absence of bilateral symmetry, cephalization, or any other anatomical traits
that would be advantageous for coordinated locomotion is an interesting biological phe-
nomenon (14). It is notable that the motile Placozoa are considerably smaller than other
animals with decentralized anatomy, such as the Porifera, and that those larger animals
tend to be sessile except in their smaller larval stages (15). This correlation between larger
size and being sessile has prompted the hypothesis that decentralization is detrimental for
coordination in larger organisms (6), but this hypothesis has never been rigorously tested.

Here, we investigate how coordination of locomotion changes in Trichoplax adhaerens
at different sizes. We measure the collective order of cellular movement and quantify
correlations in local fluctuations of this movement, analyzing animals varying in size by
nearly an order of magnitude. Through this, we were able to determine the limits in size
at which such decentralized control can produce and maintain collective order.

1. Results

The ciliated cells of T. adhaerens, each of which is able to beat in variable directions (13),
allows the animal to traverse its environment at around 5 μm per second. We developed
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Fig. 1. Partial cross-section of T. adhaerens. The animal consists of three layers of cells: a dorsal and ventral epithelium layer, with an inner layer of fiber cells.
The dorsal and ventral cells are ciliated, with the ventral cilia providing propulsive force for crawling along surfaces, the animal’s primary form of locomotion.
Not shown are other specialized cells, such as digestive and crystal cells, that are not directly responsible for movement (for full anatomical details see ref. 13).

a high-resolution automated tracking microscopy system that
allows us to observe the ventral surface ofT. adhaerens individuals
during locomotion, being able to record both the displacement of
the individual animal and the relative movement of constitutive
tissues within the animal (Fig. 2A). We observed the intercellular
dynamics involved in locomotion for 58 animals varying in
linear size by nearly an order of magnitude, from c. 200 µm
to 2000 µm in diameter, quantifying the internal deformations
using optical flow (Fig. 2B). For T. adhaerens, the thin body
plan of the animal produces a granular texture on the ventral
epithelium when illuminated from above, marking the cells
of the tissue. The ventral ciliated cells of T. adhaerens have a
diameter of c. 2 micrometers while our recordings are roughly
at c. 1.2 micrometers per pixel. While this is sufficient to visualize
individual cells, it does not allow for the direct observation of cilia.
We therefore used optical flow to track the tissue movement by
subdividing this texture into regions and tracking the texture
movement within each region. We chose the size of these regions
to approximate the size of an individual fiber cell diameter or a
10 × 10 cluster of ciliated cells.

Individual animals exhibited a variety of behavioral states
throughout the period of recording, ranging from highly ordered
(polarized) locomotion, to highly ordered rotating motion, to
disordered movement. We quantify the degree of collective order
in the resultant vector fields through order parameters that
represent polarization (Eq. 1), rotation/vorticity (Eq. 2), and
expansion/contraction (Eq. 3) (equations from ref. 16 and 17).
In these equations, N is the number of regions/cells that we are
tracking, r̂ic is the unit vector from the animal’s center of mass
to the region, and v̂i is the unit vector of the region’s velocity.
We thereby produced the instantaneous collective order measures
that represented the movement of the animal’s cells for each half-
second of locomotion.

P(t) =
1
N

∣∣∣∣∣
N∑
i=1

v̂i

∣∣∣∣∣ . [1]

R(t) =
1
N

∣∣∣∣∣
N∑
i=1

r̂ic × v̂i

∣∣∣∣∣ . [2]

1(t) =
1
N

N∑
i=1

∥∥r̂ic · v̂i∥∥ . [3]

T. adhaerens dynamically moves through different states of col-
lective movement throughout its locomotion, shifting from po-
larized, to rotating, to disordered movement. We therefore repre-

sented the overall collective order exhibited by an animal through
a unified order measure O(t) =

√
P(t)2 + R(t)2 +1(t)2,

which we refer to as the collective order. This value is bound
from 0, which represents completely disordered motion, to 1,
which represents a pure affine transformation. By considering
the mean collective order exhibited by an animal over time, we
find that larger animals are significantly less ordered than smaller
ones (Fig. 2F ; linear fit: t = −5.73, p < 5 × 10−7; adj.R2 =
0.30). This suggests that larger animals have greater difficulty
establishing a consensus of locomotion across their body plans,
resulting in the animal’s characteristic shape changes (18).

