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N E T W O R K  S C I E N C E

Subcritical escape waves in schooling fish
Winnie Poel1,2, Bryan C. Daniels3, Matthew M. G. Sosna4, Colin R. Twomey5, Simon P. Leblanc4,6, 
Iain D. Couzin7,8,9, Pawel Romanczuk1,2,10*

Theoretical physics predicts optimal information processing in living systems near transitions (or pseudo-critical 
points) in their collective dynamics. However, focusing on potential benefits of proximity to a critical point, such 
as maximal sensitivity to perturbations and fast dissemination of information, commonly disregards possible 
costs of criticality in the noisy, dynamic environmental contexts of biological systems. Here, we find that startle 
cascades in fish schools are subcritical (not maximally responsive to environmental cues) and that distance to 
criticality decreases when perceived risk increases. Considering individuals’ costs related to two detection error 
types, associated to both true and false alarms, we argue that being subcritical, and modulating distance to criti-
cality, can be understood as managing a trade-off between sensitivity and robustness according to the riskiness 
and noisiness of the environment. Our work emphasizes the need for an individual-based and context-dependent 
perspective on criticality and collective information processing and motivates future questions about the evolu-
tionary forces that brought about a particular trade-off.

INTRODUCTION
Biological systems process information about their environment to 
detect and appropriately react to changes within it. In many such 
systems, such as gene regulatory networks (1), neuronal networks 
(2, 3), or animal groups (4, 5), biological function relies on distrib-
uted processing of information through the collective dynamics of 
interacting, potentially heterogeneous, components or agents. This 
collective information processing is often considered optimal at or 
close to a critical point (3, 6), where statistical physics predicts max-
imal sensitivity of the collective dynamics to small differences in an 
external perturbation and fast transmission of information across 
arbitrarily large systems.

Critical points in the parameter space of a multiagent system mark 
points of collective instability, which exhibit a qualitative change in 
the aggregate dynamics, corresponding to a phase transition in an 
infinite system (6–9). In biological systems, which typically have many 
fewer components than those studied in statistical physics, pseudo-
critical points provide a finite-size analog that similarly exhibits max-
imal sensitivity. Throughout this work, when referring to criticality, 
we refer to this finite-size equivalent.

The changes in collective behavior associated with a critical point 
can have important functional and behavioral consequences for bi-
ological systems, such as the transition of disordered movement of 
individuals into coordinated marching in locust nymphs at a critical 
density (10). For similar reasons, criticality is studied in other bio-
logical contexts, such as neural activity, brain networks (8, 11–14), 
gene regulatory networks (15), and collective cell behavior (16).

For animal collectives, signatures of near criticality have been 
observed in bird flocks (17), mammals (7), insects (18, 19), and fish 
schools (20), while theoretical models have investigated maximal sen-
sitivity at the critical regime (21–24). Predominantly, these studies 
considered the system’s maximal sensitivity or flexibility or the ap-
pearance of long-ranged correlations within it as possible benefits 
of criticality to animals within collectives (25). However, while indi-
viduals within animal groups can benefit from social information 
provided by others (26), environmental and internal noise may also 
result in individuals making erroneous decisions, resulting in them 
providing misleading social cues (27, 28). Sharing the imperfect in-
formation of many agents can therefore not only increase each indi-
vidual’s likelihood to be informed about environmental changes 
(e.g., the presence of a predator) but also may risk an increase in false 
or irrelevant information being propagated, especially in fast behav-
ioral decisions (29). Thus, collective biological systems face a trade-
off between filtering out noise and remaining sensitive to relevant, 
potentially sparse information.

Here, we investigate whether and how being critical (or at a 
context-dependent distance from criticality) manages this trade-off 
in a specific biological system, namely, escape waves in schools of 
juvenile fish (golden shiners, Notemigonus crysoleucas) (27, 28, 30). 
These fish form coordinated schools in response to high mortality 
from predation risk in the wild and, as an escape behavior, show a 
startle response that spreads socially (31, 32).

This system lets us explore core aspects of previous studies of crit-
icality in biological systems, namely, (i) quantifying where in param
eter space the particular system operates with respect to a critical point, 
which includes finding an aggregate variable (called an order parame-
ter in physics) that identifies the transition best [e.g., average marching 
direction in case of the swarming locust (10, 33)]; (ii) functional bene-
fits of operating near criticality (23, 24, 34, 35); and (iii) revealing the 
mechanisms enabling biological systems to control and adapt their 
critical behavior to ensure proper function (7, 36–38). Recognizing 
that group-level optima suggested by criticality may not be evolution-
arily stable with respect to individual-level adaptation (24), we also 
consider the individual-level impact of a specific collective behavior.

Avalanche processes, like escape waves, are important to the collec-
tive dynamics of many biological systems, including spike avalanches 
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in neuronal networks and disease transmission in human or animal 
populations (12, 14, 39–42). In such processes, local changes in the 
state of individual units (i.e., spiking of a neuron or infection of an 
individual) can trigger similar changes in its neighbors. Avalanche 
dynamics can transition from the supercritical regime in which local 
changes propagate through the entire group to the subcritical re-
gime where change remains local. Across many living systems, we 
have evidence that the degree of behavioral spreading is regulated. 
In neural cultures, adding biochemical regulators that modify exci-
tation and inhibition can force the system to supercritical and sub-
critical states (11), while in macaques, key individuals influence how 
conflict spreads through a colony (7).

In golden shiners, the strength of behavioral spreading was found 
to be controlled by their spatial structure, predominantly defined via 
school density (28). Here, using a data-driven computational approach, 
we investigate the hypothesis that there is a critical density exhibiting 
features of optimal information processing in this collective escape 
response and study whether it can be reached via this density-based 
mechanism and what different distances to criticality imply for the 
individual fish. Our results suggest that the costs of being critical—
such as susceptibility to noise and associated energetic, and/or time, 
costs—may play an important role in animal groups and should be 
considered alongside the benefits. Overall, our work highlights how 
regulating distance to criticality can manage the trade-off between 
robustness and sensitivity according to environmental context.

RESULTS
Modeling experimental cascade size distributions
Our data come from two previous studies of startle cascades (initiated 
by randomly occurring single startles) in quasi–two-dimensional (2D) 
schools of juvenile golden shiners (N. crysoleucas) (27, 28) [details in 
Materials and Methods and refer to the supplementary materials of 
(27) for a video of a startle cascade]. This study uses data from 
(28) of fish schools (N = 40) under two experimental conditions dif-
fering in group members’ perceived risk of the environment, namely, 
before and after an alarm substance was sprayed on the water sur-
face which increases perceived risk. Following (28), we call these con-
ditions “baseline” and “alarmed” [for larger groups from (27), see 
section S3.8].

The data contain n = 206 (baseline) and n = 232 (alarmed) de-
tected startle cascades, and Figure 1 summarizes relevant experi-
mental observations from (28): The observed distribution of relative 
cascade sizes (number of individuals that startle within a certain spa-
tial and temporal interval from each other after an initial startle event 
as a fraction of group size; diamond and circles, Fig. 1A) indicates 
that, on average, schools in the alarmed condition exhibit larger cas-
cades than those in the baseline. In addition, the alarmed condition 
exhibits higher average spatial density at cascade initiation (Fig. 1B), 
characterized by a lower median nearest neighbor distance (NND) 
measured in body lengths (BL), a measure which an individual may be 
able to perceive, and potentially control, through its social behavior.

A central finding in (28) is that the observed increase in average 
cascade size cannot be explained by a change in individual respon-
siveness alone. Rather, the modulation of group structure, as captured 
here by NND, is essential to explain this increase [see also previous 
theoretical work (43, 44)]. Here, we aim to systematically study this 
structure-based control mechanism of spreading behavior. However, 
because it is not possible to freely control the density of fish schools 

in experiments without strongly interfering with the system, and thus 
potentially losing any biological or ecological relevance, direct ob-
servations are limited and unevenly distributed across school den-
sities. Instead, by using simulations from an empirically calibrated 
model of startle cascades, we can generate well-founded hypotheses 
about structure-based control in this system, and the remainder of 
this work explores this approach. Note that, while the lack of system-
wide cascades in the observed data is already suggestive of a subcrit-
ical state in both experimental conditions (see Fig. 1A), the observed 
distributions alone do not allow us to quantify distance to a poten-
tial critical point in collective startle dynamics and the role of group 
density and individual sensitivity in controlling this distance, which 
we will use the computational model for.

In (27), startle cascades in golden shiners were shown to agree 
best with the predictions of a complex fractional contagion process 
spreading on statistically inferred interaction networks. Here, we use 
a closely related model framework, as previously outlined in (28). In 
both model formulations, the nodes of the network represent indi-
vidual fish, and the static weighted directed network links represent 
influence of one individual’s startle behavior on that of another.

