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1 GALILEI-TRANSFORMATIONEN ALS 10-PARAMETER-GRUPPE

Teil 1
Klassische Mechanik

1 Galilei-Transformationen als 10-Parameter-Gruppe

Aufgabe 1 Galilei- Transformationen als 10-Parameter-Gruppe

Galilei-Transformationen sind Transformationen zwischen zwei Bezugsystemen. K und K’. Eine allgemeine
Galilei-Transformation is gegeben durch:

r = sg+vot+Rr
t' + 1o,

wobei sg € R3 eine konstante Verschiebung angibt, vo € R? die konstane Relativgeschwindigkeit, R € R3*3 ei-
ne Rotationsmatrix (folglich eine orthogonale Transformation) und ¢y € R eine konstante zeitliche Verschiebung.

a) Zeige, dass die Menge der Galilei-Transformationen zusammen mit der Hintereinanderausfithrung als Ver-
kniipfung o die Eigenschaften einer 10-Parameter-Gruppe aufweisen:

1. Die Verkniipfung ist assoziativ.

2. Es existiert ein neutrales Element.
3. Es existiert ein inverses Element.
4

. Die Gruppe ist abgeschlossen beziiglich ihrer Verkniipfung (d.h. zwei hintereinander ausgefiihrte
Galilei-Transformationen sind auch eine Galilei-Transformation).

b) Bilden die Galilei-Transformationen eine kommutative Gruppe? Begriinde! Wofiir stehen die 10 Parameter?

Federfithrende Dokumentation: Lucca Saar

1.1 Hintergrund
1.2 Musterlosung

Definition (aus der Aufgabenstellung). Eine Galilei-Transformation verkniipft die Koordinaten eines
Ereignisses (7,t") im Bezugssystem K’ mit den Koordinaten (7,¢) im System K:

t=1t'+to, (1)
F=358y+0t+ Rr. (2)
Dabei sind
5 € R? (Translation),
U € R3 (Boost),
R €S0(3) (Rotation),
toeR (Zeitverschiebung).

Wegen R € SO(3) gilt insbesondere R~! = RT. Kompakt:

g= (Ra 1705 §07t0)'

Verkniipfungsgesetz. Seien g1 = (R1,70.1,50,1,%1) und ga = (Ra,Tp,2, 50,2, t2). Wird zuerst g; und danach
g2 angewendet, so erhélt man

g204g1 = (Rth Uo,2 + Ralo,1, 80,2 + R280.1 + (Uo,2 + Ratio1) t1, t2 + t1)~

(Die Herleitung erfolgt weiter unten bei a)(4).)



1.2 Musterlésung 1 GALILEI-TRANSFORMATIONEN ALS 10-PARAMETER-GRUPPE

a) Gruppenaxiome
(1) Assoziativitit

Die Hintereinanderausfiithrung ist assoziativ, denn sie beruht auf Matrixmultiplikation (assoziativ) und Additi-
on/Skalarmultiplikation von Vektoren (ebenfalls assoziativ). Daher gilt aufgrund der Vererbung fiir alle g1, go, g3:

(g30g2)0g1 = g3o(g20g1).

(2) Existenz eines neutralen Elements

Ziel: Finde e = (Re, Up,e, 50,e,te) mit eo g = g und g o e = g fiir alle g.
Bedingung eo g = g:

. L. . . . ! I
eog = (ReR, To.e+ Relo, 50, + ReSo + (To,e + Relio) to, te +to) = (R, Vo, 50, to)-

Komponentenweise folgt
Re = I, UO,@ = Oa §0,e = 07 te = 0.

Gegenprobe goe = g: Mit e = (I, 0,0, 0) ist
goe=(RI, ¥+ RO, §y+ RO+ (o + RO) - 0, to +0) = g.

Ergebnis:

e=(1,0,0,0) |

(3) Existenz eines inversen Elements

Ziel: Finde ¢! = (E,g’o,go,f) mit g-log=gog ' =e.

Bedingung g 1 og=e:
g~ og = (RR, ¥ + R, 50+ Ro + (Go + Rilo) to, T+ to) = (I,0,0,0).

Daraus

R=R"1, T = —R™ 0, 50 = —R715, t

—to.

1

Gegenprobe g o g~ = e: unmittelbare Einsetzung liefert e.

Ergebnis:

g_1 = (R_17 _R_lﬁ(% _R_lg(h _tO) -

(4) Abgeschlossenheit
Ausgangspunkt: Wende g; auf (#/,¢”) an:
t'=1t"+1t, 7 =801+ Uoat + R = (S0 + Toat1) + Uoat" + R
Dann wende gy auf (7,¢') an:
t=t +ty=1t"+ (t; +ta2), =502+ Uo2(t" +t1 +t2) + Ror.