This observed decrease in collective order with animal size
poses an important question: Is this trade-off between size and
collective order inevitable in such decentralized animals, or can
it be avoided under the right conditions? For instance, larger
T. adhaerens individuals may become disordered because the
coupling interactions between cells (mechanical or otherwise)
may be insufficiently strong to propagate movement information
beyond a certain spatial range, causing cells on one side of
the animal to be unaware of changes in movement on the
other. Strengthening these interactions could make it easier to
maintain collective order, but would such a change make the
animal unresponsive to perturbations and new information from
the environment?

In order to explore these possibilities, we developed a simple yet
generic model of T. adhaerens as a distributed, collective system,
where we can systematically tune model parameters to identify
the regime that best recapitulates our experimental observations.
Our simulated representation consists of a mesh of self-propelled
particles (SPPs) with elastic interactions (Methods and Fig. 3A).
Similar elastic interaction models have been used previously
to simulate T. adhaerens locomotion (13), though these prior
models relied on an alignment interaction rule to generate
coordinated locomotion. However, it is unclear whether and
how individual cells can sense orientations of neighboring cells,
which is implicitly assumed by an explicit alignment interaction.
We also note that the cilia-driven propulsion of Placozoa
takes place on a substrate, which is from a physics point very
different from collective ciliary swimming like in Volvox carteri
(8) since the substrate greatly reduces the importance of long-
range hydrodynamical couplings (19). We therefore developed a
model—inspired by another model for collective cell migration
(20)—that is able to generate order even in the absence of such a
rule. In our model, each particle uses only information provided
by elastic forces— whose strength is governed by a spring constant
k—and coordination emerges from coupling of the self-propelled
direction of the particles to the elastic force they experience (see
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Fig. 2. Measuring collective order in the tissue dynamics of T. adhaerens. (A)
A T. adhaerens individual with the previous 14 min of its trajectory shown as
an overlay. (B) Representative snapshots of the optical flow field measured
for T. adhaerens individuals in different collective states of locomotion. This
includes large (A) and small (B) animals in polarized locomotion, a small
rotating animal (C), and a large disordered animal (D). (C) Mean collective
order is inversely correlated with individual size, each point indicating the
mean diameter and mean collective order for each individual. Blue line:
Linear regression of collective order on animal diameter, with the shaded
area representing the 95% CI (adj. R2 = 0.40, P < 5.81 × 10−8). Error bars
(too small to be visible) represent SE based on 500 evaluated frames for each
animal.

also ref. 21 and 22 for related models). Our model is similar
to another recently produced model of Placozoa tissue dynamics
(23), though while this other model more explicitly accounts
for cilia oscillations, their analysis is performed in the limit
of weak coupling between the propulsion orientation and cilia
oscillations. It therefore provides a detailed discussion for the
emergence of long-ranged correlations in the ordered state (see
also ref. 22) but did not fully explore the parameter space that
results in the transition from ordered or disordered movement.

It was previously demonstrated in other SPP models that such
collective systems can undergo a phase transition from disordered
to ordered locomotion by tuning a variety of parameters
governing interparticle interactions (16, 24). In our model, we
show that by varying only the spring constant k, and keeping all
other parameters constant, it is possible to control the degree of
order in the simulated animals, and thereby cause the animal to
transition from a disordered to ordered locomotion (Fig. 3C ),
with the continuous phase transition occurring near the critical
point kc ≈ 3.7 (red highlight). We confirm this is the critical
point by measuring the susceptibility χo of the system as in
ref. 25 (Fig. 3D), a parameter which is known to diverge
(maximize) at criticality (26–28). Our results also recapitulate a
well-known phenomenon of finite-size systems, namely that the
control parameter value that maximizes susceptibility changes
with animal size.