The social influence (link weight) is obtained from data regarding 
each individual’s first response (startle/no startle) to an initial ran-
dom startle because this has the clearest causal relationship between 

A

C

B

Fig. 1. Experimental data and computational model. Key aspects of the baseline 
and alarmed experimental datasets from (28) (differing in group members’ per-
ceived environmental risk) and model calibration via fitting of the cascade size 
distribution: (A) Observed cascade size distributions (data points). For increased 
perceived risk (alarmed, red diamonds), a larger average cascade size is observed. 
Distributions are summarizing n = 206 (baseline) and n = 232 (alarmed) observa-
tions of startle cascades. Our model (solid line) is calibrated on observed cascade 
sizes via a log-likelihood approach. Solid lines show distributions of relative cascade 
size obtained from 10,000 model runs with shaded areas indicating the credible inter-
val of the model fit. For more details on the model, refer to Materials and Methods, 
Fig. 2, and section S2. (B) Histograms characterizing school densities in the datasets 
via median nearest neighbor distance (NND). For the alarmed condition (red, higher 
perceived risk), fish are closer to one another. (C) Scheme of SIR-type model dy-
namics: Observation of social cues over time triggers individual startling response 
mediated by strength of network links (wij) and individual responsiveness (threshold).
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the perception of the social cue (the initial startle) and the response. 
We estimate link strength from the positions and orientations of 
individuals via a logistic regression of these data using the two fea-
tures identified in (27) and (28) as being most predictive of startle 
response, logarithmic interindividual Euclidean distance and a ranked 
visual property (see Materials and Methods for more details on net-
work construction).

In our model, the node behavior [adopted from a general behav-
ioral contagion model (45, 46) that relies on internal evidence accumu-
lation similar to drift-diffusion models (47, 48)] can be summarized 
as follows: An individual integrates stochastic activation cues that it 
receives from its startling neighbors over time at rates proportional to 
social influence and itself will startle when the amount of accumulated 
cues surpasses its response threshold [see Materials and Methods for a 
detailed description of the SIR (susceptible-infected-recovered)–type 
model and Fig. 1C for a model schematic]. We fit the individual 
response threshold to best predict the experimentally observed 
cascade sizes for each dataset via a maximum-likelihood approach 
(see fig. S6 for a plot of the log likelihood). Figure 1A shows the 
resulting fit of the experimental data for these optimal thresholds.

Predicting cascades beyond observed school densities
The underlying spatial positions of individuals associate interaction 
networks with a certain median NND. Networks from experimental 
data are therefore limited to school densities as depicted in Fig. 1B. To 
predict cascades for other densities, we construct additional networks 
by rescaling positional data from experimental trials as illustrated 
in Fig. 2A. Rescaling changes interindividual distances, resulting in 
altered values of median NND (noted next to each school) and visual 
interactions. Individuals are approximated as ellipses whose visual 
fields are obtained semianalytically (see Materials and Methods and 
section S3.1, demonstrating the validity of this approximation). Over-
laps of individuals are avoided via automated minimal adjustment of 
rescaled positions and orientations.

Figure 2A illustrates the density dependence of visual fields and 
resulting interaction networks. A focal individual (black) has links to 
individuals occupying above 0.02 radians in its visual field [colored 
ellipses, threshold based on visual limits identified in (49) and as 
used in (27); other visual thresholds do not affect main results, see 
section S3.4]. Because visibility is not necessarily reciprocal, networks 
are directed and asymmetric. Link weight decreases with increasing 
interindividual distance (see Materials and Methods and Eq. 2) and 
is indicated by link darkness, with darker lines corresponding to 
stronger links. Overall, with increasing density, the interaction net-
works have fewer but stronger links (see the Supplementary Materials 
for more details on network properties).

The black and red lines in Fig. 2B show the dependence of rela-
tive average cascade size (which we call group responsiveness) fol-
lowing one initial startle on median NND as predicted by the model 
using rescaled networks and best-fitting response thresholds, while 
gray lines are for lower (dashed) and higher (solid) threshold values. 
For context, the dots and error bars summarize the data from Fig. 1 
by their average value ± 1 SD.

For all threshold values, the model predicts increasing group re-
sponsiveness with decreasing NND. Note that the existence of a full 
transition from local (close to zero group responsiveness) to global 
cascades (group responsiveness of 1) with decreasing NND is not 
certain for this specific type of model based on visual interactions, 
as shown by the solid gray lines in Fig. 2. It is rather the result of the 

specific density dependencies of several interacting effects: (i) Average 
link strength increases with decreasing NND by construction (see 
Eq. 2), which increases the group responsiveness. Assuming that we 
could decrease interindividual distances indefinitely while keeping 
the number of links constant, this dependence would ensure that we 
reach a transition to global cascades. However, this effect combines 
with two others caused by the individuals’ physical bodies: (ii) The 
bodies represent a lower limit to NND (where, in the extreme, it 

A

B

Fig. 2. Predicting cascade sizes across densities via a data-driven computational 
approach. (A) Examples of interaction networks obtained from rescaled position 
data for one experimental startle event with rescaling factors  ∈ (0.2,0.6,1.0,1.8). The 
corresponding median NND is noted next to each network. The darkness of lines 
between individuals represent link strength (>0.01 only, to keep the figure com-
prehensible). An example visual field [rays originating from a focal individual (black) 
hitting visible neighbors (colored)] illustrates decrease in number of visible neighbors 
with increasing density due to occlusions. (B) Model predictions of average relative 
cascade size (lines) for different response thresholds [high values (solid lines) to 
low values (dashed lines)] show transition from local to global cascades with 
decreasing NND. Experimental observations from Fig. 1, summarized here as 
averages ± 1 SD (error bars, truncated below at 1/N = 0.025 because we use 
one initial startler and cascades cannot be smaller than this), are best predicted by 
the black and red curves, respectively, corresponding to the threshold value ob-
tained via fitting the full cascade size distribution (Fig. 1A). Shaded areas are credible 
intervals of the model fit (gray, baseline; red, alarmed).
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becomes physically impossible to move two bodies closer together), 
thus providing an effective upper limit to average link strength; and 
(iii) the number of links decreases with decreasing NND due to oc-
clusions [see fig. S5 and (43)].

Estimation of criticality indicates subcritical behavior
Phase transitions become well defined only in infinite systems, while 
in finite systems such as ours, the transition between the alternate 
global states becomes more gradual as system size decreases (9). Still, 
effects of the transition, such as increased sensitivity, persist near the 
infinite-size critical point. In this section, we investigate whether the 
empirically calibrated model (Fig. 2, red and black lines) exhibits a 
maximum in sensitivity indicating a critical point within the acces-
sible range of densities, and if so, where the densities of the observed 
schools are located with respect to it.

While in classical physical systems, this sensitivity refers to the 
change in order parameter for a small change in an external field (a 
perturbation), for biological systems, one may study the change in-
duced by a single individual’s behavior (7). Considering initial startle 
events as perturbations and number of initial startlers as perturba-
tion strength, we analogously define the school’s collective sensitivity 
(c) as the difference between the group responsiveness (measured 
by average relative cascade size) to one (c1) and two (c2) initial startles 
(c = c2 − c1). The maximal collective sensitivity is our functionally 
relevant indicator of near criticality in analogy to maximal suscepti-
bility to a weak external perturbation acting as a characteristic feature 
of the pseudo-critical point in finite systems in classical statistical 
mechanics (50).

To motivate the biological relevance of this measure, Fig. 3A sche-
matically depicts a transition from local to global cascades in our 
finite system for one and two initial startlers. Let us assume that the 
number of initial startles contains information about the environ-
ment (e.g., likelihood of imminent threat). Far away from the tran-
sition, any perturbation (i.e., one or two initial startlers) will either 
cause (almost) the entire system to respond [(i) supercritical regime, 
dark gray background, group responsiveness one] or will cause no 
response at all [(ii) subcritical regime, vanishing group responsive-
ness, light gray background]. Thus, the number of initial startlers 
(perturbation strength) cannot be inferred from collective response 
in these regimes, and the initial information is lost. Around the crit-
ical point (white background), responses of all sizes occur. Here, small 
differences in perturbation strength (one or two initial startles) lead 
to different average relative cascade sizes. The associated increase in 
collective sensitivity as depicted in the bottom of Fig. 3A is generally 
thought to benefit collective information processing. Here, increased 
sensitivity may allow different collective responses to a predator 
and/or to a noise cue and thus permits filtering, enabling large cas-
cades to be triggered only by sufficiently strong cues.