Einsetzen und sortieren nach ¢’ und 7:

/

7= [§0,2 + R25p1 + Yo,2(t1 +t2) + R2770,1t1] + (170,2 + R2170,1) "+ RoRy 7.

neue Translation neuer Boost neue Rotation

Ablesen der neuen Parameter und der neuen Zeit:

Ro1 = Ra Ry,
Up,21 = Vo,2 + Rati 1,
30,21 = 80,2 + Ro80.1 + (To,2 + Ra¥o1) t1,

Damit ist die Menge unter o abgeschlossen.



1.3 Kurioses 1 GALILEI-TRANSFORMATIONEN ALS 10-PARAMETER-GRUPPE

b) Kommutativitit und Parameteranzahl

Nicht-Kommutativitidt. Im Allgemeinen gilt g, 0 g1 # g1 © g2. Erklérbar ist dies zum einen dadurch, dass
Rotationen im R3 nicht kommutativ (RaR1 # R1R) sind, zum anderen unterscheiden sich die Mischterme in
§ (z.B. (Ua + Ra¥1)ty vs. (U7 + R17s2)t2). Die Galilei-Gruppe ist daher nicht kommutativ.

10 Parameter. SO(3) liefert 3 (Rotation), 7 € R3 liefert 3 (Boost), 5 € R3 liefert 3 (Translation) und ¢y € R

liefert 1 (Zeitverschiebung):
3+3+3+1=10.

Somit handelt es sich um eine 10-Parameter-Gruppe.

1.3 Kurioses



2 WURFPARABEL

2 Wurfparabel

Aufgabe 2 Wurfparabel

a) Betrachte einen Ball (als Massepunkt), der mit der Anfangsgeschwindigkeit v in einem Winkel « bzgl.
der Horizontalen geschossen wird. Das Ball bewege sich im Schwerfeld der Erde und Luftreibung wird
vernachlassigt.

1. Leite eine Beziehung zwischen der Hohe y des Balls und der zuriickgelegten, horizontalen Distanz x
her.

2. Bestimme die Reichweite R(«) des Balls, d.h., die horizontale Distanz, wenn er wieder den Boden
erreicht.

3. Bestimme die maximale Hohe hyax () des Balls.
4. Bestimme die Flugzeit T(«), bis der Ball wieder auf dem Boden auftrifft.

b) Nimm an, dass der Ball eine Mauer der Hohe h in einer Entfernung ! {iberwinden muss, um ein Tor im
Abstand 2 zu erreichen.

1. Wie lautet der Winkel 6 (in Abhéngigkeit von h und ), um das Tor zu treffen?
Hinweise: Verwende das Ergebnis von Teil a)
2. Wie grofi muss die Anfangsgeschwindigkeit vy sein (in Abhiingigkeit von h und [), um das Tor zu

treffen?

Federfithrende Dokumentation: Lucca Saar

2.1 Hintergrund

Um die Aufgabe zu 16sen muss folgendes Vorwissen vorhanden sein:
Kinematik Momentane GroBen: 7(t) = #(t), a(t) = v(t) = #(t).

Bewegungsgleichungen (konstante Beschleunigung) Aus dem zweiten Newtonschen Gesetz md = F
und der Gewichtskraft F' = mg folgt

ma=mg = d=4g.

Durch Integrieren mit Anfangsbedingungen z(0) = y(0) = 0 sowie z'(0) = voz, ¥'(0) = vo, erhdlt man die
Bewegungsgleichungen des schriigen Wurfes:

" (t) =0, 2/ () = vog, x(t) = vou t,
y'(t) = —g, Y (t) = voy — gt, y(t) = voy t — 2gt°.

Extremwerte Um Maxima oder Minima von zeit- oder ortsabhidngigen Groflen zu bestimmen, wird das
Kriterium verwendet, dass an einem Extrempunkt die erste Ableitung verschwindet. Fiir eine Funktion f(¢) gilt
also

dr _

=0
dt

am Extrempunkt.

Dieses Vorgehen ist allgemeingiiltig: Wo die erste Ableitung einer glatten Funktion verschwindet, kann ein Ex-
trempunkt vorliegen; ob es sich um ein Maximum oder Minimum handelt, lédsst sich anschlieend beispielsweise
iiber das Vorzeichen der zweiten Ableitung entscheiden. Beim schrigen Wurf gibt es jedoch nur ein Maximum
im Kurvenverlauf, wodurch die zweite Ableitung nicht benttigt wird.



2.2 Musterlosung 2 WURFPARABEL

2.2 Musterlosung

a) Grundgleichungen und Eliminierung der Zeit

Ansatz: Punktmasse, Startgeschwindigkeit vy im Winkel « iiber der Horizontalen, Ursprung als Abwurf-
punktpunkt. Zerlegung:
Voz = Vg COS Q, Vpy = Vp Sin a.

Bewegung ohne Luftreibung:

2(t) = vog t = vg cosat,

y(t) = voy t — %th =wvgsinat — %gtz.