The phase transition in our system reveals several relationships
between the interaction strength k, system size N , and collective
order O. First, collective order decreases with system size only
in the critical and the disordered regimes. Second, collective
order decreases more quickly in response to weakening k for
larger system sizes. Thirdly, the narrow range of collective order
we observe in the actual T. adhaerens (Fig. 2C ) is reproduced
only in simulations in the critical regime (red highlight). These
combined observations suggest that T. adhaerens exists in this
special parameter region, which could place Placozoa in a family
of other biological collective systems that have been used as
evidence for the criticality hypothesis (29).

Determining exactly which simulated regime best represents
T. adhaerens requires investigating several other known statistical
properties and phenomena. First, we investigated the rate at
which collective order decreases as we change our control
parameter k, as it is known that this phase transition will be
steeper in larger collective systems (24, 30). Our simulations
reveal this pattern as well in the critical regime (Fig. 3C ),
but while it is trivial to adjust the control parameter k in
our simulations, we cannot perform a similar manipulation in
T. adhaerens. However, we can assume that corresponding control
parameters in T. adhaerens must undergo some natural dynamic
variation due to various noise sources intrinsic to living systems.
We therefore define a proxy noise value η∗ = 〈‖u2

‖〉

〈‖v2‖〉
, where v

represents the full velocity vector of a given particle or cell, and
u represents the velocity fluctuation vector, which is the velocity
that remains once the collective movement components have
been subtracted (Materials andMethods). Where noise is maximal
(η∗ = 1), the velocity fluctuation represents the entirety of the
cell velocity, and there is no collective movement component.
This quantity can be measured both in T. adhaerens and our
simulations and is found to be strongly inversely correlated
with the control parameter k (SI Appendix). By measuring the
instantaneous η∗ and O at multiple time points for animals
(Fig. 4 A, inset) and simulations (Fig. 4 D, inset) of varying sizes,
we are able to characterize the steepness of the phase transition,
defined as O′(η∗), and show that it is steeper (more negative)
with increasing organism size in both T. adhaerens (Fig. 4A) and
simulations (Fig. 4D).

Another important measure of coordination in collective
movement is the spatial correlation of the velocity fluctua-
tions between individual cells/particles, a method proposed by
Cavagna et al. (31) that indicates the range at which cells influence
each other’s movement. In this measure (Eq. 4), i and j are two
particles or cells separated by a distance rij, and their respective
velocity fluctuations are ui and uj. We normalize the correlations
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Fig. 3. Simulated cellular sheets in a critical regime replicate the relationship between size and order observed in T. adhaerens. (A) Schematic of the elastic SPP
simulation, consisting of particles that influence the direction of movement of their Voronoi neighbors using spring-like interactions. Here, v̂i represents the
instantaneous velocity of particle i, �i represents the direction of motion of particle i, and Fij represents the elastic force that particle j exerts on i, which will
influence both v̂i and �i . (B) A representative snapshot of a simulation consisting of c. 16,000 particles. Color represents the heading �i of individual particles.
(C) Mean collective order observed in simulations of varying size as a function of the coupling strength k. The region highlighted in red represents the location
of the second-order phase transition. (D) Susceptibility �0 of systems of different sizes in relation to the interparticle coupling strength k. The divergent �0 in
the red region indicates a critical regime.

at all pair-wise distances by a constant co such that C(0) = 1,
with the range bound between 1 (perfect correlation) and −1
(perfect anticorrelation). We use the summations and Kronecker
delta function δ(r−rij) to determine the mean correlation for any
given distance r and thereby characterize the correlation function
C(r) across the entire animal body (Fig. 4B).