We measure the collective sensitivity via simulations of cascades 
initiated by two or one initial startles. While the experimental data 
only contain cascades initiated by one individual using the empiri-
cally calibrated model, we can trigger any number of initial startles 
(see Materials and Methods and fig. S11 for other possible definitions 
of collective sensitivity, which show a similar qualitative behavior). 
Figure 3B depicts the dependence of the collective sensitivity on 
NND, obtained from averaging simulation results over all rescaled 
networks. The line ends around NND ≈ 0.3 BL, where constructing 
2D networks of higher density is impossible (without assuming a 
highly ordered closest packing of ellipses) because of the physical 

bodies being not allowed to overlap. We find that maximum sensi-
tivity (roughly 0.2 difference in group responsiveness) occurs at an 
NND of about 0.3 to 0.4 BL, which coincides approximately with 
these highest densities.

A

D

CB

Fig. 3. Estimating criticality via maximum sensitivity. (A) Schematic sketch of tran-
sition to illustrate the concept behind (B) and (C). Top: Group responsiveness (average 
relative cascade size) to one and two initial startlers only differs around the transition 
(white background), which may enable different collective responses to noise and 
relevant cues. In both gray areas (I marks the supercritical regime, and II marks the 
subcritical regime), any cue triggers the same response, making distinction impos-
sible. Bottom: Collective sensitivity, defined as the difference between the group 
responsiveness to two and one initial startles, shows a peak at the transition. (B) Col-
lective sensitivity as a function of median NND, model predictions averaged over 
all networks. Shaded areas mark the credible interval of the model fit (see fig. S6). 
Lines end at low NND where physical bodies limit density. The observed spreading 
is subcritical with the alarmed condition closer to criticality than the baseline con-
dition as shown by markers with error bars representing simulation result averages 
over original scale networks (error bars indicate 1 SD). (C) Average branching ratio 
of fitted model from averaging over networks in bins of median NND (shaded light 
gray area: ±1 SD, capturing variance in network topology). The confidence interval 
(CI) of the branching ratio due to uncertainty in the model fit (CI of the response 
threshold) is indicated in dark gray and comparable to the CI based on the variance 
in network topology (light gray). Dashed vertical line indicates where b = 1 [also 
included in (B)]; dotted line indicates uncertainty due to variance in network topol-
ogy). (D) Collective sensitivity as a function of median NND and average individual 
response threshold shows a peak close to the analytically estimated critical line 
[b = 1, line styles as in (C)], separating the subcritical (I) and supercritical (II) regimes. 
Markers with error bars show averages over simulations on original scale networks 
and represent the observed schools’ average behavior.
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The data points in Fig. 3B indicate averages over trials (±1 SD) of 
the collective sensitivity obtained from simulations on the original 
scale networks. They thus characterize the behavior of the schools 
under the two different experimental conditions. The error bars of 
these data points are large due to the large range of observed school 
densities (refer to fig. S25 for a figure with the raw data). The two ex-
perimental datasets have an average collective sensitivity of 0.035 ± 
0.007 (baseline) and 0.058 ± 0.019 (alarmed) at average median NND 
of 1.23 ± 0.3 BL and 0.68 ± 0.12 BL, respectively. Thus, their sensitivity 
could be increased by a factor of 5.9 and 3.4, respectively, by becoming 
critical. Instead, the observed schools are, on average, subcritical, with 
NND large enough that cascades on average stay local. In addition, we 
observe that while schools do get closer to criticality when perceived 
risk is higher, the physical bodies act as a lower limit for NND, which 
prevents the school from becoming maximally sensitive by density 
modulation alone (this also holds for other measures of density, as 
shown in fig. S25, and may extend to 3D schools, as discussed in 
section S3.3).

Regulation of distance to criticality
Next, we explore whether an additional change of individuals’ re-
sponsiveness (quantified by the average response threshold) can move 
the school to or across a critical manifold. Although (28) found no 
significant change in individual responsiveness resulting from a higher 
perceived environmental risk, these findings may not extend to mul-
tisensory cues or noisy environments (51, 52). In Fig. 3C, the collective 
sensitivity is plotted for varying both NND and the average response 
threshold and shows one clear band of maximum values.

To verify that the observed maximum in sensitivity is caused by 
a critical instability, we derive a branching ratio measure as an analyt-
ical estimate of the critical point in an infinite system (7). The aver-
age branching ratio b describes how small initial startling cascades, 
on average, tend to grow (b > 1) or shrink (b < 1), with b = 1 marking 
the transition between these two distinct aggregate behaviors (and 
corresponding to a true phase transition in an infinite system; for de-
tails, refer to Materials and Methods). Note that we use the branch-
ing ratio only as an additional indicator of the location of the critical 
point and not to fit a low-dimensional branching process model (53).

The black dashed line in Fig. 3C marks this analytically estimated 
critical line (b = 1) separating the subcritical [(I) b < 1] and super-
critical [(II) b > 1] regime (for the full dependency of the average 
branching ratio on NND and average response threshold, refer to 
fig. S14). The estimate of the location of the critical line obtained 
from the analytically derived branching ratio (i.e., b = 1) and the lo-
cation of the simulated maximum sensitivity agree well. The remain-
ing differences in their locations in the 2D parameter space of median 
NND and individual response threshold are likely due to simplifying 
assumptions made in the derivation of the branching ratio and finite-
size effects [see Materials and Methods and (54)].

The data points with error bars indicate the areas in parameter 
space that best describe experimental datasets (horizontal bar, aver-
age density ± 1 SD; vertical bar, optimal parameter fit and credible 
interval; see table S1). Figure 3B is thus a cross section of this plot at 
the horizontal lines. Following the vertical lines, we see that a decrease 
of average response threshold could bring the schools to criticality 
without a density change, but the necessary threshold values lie out-
side of the credible intervals. Overall, a density change can move the 
school toward the transition, and a change of individual responsive-
ness could even allow crossing to the supercritical regime (bottom 

left corner). Yet, experimentally observed densities at both levels of 
perceived risk (in the absence of a real predator) are not located at a 
maximum of any sensitivity measure (fig. S11).

Individual costs and benefits of criticality
Having established that fish schools could cross the transition but re-
main subcritical in experiments, we next examine the potential ben-
efits of (sub)criticality in this system and interpret the consequences 
to individual fish using a hypothetical model of visual predator de-
tection in different environmental contexts. In addition to construct-
ing a biologically informed and testable hypothesis for the origins of 
the observed subcriticality, our goal with this approach is to illustrate 
and encourage an individual-based and context-dependent view of 
criticality beyond the maximization of a single group-level property 
[e.g., sensitivity (24)].

Golden shiners live in fission-fusion populations with fluctuating 
group membership (32). Given that fish likely do not consistently 
occupy certain positions in the school, we interpret the average rel-
ative cascade size as the probability that an individual fish will star-
tle given some number of initial startlers. For example, if cascades 
initiated by one startle, on average, reach 40% of the school, then 
any fish has an average probability of 40% to respond to a single ini-
tial startle.

Figure 3B can thus be interpreted as the difference in individual 
response probability to one and two initial startlers. Thus, the closer 
the school’s NND is to the approximated critical point (b = 1), the 
better the individual fish’s average response distinguishes numbers 
of initial startlers. The relevant distinction in this escape context is, 
however, whether the cascade was triggered by the detection of a pred-
ator, or not, because this determines the optimal behavior for the in-
dividual. Ideally, all fish would escape when there is a predator (true 
positive) and not do so otherwise (true negative), but because of am-
biguous cues (both environmental and social), two types of errors 
arise: False positives occur when an individual startles in the ab-
sence of a predator and false negatives when it fails to startle in the 
presence of a predator (55, 56).

Because there are presently no data regarding predation of golden 
shiner fish by predators in noisy environments, here, we use a hypo-
thetical initial reaction of the school either to the appearance of a 
predator (predator cue) or to the noise in the environment (noise cue). 
We simulate the likelihood of false positives and false negatives for 
different distances to criticality via average cascade sizes triggered 
by cue type–dependent numbers of initial startles (details are pro-
vided below). The simulated final fraction of the group responding to 
a noise cue or not responding to a predator cue gives the individual’s 
probability of a false positive or a false negative, respectively (see fig. 
S19). Figure 4A shows the assumed number of initial startlers for 
each type of cue. To simulate false positives, cascades were initiated 
by one randomly chosen individual (dashed line). The number of 
initial startlers for a predator cue (solid line, Fig. 4A) is determined by 
the school’s modeled ability to visually detect a predator as illustrated 
in Fig. 4B for changing school density. The predator (white circle 
with a diameter of 3 BL at equal distance to school borders) can be 
seen by all colored individuals (ellipses). Shaded triangles illustrate 
the visual perception of the predator by the school (rays emitted from 
individuals’ eyes hitting the predator). Because collective information 
processing is most beneficial for low signal-to-noise ratios (57), we 
consider a cryptic predator, where only a small fraction of those indi-
viduals for which the predator is not occluded also reacts to it with 
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a startle (general results are independent of the exact value of this frac-
tion, pdetect; see fig. S20). While occlusions limit detectability at low 
NND, the decrease of initial response to a predator at high NND in 
Fig. 4A is due to an upper distance limit on the visibility of the predator.