(1) Bahnkurve y(z). Eliminiere t aus = vg cos at:

T
t= .
Vg COS v
Eingesetzt in y(t):
g 2
r)=zrtana — —5——F— .
y(=) 203 cos? a

(2) Reichweite R(a). Aufschlag, wenn y =0 (aufler z = 0):

9
203 cos? a

9

2> = 240 tana = ——H———u.
2v§ cos? v

0=xtana —

Setze x = R und benutze sin(2a) = 2 sin o cos o

02
R(a) = ?0 sin(2a) |

(3) Maximale Hohe hpax (). Maximum von y(t) bei y = 0:

Vg Sin «
Y(t) = vosina — gt = 0 = tyax = 0 .
g

Eingesetzt in y(t):

Amax = Vg Sin « -

. . 2
vosina 1 <v051na>

g 2 g
- 118 sin? a
= 729 .
Also
2 .
Vg sin” «
hmax(a) = 29

(4) Flugzeit T'(«). Nullstelle y(¢) = 0 auler ¢ = 0:

9 s
vosinat — 3gt° =0 = t(UOSiHa—%gt) -0 = t=7="220%%
g
Also
T(a) = 2050 |
g

b) Mauer bei x = (Hohe /) und Tor bei x = 2I

Es wird verlangt, dass die Bahn durch die Punkte (z,y) = (I, h) und (2[,0) geht. Beide Bedingungen werden in
y(x) eingesetzt und zunichst nach dem Winkel aufgelost.



2.3 Kurioses 2 WURFPARABEL

(1) Winkel 6(h,1). Aus y(2l) =0:

2
0=2ltan6 — %(%:m (20)* = 2l tan 6 — vgiils?e'
Daraus folgt l
tanf = %'
Aus y(1) = h:
h=ltand = 5o

2

l
Benutze (%), um — J = [ tan # umzuschreiben:

2
vg cos? 0

1 1 2h 2h
h—ltane—iltaHQ—iltanH = tanﬁ—T = 0—arctan(7) .

(2) Erforderliche Anfangsgeschwindigkeit vg(h,!). Der gefundene Winkel 6 wird in (*) eingesetzt:

'U2: 971

O tanfcos2 6’
Mit tan 6 = 2/l und cos® 0 = 1 = ! __r
B T 1+tan20  144h2/12 12 +4h2

2 — gl IP+4n? _ gl> 1 +4n? _ g (I? + 4h?)
O (2n)1) 12 2h 12 2h

Damit

g (12 + 4h2?)

UO(hvl) = 2h

Einheitencheck: g in m/s?, h,l in m = vg in m/s daher korrekt.

2.3 Kurioses

Schon Aristoteles glaubte, dass geworfene Korper sich zunéchst geradeaus und anschliefend senkrecht nach
unten bewegen. Erst Galileo Galilei zeigte im 17. Jahrhundert, dass die Bewegung aus der Uberlagerung eines
gleichférmigen horizontalen und eines gleichméflig beschleunigten vertikalen Anteils besteht und die Bahn somit

eine Parabel ist.



3 RAKETE

3 Rakete

Aufgabe 3 Raketenproblem

Eine Rakete der Masse m(t) bewege sich mit einer Geschwindigkeit v(t) zum Zeitpunkt ¢ von der Erde weg
senkrecht nach oben. Es wird ein homogenes Schwerefeld angenommen und der Einfluss des Luftwiderstandes
wird vernachléssigt. Die Rakete der Anfangsmasse mg stot pro Zeiteinheit die Gasmenge o = AA—’;‘ > 0 mit

konstanter Geschwindigkeit vg (relativ zur Rakete) nach unten aus. Siche Abbildung.

a) Zeige, dass die Bewegungsgleichung der Rakete die folgende Form hat

dv dm
m— = ——"=uv — Mqg = xvp — Mmgq.
at az 0 g 0 g

b) Integriere die Bewegungsgleichung, um einen Ausdruck fiir v(m) zu erhalten. Die Anfangsgeschwindigkeit
der Rakete sei v(mg) = 0.

¢) Schitze ab, wieviel mal grofer die Anfangsmasse der Rakete mg gegeniiber der Masse der leeren Rakete
sein muss, um die Fluchtgeschwindigkeit von der Erde vy = 11,21‘Tm fiir die Parameter vy = 2,1%’“ und

o= % zu erreichen.

d) Berechne v(t) aus v(m) mit Hilfe von m(t) = mo — at und entwickle v(t) fiir kleine Zeiten. Diskutiere das
Ergebnis. Hinweis: In(1 + z) ~ z fiir |z| < 1

Federfithrende Dokumentation: Max Lauer

3.1 Hintergrund

Das Raketenproblem gibt es logischerweise langer als es Raketen gibt. Fiir die Losung eben dieses ist nicht mehr
von Noéten als die Newtonschen Gesetze. Das bedeutet, dass es das Raketenproblem seit dem 17. Jahrhundert
gibt. Damals konnte man sich sicherlich noch nicht ausmalen, dass die Rechnerei 250 Jahre spéater den Menschen
auf den Mond verhelfen wird. Erstmalig tauchte 1810 eine Losung des Raketenproblems in einem Journal auf.
Diese stammte vom britischen Mathematiker William Moore.