C(r) =
1
co

∑
ij uiujδ(r − rij)∑

ij δ(r − rij)
. [4]

We characterized the observed correlations by the velocity
correlation length λv, with C(λv) = 0. The general expectation
for interacting particle systems with local coupling is that λv
has a finite, constant value that is independent of system size
and determined by the relative strength of the coupling between
particles. However, we find that λv scales linearly with animal size
(Fig. 4B; β = 0.26, p < 10−16, adj.R2 = 0.96) across the entire
size distribution of T. adhaerens, a phenomenon that has been
noted in other biological collectives and that has been argued
to be an indicator of criticality (17, 31–33). By measuring this
quantity in simulated systems, we find that linear scaling occurs

both in critical and ordered regimes, while simulations in the
disordered regime exhibit sublinear scaling (Fig. 4E). This result
is consistent with the behavior of simulated elastic sheets of SPPs
described in other studies (22).

In addition to the correlation length, we can further describe
the correlation profile by its integral χ measured from r = 0
to λv (17, 34). We find that this quantity increases sublinearly
with animal diameter in T. adhaerens (Fig. 4C ), which is visually
apparent if one rescales each animal’s correlation profile C(r) by
λv to produce C(r/λ) (Fig. 4 C , inset). This is in contrast to
other biological collectives like bacterial swarms or bird flocks
where both λv and χ increased linearly with size, such that
the correlation profiles could be collapsed onto a scale-invariant
function (31, 33, 35). By contrast, in T. adhaerens, we measure
a roughly five-fold increase in χ over a corresponding seven-fold
increase in linear size, a ratio that we observe for our simulations
in the critical regime (k ≈ 3.5; Fig. 4F , black highlight).

Through our investigation, we were able to characterize the
effect of size on coordination in T. adhaerens and identify
the parameter regime in simulations that best replicated the
empirical observations. We find that animals become increasingly
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Fig. 4. Statistical properties of T. adhaerens tissue dynamics are reproduced by simulations tuned to criticality. (A) The slope of the relationship between
collective order and fluctuation energy with the black line representing the best fit logarithmic model approximating the data. Inset: The relation between the
proxy intrinsic noise �∗ and the instantaneous collective order. Lines represent linear regressions for individual animals, with brighter blue lines indicating larger
sizes. (The color scale is the same as in panel B). The slopes of these regressions provide the values for O′(�∗) in the main panel. (B) Velocity correlation (CV (x))
profiles for animals of different sizes, with the pair-wise distance representing intercellular distances within an animal. The color scale represents animal size
(equivalent diameter). Inset: The mean correlation length (CV (x) = 0 = �v ) plotted against animal diameter for animals of varying sizes, showing a strong linear
relationship. (C) The relationship between correlation integral (�) and animal size. Individual animal means are shown as data points. The best-approximating
sublinear regression line is shown (� = �D� + ; � = 5.46; � = 0.524;  = −60.9). Inset: Correlation profiles of animals with pair-wise intercellular distances
normalized by the animal’s respective correlation length �v . Color scales are the same as in (B). (D) The slope of the relationship between collective order and
fluctuation energy in simulated systems near criticality (3.0 ≤ k ≤ 4.0), with the best logarithmic model fit shown in black. Inset: The relation between fluctuation
energy fraction and instantaneous collective order. Lines represent linear fits for individual simulations, with brighter blue lines representing larger systems.
The slopes of these regressions provide the values for O′(�∗) in the main panel. The simulated system in the critical regime shows the same relationships as
observed in actual animals (A). (E) The velocity correlation length, �v , for simulated systems of varying size, with color representing the spring coupling constant
k. The line corresponding to the critical regime (k = 3.5) is highlighted in black, showing that the linear relationship between system size and correlation length
is present in this regime, showing the same relationship as exhibited by actual animals (B inset) (F ) The integral of the correlation profiles, also known as the
susceptibility �v , for simulated systems of varying size, with color representing the spring coupling constant k. As in (E), the black dashed line represents a
system in the critical regime, showing the same relationship as exhibited by actual animals (C).