To compare the benefits of different distances from criticality, we 
introduce the relative individual payoff. This measure adds up the 
costs of errors (loss of energy and time due to false positives and risk 
of death or injury due to false negatives) weighted by their likelihood 
of occurrence in a certain environment, which we obtain from sim-
ulations as described above.

The relative noise cost captures both the riskiness and the noise 
level of the environment. High values correspond to a noisy and/or 
low-predation environment, where most of the sensory cues are 
nonthreatening, while low values correspond to environments with 
high predation and/or very low noise, where sensory cues have a 
high likelihood to represent actual threats (for a detailed description, 
refer to Materials and Methods). Thus, noisy environments are char-
acterized by low signal-to-noise ratio, where, e.g., visual cues on the 

presence of a cryptic predator are difficult to distinguish from other 
environmental fluctuations.

Figure 4C shows the relative payoff for an individual in a school of 
N = 40 fish for different relative noise cost. One observes three dif-
ferent kinds of dependency on NND:

1) For relatively safe and/or noisy environments (black curves), 
a single optimum appears at low density (NND ≈ 2 BL). Its exact 
position depends on the predator distance and assumed maximal 
detection distance of an individual (see fig. S23A for a version with 
maxima at the observed averages of the experimental dataset, marked 
by dotted vertical lines here). For these environments, near criticality 
decreases the payoff to individuals, dominated by the costs of false 
positives. The optimal spatial configuration (an intermediate NND) 
maximizes visual access to personal information about a potential 
predator while keeping social information relatively low and corre-
sponds roughly to the maximum in Fig. 4A.

2) For environments with high predation and/or low noise (red 
curves), near criticality increases the relative payoff to individuals, 
which is dominated by the costs of false negatives. In these environ-
ments, depending on pdetect, the maximal relative payoff lies either 
near the estimated critical point or past it in the inaccessible super-
critical regime, where overall responsiveness is maximized (see Fig. 3A 
and fig. S24). Under these conditions, individual response relies 
almost completely on social information.

3) Only for intermediate relative noise cost (light gray to light 
red), near criticality yields the maximal payoff for the individual. 
Here, individuals can benefit from the behavioral contagion process’ 
increased sensitivity to the number of initial startlers seen in Fig. 3 
(and fig. S11). In all other scenarios, the benefit of an increased col-
lective sensitivity near criticality is outweighed by either the increased 
false positive rate and decreased visual accessibility of the environ-
ment (compared to higher NND) or the decreased true positive rate 
(compared to lower NND). Only by including the sensory constraints 
on visual predator detection via the varying number of initial startles 
do we find the second maximum in the relative payoff in addition to 
the maximum near criticality.

Changing the parameters of visual predator detection can shift 
the visual access–based maximum (see figs. S20 and S22), and we 
find that, on average, baseline and alarmed datasets (indicated by 
dotted vertical lines) could optimize individual payoff according to 
the perceived riskiness of the environment, with the baseline condi-
tion corresponding to a higher and the alarmed condition to a lower 
relative noise cost (see fig. S23A).

DISCUSSION
We set out to (i) investigate criticality in the context of escape waves 
in animal groups and where the experimentally observed fish schools 
operate with respect to it (i.e., their distance to criticality); (ii) under-
stand potential functional benefits of near criticality, especially with 
respect to the trade-off between robustness to noise versus sensitivity 
to environmental cues; and (iii) determine which individual or struc-
tural features control a group’s distance to criticality. We combined 
experimental observations of alarms spreading through groups of 
juvenile golden shiners at two different average school densities with 
a computational model to predict the average collective response 
across school densities. We identified a critical density at which tran-
sition from predominantly local to global cascades occurs. However, 
under two experimental conditions, the spreading of escape waves 

C

BA

Fig. 4. Hypothetical predator detection model reveals distance to criticality can 
manage trade-off between two types of errors. (A) Initial response to predator 
and noise cue as function of school’s median NND. Initial predator response is given 
by a fixed fraction of the average number of individuals that can see the preda-
tor. (B) Visual predator detection for schools adjusted to have different median 
NND (stated next to each school). Colored individuals are able to see the predator 
(white circle). Shaded areas illustrate the visual field similar to Fig. 2A. (C) Relative 
payoff for an individual in a school in different environments (characterized by rel-
ative noise cost) as function of school’s median NND. Averages of experimentally 
observed school densities are indicated (dotted vertical lines) as well as the estimates 
of the critical point [b = 1 (dashed line) and maximum sensitivity (black dash-dotted 
vertical line)]. Depending on the environment, different values of NND (i.e., different 
distances from criticality) maximize payoff. In risky environments (red), being highly 
responsive is more important than filtering, while in very noisy low-risk environments, 
being critical is detrimental to the payoff (black curves). For intermediate values of 
relative noise cost (light gray/red), there are two maxima: one based on maximum 
sensitivity at criticality (left) and one based on maximum personal visual access to 
the predator (right). Parameters: pdetect = 0.1, dpred = 10 BL, and dmax = 40 BL.
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within the school is, on average, subcritical, with the schools in the 
alarmed condition being closer to the transition, answering (i).

Addressing (ii), we show that the critical manifold exhibits a high 
sensitivity to small differences in perturbation strength (number of 
initial startlers). Investigating biologically relevant functional bene-
fits of near criticality for the individual fish, we considered the costs 
associated with two possible decision errors, namely, false positives 
and false negatives. Using simulated average cascade sizes and visual 
predator detection to infer individual’s relative payoffs, we find that 
depending on the type of environment, near criticality may be benefi-
cial or detrimental to individuals and that by changing their distance 
to criticality fish within a school can manage the trade-off between 
robustness and sensitivity according to their current environment. In 
addition, this focus on visual predator detection identifies a potential 
trade-off between the acquisition of accurate personal and social in-
formation about the environment for the individual, where, with 
increasing density, the individual’s private information about the en-
vironment decreases because of occlusions, but the social informa-
tion increases because of stronger interactions within the group.

Regarding (iii), we find that school density and individual respon-
siveness control the school’s distance to criticality. Under the exper-
imental conditions, the upper limit to school density due to the fishs’ 
physical bodies prevents the schools from moving past the critical 
manifold to a supercritical state via modulation of density alone, 
potentially increasing robustness of contagion dynamics to density 
fluctuations. However, we show that increasing individual sensitiv-
ity allows a transition to supercritical spreading.

We study false alarms in a laboratory environment with fish that 
were bred in captivity without real predators. To improve our relative 
payoff measure, future experiments with real predators are needed 
to test and calibrate the underlying hypothesized model of visual 
predator detection. While we assume the initialization of a cascade 
by a certain number of fish at one point in time, the presence of an 
actual predator likely represents a temporally extended cue, which 
may cause additional (nonsocial) startles based on personal informa-
tion and thus increase the average cascade size.

In insect swarms, it has been argued that large groups under nat-
ural conditions appear to operate near criticality (18), yet small groups 
under laboratory conditions do not (58, 59). Whereas many ques-
tions remain open regarding the role of environmental factors driv-
ing the observed collective movement of such swarms under natural 
conditions, it is possible that analogous effects could be observed in 
fish schools, with changes to the number of individuals and/or fluc-
tuations in the natural environment, driving the system closer to, or 
potentially past, the critical state. Studies of larger groups under sim-
ilar (laboratory) conditions could test whether there exists a trend of 
decreasing distance to criticality with increasing group size that we 
see when comparing the results of the fitted model on original-scale 
networks based on data from (28) and (27). In addition, fish raised 
in nonlaboratory conditions may, however, develop different thresh-
olds or interactions. Further investigations of startling cascades 
under ecologically relevant scenarios, including under predation 
threat, environmental fluctuations, and a varying number of prey 
individuals, will be key here (60). In general, having a larger number 
of observations may also allow a direct observation of the density 
dependence of average cascade size via the natural fluctuations in 
school density. Further, the use of virtual reality for animals (61) may 
provide the means to control the density and the number and posi-
tion of initial startles in future experiments.

The nature of interactions in our model does not change with 
density, yet lateral-line sensory inputs could additionally influence 
interactions at high densities, potentially shifting the critical point. 
However, our previous work (28) showed that the functional form of 
the interactions does not change significantly for the naturally ob-
served change of density exhibited in response to perceived risk. 
While our results do not preclude the possibility that other mecha-
nisms may increase sensitivity further in high-density situations, this 
would not change our main finding of subcritical spreading at the 
observed densities.