10



3.2 Musterlosung 3 RAKETE

3.2 Musterlosung

a) Nach Newtons zweitem Gesetz gilt fiir die Kraft:

dp
L_F
at (3a)
dv dm ,
& ma+av7—mg+F. (3b)

I’ bezeichnet hier die Kraft die das ausgestofiene Gas auf die Rakete ausiibt.
Der Impuls des ausgestolenen Gases betragt:

Ap = Am(v — vp).
Teilt man diese Gleichung jetzt auf beiden Seiten durch At, erhélt man:

%7Am

At = Ap U0

Links und rechts auf der Seite dieser Gleichung stehen nun also eine Kraft, ndmlich die Kraft, die auf die
ausgestoflenen Gasteilchen wirkt. nach Newtons 3. Gesetz (actio=reactio) wirkt die entgegengesetzte Kraft auf
die Rakete:

F' = —a(v — ). (4)

Setzt man nun Gl. in GL ein so erhélt man folgende Bewegungsgleichung:

m + U= ™M a(v —vp).

Die Gesamtmasse der Rakete ist:
dm
m(t):mo—atﬁﬁz—a (5)

Setzt man GI. in die Bewegungsgleichung ein, so erhélt man die gesuchte Form:

dv dm n

m— = —mg — —vy = —mg + avyg.
dt g at vo g 0

b) Nun wollen wir einen Ausdruck fiir v(m) finden. Dazu miissen wir aus unserer DGL die Variable ¢ entfernen.
Es gilt:
dv  dv dm dv

dt  dmdt . Cdm’
Daraus ergibt sich:

dv
—a—— = —mg + vy
dm
& dv = g dm — % dm
« m

Durch beidseitige Integration erhalten wir den Ausdruck fiir v(m):
v(m) = %m — v In(m) + C.

C ist dabei die Integrationskonstante. Diese wird durch die Anfangsbedingung v(mg) = 0 festgelegt. Nach
Einsetzen der Anfangsbedingung erhélt man als Losung fiir v(m):

v(m) =

Qv

(m — mo) — vo In <m> (6)

mo

¢) Wir machen Gebrauch von der Abschitzung, dass e < 1 ist. Setzen wir alle gegebenen Werte in unsere

Gleichung ein, so erhalten wir:
v9 = g60s (m — 1) —vpln (m)
mg mo

Aufgrund unserer Abschéitzung kénnen wir den Term m/(myg), der nicht im Logarithmus steht vernachlidssigen.
Ohne diesen Term erhalten wir eine analytisch-losbare Gleichung mit der Losung:

M~ 274,
mo

11



3.3 Kurioses

3 RAKETE

Das bedeutet, dass die Startmasse der Rakete ungefihr 274-Mal so schwer sein muss wie die Rakete beim

Verlassen der Erde.
d) Zunéchst setzen wir in Gl. (6) v(m) = v(m(t)) mit m(t) wie in Gl. (5)):

v(m(t)) = —gt — voIn (1 - ) .

Mithilfe der Naherung fiir kleine t aus der Aufgabenstellung ergibt sich dadurch:

v(m(t)) ~ t (”07:0 —g> .

3.3 Kurioses

Das deutsche V-2-Raketen-Testmodell MW 18014 erreichte im Juni 1944 als erstes von Menschen geschaffenes
Objekt den Weltraum. Sputnik 1, gestartet von der Sowjetunion am 4. Oktober 1957, war der erste kiinstliche
Erdsatellit und gilt als Beginn der modernen Raumfahrt. Der sowjetische Kosmonaut Juri Gagarin wurde am
12. April 1961 mit der Wostok 1 Rakete als erster Mensch ins All beférdert. All das, ohne Newtons Gesetze
unerreichbar (dieser Satz ergibt auch mehr oder weniger Sinn, wenn das Komma ein Wort vorangestellt wird,

und ein passend gewiihltes Verb den Satz vervollstéindigt).

12



4 ZYLINDER- UND KUGELKOORDINATEN

4 Zylinder- und Kugelkoordinaten

Aufgabe 4 Zylinder- und Kugelkoordinaten

a) Es gelten folgenden Umrechnungsregeln zwischen Zylinderkoordinaten (p, ¢, z) und kartesische Koordina~
ten (z,y,2) :
x = pcos(p)
y = psin(p).