disordered in their locomotion as they increase in size, a
phenomenon that occurs in our simulations in both the critical
and low-order regimes. When we investigated the statistical
properties of the velocity fluctuations, we found thatT. adhaerens
exhibits a linear scaling of the correlation length and sublinear
scaling of the correlation integral with animal diameter. When
compared with our simulations, both of these scaling phenomena
are best recapitulated by simulations tuned to either the critical
or ordered regimes. The combination of our observations in
T. adhaerens therefore occur only when the model is tuned
to a critical regime, suggesting that a similar tuning may be
responsible for the phenomena in the organism.

2. Discussion

The capacity of a collective system to coordinate as it increases
in size is essential for all decentralized systems, including the
first multicellular animals such as T. adhaerens. By finding that
order decreases as T. adhaerens increases in size, we identified
a trade-off in early decentralized organisms between growth
and coordination. We used simulation modeling to replicate
this phenomenon and showed through a variety of statistical

observations that only simulations tuned to a critical point can
replicate the entirety of our observations in T. adhaerens. This
work provides support for the so-called “criticality hypothesis”
that biological systems are tuned to phase transitions that
optimize collective information processing (29, 36), and it was
shown that being at this regime of instability enables collective
agility and responsiveness (37). Our simulation also indicates that
this trade-off between size and collective order—by occurring
even at the critical regime—suggests that this coordination
challenge is inescapable as such decentralized organisms grow
in size. This raises questions and interesting hypotheses for why
more complex coordination structures and body plans evolved in
later-diverged multicellular animals.

It is interesting to understand the limitations to coordination
in T. adhaerens by contrasting them with other biological
collectives, such as starling flocks (31) or fish schools (32).
These animal groups often grow to tremendous scales and yet
can still achieve highly ordered and coordinated behaviors. By
comparing cells in T. adhaerens to animals in groups, we can
identify multiple restrictions on the former that place them
at a distinct disadvantage in coordinating at scale. One such
restriction is that in T. adhaerens, the interactions among the
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constitutive cells are only local, typically in a Voronoi network of
nearest neighbors. Comparatively, animal groups can coordinate
over long ranges with other sensory modalities such as over a
visual network (38, 39). Animals in groups can also quickly
switch neighbors at relatively fast timescales compared to cells in
T. adhaerens, that are physically much more constrained. These
additional constraints may explain why such animal groups have
scale-invariant correlation profiles that collapse on a single generic
function irrespective of size, while in T. adhaerens, correlations
decay much faster over distance as a proportion of the animal size.
These limitations of simple multicellular life may compound each
other and explain why large animals lacking a nervous system are
typically sessile.

Our study has several limitations that provide promising
expansions for future work. One limitation is our simplified
representation of T. adhaerens as a cellular sheet, abstracting
its true but functionally unknown anatomy. In particular, it is
unclear whether the internal fiber cells in T. adhaerens, whose
function and network structure is unknown, is involved in
coordination. It was previously considered that these cells are
neural or muscular precursors (40), though this was dismissed by
more recent anatomical studies (41). however, there is still too
little known about their network structure or process lengths to
discount them having some role in coordination. In the absence
of contradictory evidence, we have assumed that the number
of such cells increases in proportion to the animal’s size and
that their network topology is largely lattice-like. T. adhaerens
also possesses specialized cells that bind to neurotransmitter-
like molecules (41, 42) and were reported to arrest the beating
of nearby cilia during feeding (43). More recent assays have
shown that glycine can act as a chemoattractant for T. adhaerens
(44), which provides a promising avenue for the impact of size
on coordination in tracking gradients and contrasting this with
similar studies on animal groups (45).