Previously, an initial increase in density following a collective es-
cape response has been identified as essential to escape waves in 
schooling fish (30). Startles may systematically change local den-
sity and thus expedite or inhibit spreading. In addition, cascades 
may temporarily change the group’s overall density and thus create 
a group-level refractory period or an increased attention to further 
cues. These aspects are not considered in our modeling approach 
because it uses static interaction networks, which has previously 
been shown to be an appropriate approximation due to the high 
speed of spreading of cascades relative to changes in the interaction 
network topology (27). Nevertheless, future studies should consider 
the full spatiotemporal dynamics. If behavioral spreading systemat-
ically influences school density, then this may indicate a regulatory 
mechanism of self-organized (sub)criticality, allowing the school to 
control their interactions to remain responsive to relevant signals 
while filtering noise.

While it was previously known that the spatial structure of the 
school influences cascade size (28, 30), we systematically explore this 
influence via a model, identify the critical density, and place groups 
observed in experiments with respect to this transition. The investiga-
tion of two different environmental conditions, and the correspond-
ing observed change of distance to criticality, sets this study apart 
from previous work on criticality in animal collectives (7, 17, 18). 
Our estimation of individual relative payoff offers a possible expla-
nation of the observed subcritical spreading and emphasizes the im-
portance of combining the collective description common to statistical 
physics with the individual perspective often taken in biological and 
psychological research on decision-making.

Our modeling results suggest that the collective response of school-
ing fish potentially minimizes the individuals’ average cost due to 
detection errors by tuning the estimated trade-off of false positives 
and false negatives according to the perceived risk of the environment. 
This occurs via a change of the school’s density and thereby its dis-
tance to criticality and not primarily by being at the critical point and 
thus maximally distinguishing different inputs. The absence of a sin-
gle optimal amplification scheme (often assumed to be exactly at the 
critical point) may be due to the high variability in the environment 
and also variability of initial responses to the same cue due to chang-
ing group compositions and interindividual differences.

On the basis of our findings, we suggest that the study of critical-
ity in living systems and, particularly, in animal collectives, focuses 
not only on the possible computational benefits but also on the po-
tential costs of amplification of irrelevant fluctuations. By presenting 
a concrete example of a system that makes use of different distances 
to criticality according to context, we emphasize the benefits of ac-
tively regulating distance to criticality according to the environmen-
tal conditions or the complexity of the computational task at hand, 
as also recently discussed in the context of neuroscience (62). While 
many studies of neuronal cascades have focused on evidence of near 
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criticality (8, 11, 12, 63–65) or subcriticality (14, 66) in certain contexts, 
others have highlighted the possibility that the distance to criticality 
varies with changing attentional states (53, 67–70). These examples 
suggest a pattern of active control in the trade-off between robustness 
and sensitivity that could be common to many forms of collective 
information processing. However, while in networks of neurons, the 
collective behavior determines the fitness of a single organism, the 
evolutionary pressure forming the collective behavior of animals is 
thought to act on the individual (23, 24). It is therefore also possible, 
and a promising direction for future research, that the control of dis-
tance to criticality in animal collectives may differ systematically from 
that observed in neuroscience.

MATERIALS AND METHODS
Experimental data
This study uses experimental tracking data of schools of juvenile 
golden shiners (N. crysoleucas), as described in (28) and (27), swim-
ming freely in a white tank with shallow water, keeping them approx-
imately 2D. Startling cascades were initiated by randomly occurring 
single startle (without provision of a stimulus or presence of a pred-
ator). A startle is a fast-start movement that is identified from track-
ing data via a threshold on the change in kinetic energy in (28) or a 
speed and turning angle in (27). Startles occurring within 1 s and 
50 cm from each other are considered to be part of the same cascade 
(28). Previous work has found that these false alarms spread indis-
tinguishably from startles that are initiated by a real fearful tactile 
stimulus (27). From (28), we use data of groups before and after a 
natural alarm substance [Schreckstoff, a family of chondroitins re-
leased from injured fish skin, i.e., close to a successful predation 
event (71)] was automatically sprayed on the water surface. To in-
crease the number of samples in the baseline condition where cas-
cades are not occurring as frequently as in the alarmed condition, 
we also included those cascades from control trials (where water 
was sprayed on the surface instead of Schreckstoff) that happened 
before the spraying. For more details on the experiments and data 
collection, we refer the readers to the original studies (27, 28).

Behavioral contagion model
To simulate startle cascades, we use a SIR-type model of behavioral 
contagion based on (45, 46) and previously used in (28). An indi-
vidual, represented by a node in an interaction network with edges 
wij, can be in one of three states: susceptible (swimming at base speed), 
active (startling), and recovered (having startled in the cascade al-
ready). At the beginning of the simulation, we set n ≥ 1 individuals 
to the active state, and we stop the simulation once no more active 
individuals remain.

The individuals’ internal dynamics are as follows: A susceptible 
individual i receives stochastic activation cues of fixed size da from 
active individuals j with a rate rij = maxwij proportional to their link 
strength in the interaction network. Because the interaction net-
works are based on vision, this means that the individual is only 
influenced by those visible to it, i.e., those with wij > 0. The individ-
ual internally integrates the stochastic time series of received cues, 
dij(t), equally over its recent history of length m (its memory time) 
to obtain its current cumulative activation

	​​ D​ i​​(t ) = ​ 1 ─ ​K​ i​​
 ​ ​∑ 

j
​ ​ ​​∫t−​​ m​​​ 

t
  ​​ ​d​ ij​​(t′) dt′​	 (1)

Here, for simplicity, we approximated the increment of the in-
ternal state by a point process with dij corresponding to the Dirac 
delta function. Ki is the number of i’s visible neighbors, making this 
a fractional contagion process as supported by the previous work 
(27). Each individual has an internal response threshold i that in-
dicates the level of socially signaled risk it tolerates before startling 
itself. If the cumulative activation exceeds this threshold, then the 
individual becomes active. After a fixed activation time act, it recov-
ers and stays that way until the end of the simulation. Response 
thresholds are drawn from a uniform distribution with minimum 
min = 0 and maximum ​​​ max​​  =  2​ ̄ ​​ (resulting in an average response 
threshold of ​​ ̄ ​​) to account for stochasticity due to inaccessible inter-
nal states of individuals at the time of initial startle. Most parameters 
are fixed as in (28) (act = 0.5s, max = 103s−1, da = 10−3), leaving the 
average response threshold ​​  ̄​​ as a single free parameter describing the 
individual sensitivity to social cues. Similar to (28), we fit the aver-
age response threshold to the experimental data using a maximum-
likelihood approach with 10,000 simulations of a cascade per network, 
initiated by the same individual as experimentally observed for this 
network (fig. S6 and table S1). We set the finite memory to m = 1 s, 
as link weights wij were obtained from the experimental data using a 
time window of 1 s to detect startles following an initial startle event 
(28); however, our general results are robust with respect to the choice 
of m (see section S3.6).

Construction of interaction networks
Interaction networks are based on experimentally observed first re-
sponses to a single initial random startle. Previous work found that, 
via L1-penalized logistic regression and multimodel inference, among 
a variety of features of the initial startler itself (absolute features) 
and in relation to other within the group (comparative features), the 
probability of individual i to be a first responder to the initial startle of 
individual j can best be predicted by the log of the metric (Euclidean) 
distance (LMD) between individual i and j (in centimeters) and the 
ranked angular area (RAA) of j in the visual field of i (27, 28). Here, 
the RAA numbers all individuals in order of decreasing visual angle 
in the visual field of j, with RAA = 1 being the largest individual and 
RAA = N − 1 being the smallest. Here, we perform a logistic regression 
(n = 4018 for the baseline condition and n = 8238 for the alarmed 
condition) on these previously established features to determine how 
to construct network links from the positions and orientations of in-
dividuals. The resulting coefficients i can be found in table S2, and 
networks links are thus given by

	​​ w​ ij​​  = ​ (1 + exp (− ​​ 1​​ − ​​ 2​​ LMD − ​​ 3​​ RAA ) )​​ −1​​	 (2)

For the construction of networks of different densities, we res-
caled the positions of the fish and recalculated metric distances and 
visual fields and resulting RAAs to obtain network links via Eq. 2. 
Individuals were approximated as ellipses, and an automated rou-
tine [based on (72)] was used to shift and slightly turn individuals 
where they overlapped to ensure a 2D school. Details can be found 
in section S1.