Bestimmen die (normierte) Basis (e,, e,, €.) der Zylinderkoordinaten, das Wegelement, die Jacobi-Determinante
und das Volumenelement. Uberzeuge dich, dass es sich um eine rechtshiindige Orthonormalbasis handelt.

b) Eine Bahnkurve sei gegeben durch r(t) = p(t)e,(t) + z(t)e.. Gib die Ausdriicke fiir die Geschwindigkeit
und die Beschleunigung in Zylinderkoordinaten an.

¢) Wiederhole die Rechnungen aus a) und b) fiir Kugelkoordinaten (r, 8, ¢), fiir die folgende Umrechnungs-
regeln gelten:

x = rsin(f) cos(p)
= rsin(f)sin(y)
z = rcos(h).

Federfithrende Dokumentation: Lucca Saar

4.1 Hintergrund
4.2 Musterlosung

a) Zylinderkoordinaten: Basisvektoren und Volumenelement

Gegeben sind die Umrechnungsregeln zwischen Zylinderkoordinaten (p,¢,z) und kartesischen Koordinaten
(2,9, 2):

T = pCcosy,
y = psing,
Zz=Z.

Wir betrachten den Ortsvektor in kartesischer Darstellung
Hz,y,2) =xéy +yé, +zé,.
Setzt man die Umrechnungsvorschriften ein, so erhélt man
T(p, 0, 2) = pcospé, + psinp é, + zé&,.

Die Koordinatenlinien erh#lt man, indem man jeweils eine Koordinate variiert und die anderen festhélt. Die
zugehoérigen (nicht normierten) Basisvektoren sind die partiellen Ableitungen von 7 nach den Koordinaten:

or 0 . A .

3= a7p(pcosgpe:,c+psmgaey+zez)
=cospé, +sinpé, +0-é,,

or 0 . A .

B = %(pcosgaez + psingpé, + zé€.)
= —psinpé, +pcospé, +0-¢€,,

or 0 . o .

5 = &(pcosgoex + psinpe, +zé,)

=0-6,+0-&,+1-é..

13



4.2  Musterlésung 4 ZYLINDER- UND KUGELKOORDINATEN

Die Lingen dieser Vektoren sind

oF
h, = a—; =/cos2p +sin®p =1,
or - .2
hy = a0l = V(=psing)? + (pcos p)? = \/p2(8m ¢+ cos? p) = p,
or
h,=|=| =1
8z’
Die normierten Basisvektoren erhélt man durch Division durch die jeweilige Lénge:
B 1 0F OF 6. +sinwé
= —— =_— =Cospé, +sin ,
P hp ap ) ¥ Pey
R 1 o7 1 ( o, 4+ . ) noe. + R
é,=——=—(—psinpeé, cospé,) = —sinpé, + cospé,,
@ hy 0p  p psme P P ey ¥ ey
. 107
é.=——=@¢&,.
h, 0z

Damit haben wir die orthonormale Basis der Zylinderkoordinaten gefunden:
(€, €5,€2).
Orthonormalitéit: Wir iiberpriifen die Skalarprodukte explizit.
€, €, = (cospé, +sinpé,) - (cospé, +sinpé,)
=cos?p+sinp =1,
analog
é, é,=(—sinpé, +cospé,)-  (—sinpé, +cospé,)
=sin?p 4 cos®p =1,

und offensichtlich

Die gemischten Produkte
é, €é,=0, €, €, =0, €, €, =0
folgen direkt, da é,, é,, €, orthonormal sind.
Rechtshindigkeit: Wir berechnen das Kreuzprodukt
€, X é, = (cospeé, +sinpé,) x (—sinpé, +cospé,).
Verwendet man é, x &, = €, und &, X &, = —€_, erhilt man

€, X &, = cospcosp (€, x &)+ sinp(—siny) (&, x &)

= (cos® p +sin’ p)é, = é..

Damit ist das Tripel (é,, &, é,) rechtshandig.
Volumenelement: Das Volumenelement ergibt sich aus dem Betrag der Jacobi-Determinante det(9(z, y, 2)/9(p, ¢, 2)).
Die Jacobi-Matrix ist

dp Oy 0z Py
oy Oy oy cosp  —psing 0
J=|+= = S| =|sinp pcose 0
dp Jp 0z 0 0 1
dp Op 0z
Die Determinante ist
sing pcose

=1 (cosp-pcosp — (—psiny) - siny)
= p(cos® p +sin? ) = p.

Daher gilt
dV = |det J|dpdp dz = pdpdpdz.
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4.2  Musterlésung 4 ZYLINDER- UND KUGELKOORDINATEN

b) Bewegung in Zylinderkoordinaten

Die Bahnkurve sei gegeben durch
7(t) = p(t) ép(t) + 2(t) é-.
Beachte: €, hangt iiber den Winkel ¢(t) von der Zeit ab, é, ist konstant.