One important implication of the detrimental impact of size
on collective order and coordination is that the maximal size of
T. adhaerens could be limited by an inability to coordinate. It
has recently been demonstrated that breakdown in coordinated
locomotion in T. adhaerens causes microfractures in the animal’s
epithelium and that this plays an important role in asexual
fission (23). If poor coordination at larger sizes increases the
frequency of these microfractures and thereby generates one
of the most characteristic behaviors of T. adhaerens, it would
both reveal this as an emergent phenomenon (as opposed to one
that is developmentally or genetically regulated) and provide an
interesting parallel to size mediation in animal groups (17, 46).

Our approach extends the knowledge of collective systems
to provide insight into the effect of size on coordination in the
earliest multicellular animals. We view this as part of a larger effort
to reveal not only how system-wide coordination can be achieved
spontaneously (47, 48) but also to identify the limitations of such
decentralized decision-making. The detrimental effect of size on
coordination in such decentralized animals reveals a limitation
that such organization poses for coordination and puts forward a
hypothesis for the evolution of hierarchical structures as animals
were faced with the evolutionary pressure to grow to bigger (49).

Tracking and Measuring Velocity Fields. We developed an in-
house MATLAB software to segment the animals in each frame,
ignoring frames where part of the animal was outside of the
camera’s field of view or where the stage was moving. We defined
the animal size as the area enclosed within the animal’s two-
dimensional footprint, with the animal diameter defined as the

diameter of a circle of equivalent area. To minimize measurement
error in size caused by out-of-plane buckling of the animal, we
considered only frames where the observed area was at least 80%
of its maximum observed area. We found no trend of cell size
with animal size (SI Appendix), in accordance with histological
studies (41). We computed the optical flow between frames using
software described in ref. 32, keeping vectors within the animal’s
footprint, while removing velocity vectors within a distance of
10% of the animal diameter from the boundary to eliminate
edge effects on the optical flow algorithm. This leaves a velocity
field of instantaneous velocity vectors vi(t) for each 100 square
micrometer region i at all times t.

Calculating Velocity Fluctuations.. For each cell i, we use the
current position yi(t) and current velocity vi(t) to determine the
future position yi(t + dt) of the cell after a time interval dt, as
defined by the Eq. 5.

yi(t + dt) = yi(t) + vi(t)dt. [5]

We then define the velocity fluctuation ui(t) as the residual
term left after subtracting the optimal affine transformation—
defined as the translation T, rotation R, and dilatation 1—
that best transforms all positions y(t) to y(t + dt), as in Eq. 6.
The optimal values of T, R, and 1 are defined as those that
minimize the sum of all of the magnitudes of the fluctuations,
ε =

∑N
k=1

∥∥uk(t)∥∥. In the case of solid-body translation, ro-
tation, or expansion, the movement would be perfectly captured
by an affine transformation with the result that ε = 0. For actual
data, the collective movement never matches this ideal, with the
remainder terms being the velocity fluctuations.

ui(t) = yi(t + dt)− T−1Ryi(t). [6]

Correlation Profiles. In addition to the velocity correlation
function defined in Eq. 4, we also determine the directional
correlation CD(r) and the speed correlation CS(r) defined as

CD(r) =

∑
ij wiwjδ(r − rij)∑

ij δ(r − rij)
. [7]

CS(r) =
1
co

∑
ij ηiηjδ(r − rij)∑

ij δ(r − rij)
. [8]

Here, δ and co have the same meaning as in Eq. 4. wi = ui
‖ui‖

is the unit vector of the velocity fluctuation of cell cluster i, and
ηi is its speed fluctuation with respect to the global mean speed,
ηi = ‖ui‖ − 1

N
∑N

k=1 ‖uk‖.
We measure the slope of the correlation profile at the zero-

crossing using the five-point stencil method, fitting a second-
order polynomial to the points closest to the crossing and then
evaluate the slope as the first derivative of the fitted function
at the crossing. We measured the susceptibility (integral) of the
correlation profile by applying a cubic spline fit of the average
correlation profile, interpolating 100 evenly spaced data points
across the domain and then integrating using Simpson’s rule.
These quantities in the directional and speed correlations are
largely consistent with the full velocity correlations (SI Appendix).