We validated the ellipse approximation by comparing the net-
works that we obtain for the original (nonrescaled) density with the 
networks constructed in previous research (27) (which used ray cast-
ing and body shape reconstruction from the tracking software to 
calculate the visual fields). We compared the two sets based on net-
work properties and the ability of the behavioral contagion model 
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(see previous paragraph) to explain the observed data using these 
networks (section S3.1) and found good agreement.

Sensitivity
We simulate 1000 startle cascades per experimental trial and resca-
ling factor by setting m randomly chosen individuals to the active 
(startling) state and recording the number of individuals that startle 
before the cascade dies out. From these simulations, we obtain an 
average cascade size for each trial, initial condition (m), and bins of 
median NND by averaging over the simulation runs. Division by 
group size, N, yields the relative average cascade size, cm. Subtracting 
the relative average cascade sizes following m initial startles from 
that following m + 1 initial startles gives the sensitivity shown in fig. 
S11, with the special case of m = 1 shown in Fig. 3B. Subtracting the 
relative average size of cascades triggered by one individual from 
that triggered by m individuals yields the sensitivity shown in fig. 
S11. The qualitative result does not depend on choosing initiators at 
random but holds for choosing them to be network neighbors as 
well (see fig. S11).

Branching ratio calculation
A useful measure to describe the aggregate effects of a local pertur-
bation in a contagion model is the average branching ratio, which 
answers the question: In a completely susceptible (quiescent) system 
in which a single individual j becomes active, what is the average 
number of other individuals i that become active due to the direct 
influence of individual j? This branching ratio b describes how small 
initial startling cascades, on average, tend to grow or shrink. For large 
N, it also defines a transition between two distinct aggregate behav-
iors: When b < 1, startling cascades tend to die out and only affect a 
small fraction of the whole group, and when b > 1, cascades tend to 
spread through the entire group. To calculate b, we note that the 
average total additional activation received by individual i due to j 
startling is (28)

	​  ​D​ i​​  = ​ d​ a​​ ​​ max​​ ​​ act​​ ​ 
​w​ ij​​ ─ ​K​ i​​

 ​​	 (3)

where da is the activation cue intensity, max is the maximum rate 
of receiving cues, act is the activation duration, Ki is the number 
of i’s visible neighbors, and wij is the probability from the logistic 
regression model that i is a first responder given that individual j 
initially startled. As in (28), we will discretize time in 1-ms incre-
ments and set the arbitrary scale of cue intensities da such that 
damax = 1, producing

	​  ​D​ i​​  = ​ ​ act​​ ​ 
​w​ ij​​ ─ ​K​ i​​

 ​​	 (4)

We translate this additional activation to individual i into the av-
erage number of additional startles produced by calculating the prob-
ability that this causes i’s state to go above the threshold. This is 
equal to Di times the probability density of i’s threshold being be-
tween Di and Di + Di. Because we use a constant probability densi-
ty for thresholds ​p(​​ i​​ ) = ​​max​ −1 ​​ , and given Di < max, the probability 
of i startling due to j startling is

	​​ p​ ij​​  =   ​D​ i​​ ​​max​ −1  ​  = ​  ​​ act​​ ─ ​​ max​​ ​ ​ 
​w​ ij​​ ─ ​K​ i​​

 ​​	 (5)

Then, the average number of additional individuals startled due 
to j’s startle is our branching ratio

	​​ b​ j​​  = ​ ∑ 
i
​ ​ ​ ​p​ ij​​  = ​  ​​ act​​ ─ ​​ max​​ ​ ​∑ 

i
​ ​ ​ ​ 

​w​ ij​​ ─ ​K​ i​​
 ​​	 (6)

and the average branching ratio, given that the cascade starts with a 
random individual j, is the measure used in this study as an analyt-
ical measure of criticality. Here, it is assumed that all neighbors of 
j are susceptible at the time of activation of j and that j is the only 
active neighbor of its network neighbors i. This assumption is best 
met at the beginning of a cascade and likely leads to an overesti-
mation of the effective average branching ratio observed in simula-
tions (73).

Relative individual payoff
Assuming individual payoffs due to different costs of false and true 
positives and negatives, we have derived the relative payoff, , as a 
function of median NND to

	​ (NND ) = − ​ 1 ─ ​​ 0​​ ​ [ ​p​ fp​​(NND ) · + ​p​ fn​​(NND ) ]​	 (7)

(see detailed derivation in section S5.2). In Eq. 7, the relative noise cost

	​​   = ​  ​​ noise​​ ─ ​​ pred​​ ​​(​​ ​ 
​​ fp​​ − ​​ tn​​

 ─ ​​ fn​​ − ​​ tp​​ ​​)​​​​	 (8)

characterizes the environment via the costs associated with each event 
type (false and true positive, fp ≥ 0 and tp ≤ 0, as well as false and 
true negative, fn ≥ 0 and tn ≤ 0), and the rate at which predator 
cues, pred, and noise cues, noise, appear. The conditional probabil-
ities of the two types of error, startling (s) in response to noise (false 
positives, pfp) or not startling (​​ _ s ​​) in response to a predator cue (false 
negatives, pfn), are determined through simulations of average cas-
cade sizes. Depending on the type of error, cascades are initiated by 
different numbers, Ninit, of randomly selected individuals as follows

	​​ p​ fp​​(NND ) = p(s∣​N​ init​​  =  1, NND)​	 (9)

	​​ p​ fn​​(NND ) = p(​ _ s ​∣​N​ init​​  = ​ p​ detect​​ ​N​ vis​​(NND ) , NND)​	 (10)

Referring to experimental observations, where random startles 
occur at low rates (27) and therefore cascades where triggered by a 
single initial random startle, we use one initial startler to simulate 
false positives. False negatives are simulated as the average fraction of 
a school that is not part of a cascade initiated by pdetectNvis(NND) in-
dividuals. Here, Nvis(NND) is the average number of individuals that 
can see a predator at distance dpred = 10 BL from the school bound-
ary with a maximal detection range of dmax = 40 BL, and pdetect = 0.1 
characterizes the individual responsiveness to a predator cue. Aver-
age cascade sizes for noninteger numbers of initial startles are ob-
tained by proportionally combining the results for the two integers 
closest to the desired value. The relative payoff is rescaled by the costs 
for an individual in an infinitely dilute school

	​​ ​ 0​​  = ​   lim​ 
NND→∞

​​ [ ​p​ fp​​(NND ) · + ​p​ fn​​(NND ) ] = 1 − ​ 
​p​ detect−​​ ─ N  ​​	 (11)

to highlight the influence of schooling. Qualitatively, our results 
are independent of the exact choice of dpred, dmax, and pdetect (see 
section S5.1 and figs. S20 and S22).

D
ow

nloaded from
 https://w

w
w

.science.org at Saarlaendische U
niversitaets- und L

andesbibliothek on July 16, 2024



Poel et al., Sci. Adv. 8, eabm6385 (2022)     22 June 2022

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

10 of 11

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abm6385

REFERENCES AND NOTES
	 1.	 G. Karlebach, R. Shamir, Modelling and analysis of gene regulatory networks. Nat. Rev. 

Mol. Cell Biol. 9, 770–780 (2008).
	 2.	 D. S. Bassett, E. Bullmore, Small-world brain networks. Neuroscientist 12, 512–523 (2006).
	 3.	 T. Mora, W. Bialek, Are biological systems poised at criticality? J. Stat. Phys. 144, 268–302 

(2011).
	 4.	 J. Krause, G. D. Ruxton, Living in Groups (Oxford Univ. Press, 2002).
	 5.	 A. Ward, M. Webster, Sociality: The Behavior of Group-Living Animals (Springer Nature, 

2016).
	 6.	 M. A. Muñoz, Colloquium: Criticality and dynamical scaling in living systems. Rev. Mod. 

Phys. 90, 031001 (2018).
	 7.	 B. C. Daniels, D. C. Krakauer, J. C. Flack, Control of finite critical behaviour in a small-scale 

social system. Nat. Commun. 8, 14301 (2017).
	 8.	 T. Gross, Not one, but many critical states: A dynamical systems perspective. Front. Neural 

Circuits 15, 7 (2021).
	 9.	 N. Goldenfeld, Lectures on Phase Transitions and the Renormalization Group (Westview 

Press, 1992).
	 10.	 J. Buhl, D. J. T. Sumpter, I. D. Couzin, J. J. Hale, E. Despland, E. R. Miller, S. J. Simpson, From 

disorder to order in marching locusts. Science 312, 1402–1406 (2006).
	 11.	 W. L. Shew, H. Yang, S. Yu, R. Roy, D. Plenz, Information capacity and transmission are 

maximized in balanced cortical networks with neuronal avalanches. J. Neurosci. 31, 55–63 
(2011).