Geschwindigkeit. Die Geschwindigkeit ist die Zeitableitung des Ortsvektors:

i(t) = %7; - %(p(t) €p(t) +2(t) éz)

= p(t) é,(t) + p(t) é,(t) + (1) é.,

wobei Punkte die Ableitung nach der Zeit bedeuten.
Um é, zu bestimmen, schreiben wir €, explizit in kartesischen Komponenten:

é,(t) = cosp(t) &, + sinp(t) é,.
Ableitung nach der Zeit:
ép(t) = —sinp(t) p(t) €, + cos p(t) ¢(t) &,
= ¢(t)(—sinp(t) €, + cosp(t) &,).
Der Vektor in Klammern ist genau é,(t), also
é,=pé,.

Die Einheitsvektoren é, und €, sind beziiglich ¢ beziehungsweise z definiert; fiir €, gilt é, =0.
Einsetzen in v:

U(t)=peé,+ppé,+2é,.
Dies ist die Geschwindigkeit in Zylinderkoordinaten.

Beschleunigung. Nun bestimmen wir die zweite Ableitung:

. v d,. . L
it) = = g (pe+rpé, +2é)
—jé,tpe,+ppé,+ppé,+ppe,+ié..

Wir kennen bereits &, = ¢ €,. Analog bestimmen wir é,:

é,(t) = —sinp(t) é; + cos p(t) é,.

Ableitung:
é¥, (t) = —cos(t) p(t) €z — sinp(t) p(t) &,
=—p(t) (cos o(t) é; + sinp(t) éy)
= —p(t) €,(1).
Also )
€, =—Pé,.
Damit gilt

d=pe,t+p(Pep)+ppéptppé,+pp(—pe,)+2é.
=pe,+2ppe, +ppé, _prQép‘i'ééz-
Wir fassen die Komponenten zusammen:

G=(p—p*) e, + (p@+2p3) €, +2é..
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4.3 Kurioses 4 ZYLINDER- UND KUGELKOORDINATEN

c) Kugelkoordinaten
Die Umrechnung in Kugelkoordinaten (r, 8, ¢) lautet

x = 7sinf cos g,
y = rsinfsin @,

z=rcosb.

Ortsvektor und nicht normierte Basisvektoren. Der Ortsvektor ist
T=x€,+yéy+2€, =rsinfcospé, +rsinfsinpé, +rcosdé,.

Die partiellen Ableitungen nach den Kugelkoordinaten sind

or . . . o .

o sinf cosp é, + sinfsinpé, + cosb é,,

or . o P
0= rcosfcospé, +rcosfsinpé, —rsinfé,,
or . . . . .

90 = —rsinfsinpé, + rsinfcospé, +0-é€,.
" :

Die Léngen dieser Vektoren:

h, = or| _ \/sin2 0(cos? ¢ + sin” ) 4 cos2 ) = V/sin? @ + cos2 6 = 1,
or
he = % = 1/72(cos? 0(cos? ¢ + sin® ) + sin® ) = \/TZ(COS2 6 +sin® ) = r,
hy = g—r ‘ = \/1"2 sin? f(sin” o + cos? @) = rsin 6.
14

Normierte Basisvektoren. Durch Normierung erhalten wir

R 107 or - 5 4 sinfsinewé, + cosf é
€ = ——— = _—=81mvovcospe S e sim e e cosv e
r hra?” or P ey pey 2]
1 0F 107

" he06 o8
= cosflcospé, +costsinpé, —sindé,,
1o 1 oOF

Co = E% N rsinG%

= —sinpé, +cospé,.

Damit ist

(ér» €9, éw)
eine orthonormale Basis in Kugelkoordinaten. Analog wie oben zeigt man &, - €, = 1 etc. und é, x éy = €,
also Rechtshéndigkeit.

Volumenelement. Die Jacobi-Matrix d(z,y, z)/d(r, 0, ¢) hat Determinante det J = r? sin . Damit
dV = r?sin @ dr df d.

Bewegung. Eine Bahnkurve in Kugelkoordinaten kann als
(t) = r(t) ér(t)
geschrieben werden. Mit der Standardrechnung (analog zu Teil b) erhélt man:
T=r1é, +rég +rsinfgeé,,
a=(F—rf*—rsin20p%)é,
+ (10 + 270 — rsin 6 cos 0 $?) ég
+ (rsin® @ + 2rsinf ¢ + 2r cos 0 6 @) é,.

4.3 Kurioses
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5 ATWOODSCHE FALLMASCHINE

5 Atwoodsche Fallmaschine

Aufgabe 5 Atwoodsche Fallmaschine
Zwei Massen mq, mo hingen an einem nicht dehnbaren Faden der Lénge ! {iber einer festen Rolle im Schwerefeld
der Erde senkrecht nach unten. Die Rolle und der Faden werden als masse- und reibungslos betrachtet.

a) Skizziere das System und trage alle relevanten Groflen und Variablen ein.
b) Analysiere das System mit Hilfe der Newtonschen Mechanik:

1. Benenne alle Krifte, die auf die beiden Massen wirken.

2. Leite eine Bewegungsgleichung fiir z; her.
¢) Analysiere das System mit Hilfe der Lagrange-Gleichungen zweiter Art:

1. Schreibe die Lagrange-Funktion L(z1, 22, 21,22) = T — V fiir das System ohne Beriicksichtigung der
Zwangsbedingung auf.