Self-Propelled Particle Model. The movement T. adhaerens as a
collective system will be the result of intercellular and intracellular
mechanical forces and possibly chemical signaling between
neighboring cells. In spite of recent advances in uncovering
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the detailed structure of T. adherens (41), the dynamics of cell
coordination remain unknown. In order to systematically study
these dynamics, we use an idealized mathematical model, based
on three main assumptions:

• Interactions between parts of the animal are local, re-
stricted only to the first shell of neighboring units (Voronoi
neighborhood),

• the mechanical interactions can be mapped to an effective
“mechanical” spring-like forces, and

• each unit is self-propelled with a preferred direction of motion,
which on a finite time scale relaxes toward the average direction
of the resulting mechanical force. Furthermore, the heading
direction of self-propulsion is subject to fluctuations.

Our model consists of a two-dimensional sheet of N coupled
self-propelled particles (SPPs), coupled by spring-like interactions
on a Voronoi network, which is an effective representation of the
simple, two-dimensional anatomy ofT. adhaerens (13). Each par-
ticle corresponds to a “disc” of 20 μm in diameter, the maximum
resolved scale that allows us to parameterize our simulations from
experimental data. The scale of 20 μm is also the approximate
separation of fiber cells within T. adhaerens. In our model, the
elastic forces represent the network of these fiber cells, believed
to provide an elastic scaffolding that spans the entire animal (41)
and the elastic cell–cell contact forces caused by intercell adherens
junctions and steric volume exclusion. In our model, we account
for these mechanisms by an effective elastic force, combining
short-ranged repulsion and long-ranged attraction between par-
ticles, with an equilibrium distance r0 between the cell centroids.
In addition, we assume also directional noise η, which represents
fluctuations in the cell’s intrinsic ciliary beating direction. The
strength of the elastic interaction forces is controlled via the spring
strength k relative to η. These elastic forces influence the heading
direction of individual particles: Each particle adjusts its self-
propulsion direction v̂i(t) to align with the sum of mechanical
forces exerted by its Voronoi neighbors, with a relaxation
time scale τ . This results in the self-propelled components
aligning their direction of movement with the direction of least
mechanical resistance and/or maximal elastic pull.

The displacement of each particle i is thus given by an over-
damped equation of motion

dri
dt

= v0v̂i(t) + µ
∑
j∈Ni

Fij, [9]

with ri being the position vector, v0 the self-propulsion speed, v̂i
the unit vector determining the self-propulsion direction, and µ

the mobility of the focal particle. Finally, Fji = k (rji − r0)r̂ij is
a linear, spring-like attraction-repulsion force with the coupling
strength k and an equilibrium distance r0, which model the
elastic coupling to neighboring particles (SI Appendix, Materials
for details). Without loss of generality, we can set the mobility to
µ = 1, by rescaling k as one of the control parameters, and set
r0 = 1 effectively rescaling all model parameters in terms of the
equilibrium distance.

The unit vector of the self-propulsion v̂i = (cosϕi, sinϕi)T is
determined by the polar angle ϕi, which evolves according to

dϕi
dt

=
1
τ

sin(θi − ϕi) + ηi(t), [10]

with θi being the polar angle of the total attraction-repulsion
force fi =

∑
j fji: θi = arctan (fi,y/fi,x). Thus, ϕi relaxes toward

the force direction with a characteristic time τ . Finally, ηi(t) is
Gaussian white noise with vanishing correlations: 〈ηi(t)ηi(t ′)〉 =
2Dδ(t − t ′). The noise intensity σ . Each particle interacts only
with its direct Voronoi neighborhood, and we assume a fixed
interaction topology (no neighbor switching). Further model
and simulation details are given in SI Appendix.

Data, Materials, and Software Availability. Data used for the production of
this paper are available on Zenodo at https://zenodo.org/record/6507708.
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