	 12.	 J. M. Beggs, N. Timme, Being critical of criticality in the brain. Front. Physiol. 3, 163 
(2012).

	 13.	 G. Deco, V. K. Jirsa, Ongoing cortical activity at rest: Criticality, multistability, and ghost 
attractors. J. Neurosci. 32, 3366–3375 (2012).

	 14.	 V. Priesemann, M. Wibral, M. Valderrama, R. Pröpper, M. Le Van Quyen, T. Geisel, J. Triesch, 
D. Nikolić, M. H. J. Munk, Front. Syst. Neurosci. 8, 108 (2014).

	 15.	 B. C. Daniels, H. Kim, D. Moore, S. Zhou, H. B. Smith, B. Karas, S. A. Kauffman, S. I. Walker, 
Criticality distinguishes the ensemble of biological regulatory networks. Phys. Rev. Lett. 
121, 138102 (2018).

	 16.	 C. D. Nadell, V. Bucci, K. Drescher, S. A. Levin, B. L. Bassler, J. B. Xavier, Cutting through 
the complexity of cell collectives. Proc. R. Soc. B Biol. Sci. 280, 20122770 (2013).

	 17.	 W. Bialek, A. Cavagna, I. Giardina, T. Mora, O. Pohl, E. Silvestri, M. Viale, A. M. Walczak, 
Social interactions dominate speed control in poising natural flocks near criticality.  
Proc. Natl. Acad. Sci. U.S.A. 111, 7212–7217 (2014).

	 18.	 A. Attanasi, A. Cavagna, L. D. Castello, I. Giardina, S. Melillo, L. Parisi, O. Pohl, B. Rossaro, 
E. Shen, E. Silvestri, M. Viale, Finite-size scaling as a way to probe near-criticality in natural 
swarms. Phys. Rev. Lett. 113, 238102 (2014).

	 19.	 A. Gelblum, I. Pinkoviezky, E. Fonio, A. Ghosh, N. Gov, O. Feinerman, Ant groups optimally 
amplify the effect of transiently informed individuals. Nat. Commun. 6, 7729 (2015).

	 20.	 N. O. Handegard, K. M. Boswell, C. C. Ioannou, S. P. Leblanc, D. B. Tjøstheim, I. D. Couzin, 
The dynamics of coordinated group hunting and collective information transfer among 
schooling prey. Curr. Biol. 22, 1213–1217 (2012).

	 21.	 D. S. Calovi, U. Lopez, P. Schuhmacher, H. Chaté, C. Sire, G. Theraulaz, Collective response 
to perturbations in a data-driven fish school model. J. R. Soc. Interface 12, 20141362 
(2015).

	 22.	 F. Vanni, M. Luković, P. Grigolini, Criticality and transmission of information in a swarm 
of cooperative units. Phys. Rev. Lett. 107, 078103 (2011).

	 23.	 J. Hidalgo, J. Grilli, S. Suweis, M. A. Muñoz, J. R. Banavar, A. Maritan, Information-based 
fitness and the emergence of criticality in living systems. Proc. Natl. Acad. Sci. U.S.A. 111, 
10095–10100 (2014).

	 24.	 P. P. Klamser, P. Romanczuk, Collective predator evasion: Putting the criticality 
hypothesis to the test. PLOS Comput. Biol. 17, 1 (2021).

	 25.	 T. L. Ribeiro, D. R. Chialvo, D. Plenz, Scale-free dynamics in animal groups and brain 
networks. Front. Syst. Neurosci. 14, 104 (2021).

	 26.	 S. L. Lima, Back to the basics of anti-predatory vigilance: The group-size effect. Anim. 
Behav. 49, 11–20 (1995).

	 27.	 S. B. Rosenthal, C. R. Twomey, A. T. Hartnett, H. S. Wu, I. D. Couzin, Revealing the hidden 
networks of interaction in mobile animal groups allows prediction of complex behavioral 
contagion. Proc. Natl. Acad. Sci. U.S.A. 112, 4690–4695 (2015).

	 28.	 M. M. G. Sosna, C. R. Twomey, J. Bak-Coleman, W. Poel, B. C. Daniels, P. Romanczuk, 
I. D. Couzin, Individual and collective encoding of risk in animal groups. Proc. Natl. Acad. 
Sci. U.S.A. 116, 20556–20561 (2019).

	 29.	 I. D. Couzin, Collective cognition in animal groups. Trends Cogn. Sci. 13, 36–43 (2009).
	 30.	 J. E. Herbert-Read, J. Buhl, F. Hu, A. J. W. Ward, D. J. T. Sumpter, Initiation and spread 

of escape waves within animal groups. R. Soc. Open Sci. 2, 140355 (2015).

	 31.	 P. Domenici, R. Blake, The kinematics and performance of fish fast-start swimming. J. Exp. 
Biol. 200, 1165–1178 (1997).

	 32.	 M. R. S. Johannes, D. J. McQueen, T. J. Stewart, J. R. Post, Golden shiner (Notemigonus 
crysoleucas) population abundance correlations with food and predators. Can. J. Fish. 
Aquat. Sci. 46, 810–817 (1989).

	 33.	 S. Bazazi, P. Romanczuk, S. Thomas, L. Schimansky-Geier, J. J. Hale, G. A. Miller, 
G. A. Sword, S. J. Simpson, I. D. Couzin, Nutritional state and collective motion: 
From individuals to mass migration. Proc. R. Soc. B Biol. Sci. 278, 356–363 (2011).

	 34.	 O. Kinouchi, M. Copelli, Optimal dynamical range of excitable networks at criticality.  
Nat. Phys. 2, 348–351 (2006).

	 35.	 W. L. Shew, D. Plenz, The functional benefits of criticality in the cortex. Neuroscientist 19, 
88–100 (2013).

	 36.	 S. Bornholdt, T. Rohlf, Topological evolution of dynamical networks: Global criticality 
from local dynamics. Phys. Rev. Lett. 84, 6114–6117 (2000).

	 37.	 C. Meisel, T. Gross, Adaptive self-organization in a realistic neural network model.  
Phys. Rev. E 80, 061917 (2009).

	 38.	 C. Meisel, A. Storch, S. Hallmeyer-Elgner, E. Bullmore, T. Gross, Failure of adaptive 
self-organized criticality during epileptic seizure attacks. PLoS Comput. Biol. 8, e1002312 
(2012).

	 39.	 J. M. Beggs, D. Plenz, Neuronal avalanches are diverse and precise activity patterns 
that are stable for many hours in cortical slice cultures. J. Neurosci. 24, 5216–5229 
(2004).

	 40.	 G. Hahn, T. Petermann, M. N. Havenith, S. Yu, W. Singer, D. Plenz, D. Nikolić, Neuronal 
avalanches in spontaneous activity in vivo. J. Neurophysiol. 104, 3312–3322 (2010).

	 41.	 M. J. Keeling, P. Rohani, Modeling Infectious Diseases (Princeton Univ. Press, 2008).
	 42.	 R. Pastor-Satorras, C. Castellano, P. Van Mieghem, A. Vespignani, Epidemic processes 

in complex networks. Rev. Mod. Phys. 87, 925–979 (2015).
	 43.	 W. Poel, C. Winklmayr, P. Romanczuk, Spatial structure and information transfer in visual 

networks. Front. Phys. 9, 716576 (2021).
	 44.	 Y. Zhao, C. Huepe, P. Romanczuk, Contagion dynamics in self-organized systems 

of self-propelled agents. Sci. Rep. 12, 2588 (2022).
	 45.	 P. S. Dodds, D. J. Watts, Universal behavior in a generalized model of contagion. Phys. Rev. 

Lett. 92, 218701 (2004).
	 46.	 P. S. Dodds, D. J. Watts, A generalized model of social and biological contagion. J. Theor. 

Biol. 232, 587–604 (2005).
	 47.	 A. N. Tump, T. J. Pleskac, R. H. J. M. Kurvers, Wise or mad crowds? The cognitive 

mechanisms underlying information cascades. Sci. Adv. 8, eabb0266 (2020).
	 48.	 R. Ratcliff, P. L. Smith, S. D. Brown, G. McKoon, Diffusion decision model: Current issues 

and history. Trends Cogn. Sci. 20, 260–281 (2016).
	 49.	 D. Pita, B. Moore, L. P. Tyrell, E. Fernández-Juricic, Vision in two cyprinid fish: Implications 

for collective behavior. PeerJ 3, e1113 (2015).
	 50.	 M. Henkel, H. Hinrichsen, S. Lübeck, M. Pleimling, Non-Equilibrium Phase Transitions 

(Springer, 2008), vol. 1.
	 51.	 N. E. Munoz, D. T. Blumstein, Multisensory perception in uncertain environments. Behav. 