2. Wahle eine geeignete generalisierte Koordinate ¢ aus, die die Zwangsbedingung beriicksichtigt, und
driicke L(q, ¢) in dieser Koordinate aus.

3. Stelle die Lagrange-Gleichung 2. Art auf.
d) Lose die Bewegungsgleichung.

e) Nimm an, dass fiir ¢ = 0 beide Massen in 12m Hohe als Ruhelage (v(0) = 0) héngen. Berechne — fiir die
Parameter, g = 105, m; = 12 kg und mo = 48 kg die Zeit ¢, bis zum Auftreffen der schwereren Massen
auf dem Boden.

f) Berechne die Geschwindigkeit v der Masse mo beim Auftreffen auf den Boden.

Federfithrende Dokumentation: Lucca Saar

5.1 Hintergrund

5.2 Musterlosung

a) Skizze

b) Newtonsche Herleitung der Bewegungsgleichung
1. Krifte. Auf jede Masse wirkt

e die Gewichtskraft m;g nach unten,

e die Seilspannung 7" nach oben.

Wir wahlen die positive Richtung nach unten.

2. Bewegungsgleichung fiir z;. Fiir die Masse m; gilt die zweite Newtonsche Gleichung:
mq 51 =mig — T.

Fiir die Masse mo entsprechend:
mgég = Tmag — T.

Die Zwangsbedingung
21+ 29 =1

impliziert nach zweimaliger Ableitung
Z1+72=0 = Zy=—Z.

Aus der Gleichung fiir m, folgt
T = mig —mq Zl

17



5.2 Musterlosung 5 ATWOODSCHE FALLMASCHINE

Setzen wir dies in die Gleichung fiir mq ein, so erhalten wir
maZs = mag — T = mag — (m1g — m1Z)
= (mg —mq)g + m1Z.
Mit %, = —%; folgt
ma(—%1) = (ma — mq)g +myZ;.
Wir bringen alle Terme mit Z; auf die linke Seite:
—maZ —miZ = (mg —my)g.

Links klammern wir Z; aus:

—(mq 4+ ma)Z; = (ma2 — mq)g.
Multiplikation mit —1 ergibt

(my 4+ mg)Z1 = (M1 — ma)g.

Also
. mi —m2
ZH=—
mi + Mo
Entsprechend folgt aus 75 = —%;
. mo —1my
Zg = ———
mi + Mo

Fiir mo > mg ist Z5 > 0, die schwerere Masse bewegt sich nach unten.

c) Lagrange-Formalismus
1. Lagrange-Funktion mit Koordinaten 2z, 25. Die kinetische Energie ist

1
T= 5mlzf + iszg.

Mit der Wahl der Nullhche an der Rolle ist die potentielle Energie
V =migz1 + magzs.

Also ) .
L(Zl, 22, 217 22) = T — V = *mléf + *mgég — migz1 — magza.

2 2

2. Einfithrung einer generalisierten Koordinate. Die Zwangsbedingung lautet

21+ 20 =1.
Wir wihlen
q(t) == z1(t)
als generalisierte Koordinate. Dann ist
22 = l— q, z29 = —¢q
Wir setzen dies in 7" und V ein.
Zuerst die kinetische Energie:
1 1 1 1
T = §m1d2 + §m2(—q')2 = §m1(12 + §m2612
1 .
= 5(m1 +m2)g”.

Dann die potentielle Energie:
V = migq +mag(l - q)
= m19q + magl — magq
= g(m1 — ma)q + magl.
Die Lagrange-Funktion in der Koordinate ¢ ist

1 .
= §(m1 + m2)q2 — g(m1 —ma)q — magl.

Die Konstante —mogl spielt fiir die Bewegungsgleichung keine Rolle.

18



5.2 Musterlosung 5 ATWOODSCHE FALLMASCHINE

3. Lagrange-Gleichung 2. Art. Die FEuler-Lagrange-Gleichung lautet

d oLy oL _
dt \ 9¢ dq

Zunéchst
oL _ (my + m2)q
8(] - 1 2)4,
L (OLY _ (g + ma)i
ar g = (m1 +~mz)q.
Weiter
oL ( )
dq = —g(my —ma).

Damit wird die Lagrange-Gleichung zu
(mq 4+ mg)g — (*g(ml - mz)) =0,

also
(mq1 4+ ma)§ + g(my — mg) = 0.