Ecol. 23, 457–462 (2012).
	 52.	 J. Lukas, P. Romanczuk, H. Klenz, P. Klamser, L. Arias Rodriguez, J. Krause, D. Bierbach, 

Acoustic and visual stimuli combined promote stronger responses to aerial predation 
in fish. Behav. Ecol. 32, 1094–1102 (2021).

	 53.	 V. Priesemann, M. Valderrama, M. Wibral, M. Le Van Quyen, Neuronal avalanches differ 
from wakefulness to deep sleep – evidence from intracranial depth recordings 
in humans. PLOS Comput. Biol. 9, e1002985 (2013).

	 54.	 C. Castellano, R. Pastor-Satorras, On the numerical study of percolation and epidemic 
critical properties in networks. Eur. Phys. J. B 89, 243 (2016).

	 55.	 M. Wolf, R. H. J. M. Kurvers, A. J. W. Ward, S. Krause, J. Krause, Accurate decisions 
in an uncertain world: Collective cognition increases true positives while decreasing false 
positives. Proc. R. Soc. B Biol. Sci. 280, 20122777 (2013).

	 56.	 J. A. R. Marshall, R. H. J. M. Kurvers, J. Krause, M. Wolf, Quorums enable optimal pooling 
of independent judgements in biological systems. eLife 8, e40368 (2019).

	 57.	 B. C. Daniels, P. Romanczuk, Quantifying the impact of network structure on speed 
and accuracy in collective decision-making. Theory Biosci. 140, 379–390 (2021).

	 58.	 D. H. Kelley, N. T. Ouellette, Emergent dynamics of laboratory insect swarms. Sci. Rep. 3, 
1073 (2013).

	 59.	 J. G. Puckett, N. T. Ouellette, Determining asymptotically large population sizes in insect 
swarms. J. R. Soc. Interface 11, 20140710 (2014).

	 60.	 C. Doran, D. Bierbach, J. Lukas, P. Klamser, T. Landgraf, H. Klenz, M. Habedank, 
L. Arias-Rodriguez, S. Krause, P. Romanczuk, J. Krause, Fish waves as emergent collective 
antipredator behavior. Curr. Biol. 32, 708–714.e4 (2022).

	 61.	 J. R. Stowers, M. Hofbauer, R. Bastien, J. Griessner, P. Higgins, S. Farooqui, R. M. Fischer, 
K. Nowikovsky, W. Haubensak, I. D. Couzin, K. Tessmar-Raible, A. D. Straw, Virtual reality 
for freely moving animals. Nat. Methods 14, 995–1002 (2017).

D
ow

nloaded from
 https://w

w
w

.science.org at Saarlaendische U
niversitaets- und L

andesbibliothek on July 16, 2024

https://science.org/doi/10.1126/sciadv.abm6385
https://science.org/doi/10.1126/sciadv.abm6385


Poel et al., Sci. Adv. 8, eabm6385 (2022)     22 June 2022

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

11 of 11

	 62.	 B. Cramer, D. Stöckel, M. Kreft, M. Wibral, J. Schemmel, K. Meier, V. Priesemann, Control 
of criticality and computation in spiking neuromorphic networks with plasticity.  
Nat. Commun. 11, 2853 (2020).

	 63.	 T. Petermann, T. C. Thiagarajan, M. A. Lebedev, M. A. L. Nicolelis, D. R. Chialvo, D. Plenz, 
Spontaneous cortical activity in awake monkeys composed of neuronal avalanches.  
Proc. Natl. Acad. Sci. U.S.A. 106, 15921–15926 (2009).

	 64.	 T. Bellay, A. Klaus, S. Seshadri, D. Plenz, Irregular spiking of pyramidal neurons organizes 
as scale-invariant neuronal avalanches in the awake state. eLife 4, e07224 (2015).

	 65.	 Z. Ma, G. G. Turrigiano, R. Wessel, K. B. Hengen, Cortical circuit dynamics are 
homeostatically tuned to criticality in vivo. Neuron 104, 655–664.e4 (2019).

	 66.	 N. Tomen, D. Rotermund, U. Ernst, Marginally subcritical dynamics explain enhanced 
stimulus discriminability under attention. Front. Syst. Neurosci. 8, 151 (2014).

	 67.	 E. D. Fagerholm, R. Lorenz, G. Scott, M. Dinov, P. J. Hellyer, N. Mirzaei, C. Leeson, 
D. W. Carmichael, D. J. Sharp, W. L. Shew, R. Leech, Cascades and cognitive state: Focused 
attention incurs subcritical dynamics. J. Neurosci. 35, 4626–4634 (2015).

	 68.	 A. J. Fontenele, N. A. P. de Vasconcelos, T. Feliciano, L. A. A. Aguiar, C. Soares-Cunha, 
B. Coimbra, L. Dalla Porta, S. Ribeiro, A. J. Rodrigues, N. Sousa, P. V. Carelli, M. Copelli, 
Criticality between cortical states. Phys. Rev. Lett. 122, 208101 (2019).

	 69.	 G. Hahn, A. Ponce-Alvarez, C. Monier, G. Benvenuti, A. Kumar, F. Chavane, G. Deco, 
Y. Frégnac, Spontaneous cortical activity is transiently poised close to criticality.  
PLOS Comput. Biol. 13, e1005543 (2017).

	 70.	 E. Tagliazucchi, D. R. Chialvo, M. Siniatchkin, E. Amico, J. F. Brichant, V. Bonhomme, 
Q. Noirhomme, H. Laufs, S. Laureys, Large-scale signatures of unconsciousness are 
consistent with a departure from critical dynamics. J. R. Soc. Interface 13, 20151027 (2016).

	 71.	 A. Mathuru, C. Kibat, W. F. Cheong, G. Shui, M. R. Wenk, R. W. Friedrich, S. Jesuthasan, 
Chondroitin fragments are odorants that trigger fear behavior in fish. Curr. Biol. 22, 
538–544 (2012).

	 72.	 D. Palachanis, A. Szabó, R. M. H. Merks, Particle-based simulation of ellipse-shaped 
particle aggregation as a model for vascular network formation. Comput. Part. Mechanics 
2, 371–379 (2015).

	 73.	 J. Zierenberg, J. Wilting, V. Priesemann, A. Levina, Description of spreading dynamics by 
microscopic network models and macroscopic branching processes can differ 
due to coalescence. Phys. Rev. E 101, 022301 (2020).

Acknowledgments 
Funding: W.P. and P.R. were funded by the Deutsche Forschungsgemeinschaft (DFG) 
(German Research Foundation), grant RO47766/2-1. P.R. acknowledges funding by the DFG 
under Germany’s Excellence Strategy–EXC 2002/1 “Science of Intelligence,” project 390523135. 
B.C.D. was supported by a fellowship at the Wissenschaftskolleg zu Berlin and by the 
ASU-SFI Center for Biosocial Complex Systems. M.M.G.S. was supported by an NSF Graduate 
Research Fellowship. C.R.T. was supported by a MindCORE (Center for Outreach, Research, 
and Education) Postdoctoral Fellowship. I.D.C. acknowledges the DFG (German Research 
Foundation) under Germany’s Excellence Strategy–EXC 2117-422037984 “Centre for the 
Advanced Study of Collective Behaviour,” Office of Naval Research grant N00014-19-1-2556, 
and the European Union’s Horizon 2020 research and innovation programme under the Marie 
Sklodowska-Curie grant agreement no. 860949. Author contributions: W.P., B.C.D., M.M.G.S., 
C.R.T., P.R., and I.D.C. designed the research. W.P. and M.M.G.S. performed the research. W.P., 
B.C.D., S.P.L., and P.R. contributed new reagents or analytic tools. W.P., B.C.D., M.M.G.S., C.R.T., 
and P.R. analyzed the data. W.P., B.C.D., C.R.T., S.P.L., and P.R. developed the mathematical 
model and performed and analyzed numerical simulations. All authors wrote the paper. 
Competing interests: The authors declare that they have no competing interests. Data and 
materials availability: All data needed to evaluate the conclusions in the paper are present in 
the paper and/or the Supplementary Materials. The data underlying this study are published 
on Dryad (doi: 10.5061/dryad.sn02v6x5x). The code for the construction of visual interaction 
networks of ellipses can be found on Zenodo (doi: 10.5281/zenodo.4983257).

Submitted 1 October 2021
Accepted 5 May 2022
Published 22 June 2022
10.1126/sciadv.abm6385

D
ow

nloaded from
 https://w

w
w

.science.org at Saarlaendische U
niversitaets- und L

andesbibliothek on July 16, 2024

http://dx.doi.org/10.5061/dryad.sn02v6x5x
http://dx.doi.org/10.5281/zenodo.4983257