Wir 16sen nach ¢ auf:
Mg — My

mi + Mo

Da g = z; ist, stimmt dies mit dem Ergebnis aus Teil b) iiberein.

d) Lésung der Bewegungsgleichung

Die Gleichung
.. Mz —my
4d=a, a := ——¢g = konstant,
mi + Mo
ist die eines gleichméBig beschleunigten Systems.

Die allgemeine Losung lautet
q(t) = q(0) + ¢(0)t + %atz.
Schreibt man wieder z; statt g, so ist
21(t) = 21(0) + 21 (0)t + %% £
Wegen zo =1 — z; folgt
1mo—my

22(t) =1 = 21(0) = 2(0)t — 2my +my

e) Einschalten der Anfangsbedingungen und Zeit bis zum Aufprall

Gegeben ist: Zu t = 0 héngen beide Massen in Ruhe in 12m Hohe iiber dem Boden. Wir interessieren uns fiir
die Zeit, bis die schwerere Masse mo den Boden erreicht.
Es ist praktisch, fiir mo eine neue Koordinate

s(t) := Weg der Masse mq nach unten, gemessen ab ihrer Anfangslage

einzufiithren. Dann gilt:

s(0) =0,

5(0) =0,
mo — M
Ss=a=——4g.
my + mo

Mit s = 0 am Anfang und Endpunkt s = 12m beim Auftreffen auf den Boden.
Die Bewegungsgleichung ist also

1
s(t) = §at2,
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5.3 Kurioses 5 ATWOODSCHE FALLMASCHINE

da s(0) = 0 und 5(0) = 0.
Wir setzen s(tBoden) = 12m:

12 = Jthggen = 5t
Einsetzen von g = 10m/s?, m; = 12kg, mo = 48kg:
- Z:Z;gz j:jrg 10 = %~10:0,6-10:6m/s2.
Damit 1
12=75-6- tBoden = 3Boden-
Also

t]230den = ? =4 = tBoden = 2s.

f) Geschwindigkeit beim Auftreffen

Die Geschwindigkeit von ms zum Zeitpunkt tgogen €rgibt sich aus
v(t) = §(t) = at.
Fiir t = tBoden = 25 und a = 6m/s?:
UBoden = UtBoden = 6m/s? - 25 = 12m/s.
Die schwerere Masse mo trifft den Boden also mit einer Geschwindigkeit von

UBoden = 12m/s.

5.3 Kurioses
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6 ZYKLOIDENPENDEL

6 Zykloidenpendel

Aufgabe 6 Zykloidenpendel

Betrachte eine Masse m, deren Bewegung im homogenen Erdschwerefeld g auf eine Zykloide eingeschrénkt ist.

A R A R Ry
7

Der Ortsvektor der Masse ist parametrisiert durch —7 < 6 < 7w alsr = R ( _effé‘(‘)f 9) gegeben, wobei 0 < R =
const. ist.
a) Stell die Lagrange-Funktion des Systems auf. Wihle dabei 6 als generalisierte Variable g.

b) Leite folgende Bewgungsgleichung fiir die Masse m her:

Hinweis: Die Halbwinkelidentititen 2 cos® 4 = (14 cosq) und sing = 2sin & cos & kénnen hilfreich sein.

¢) Wie lautet eine geeignete Variablentransformation, um die Bewgungsgleichung in die eines harmonischen
Oszillators zu iiberfithren? Wie lautet die entsprechende Periode?

d) Gib die Losung ¢(t) an.
Hinweis: Verwende dein Wissen iber die Losung des harmonischen Oszillators.

Federfithrende Dokumentation: Max Lauer

6.1 Hintergrund

Als Hintergrund dieser Aufgabe dient lediglich die Lagrangemechanik. Dies ist eine wunderschéne Aufgabe um
den Lagrange-Formalismus zweiter Art und die harmonische Schwingung einzuiiben.

6.2 Musterlosung
a) Wir berechnen zunéchst den Betrag der Geschwindigkeit v und damit unsere kinetische Energie T":
v? = % + >
v? = (R(0 + 0 cos(0))? + (RO sin(0))? = 2R*0*(1 + cos())
=T = %@2 = mR202(1 + cos(0))

Unser Potential hdngt nur von der Hohe ab, also von y:

V =mgh = mgR(—1 — cos(0))
Daraus erhalten wir die Lagrangefunktion 7' — V:

L = mR(1 4 cos())(R? + g)
b) Wir benutzen die Lagrange Gleichung zweiter Art:

doL oL

atas o0 0

& 20mR?(1 4 cos(0)) — 2mR?6? sin(0) + mRsin(0) (RO + g) = 0
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6.3 Kurioses 6 ZYKLOIDENPENDEL

& 2mR2((1 + cos())d — sin(6)8?) + mRsin(6)(RE* + g) = 0

Nun schreiben wir diesen Ausdruck mithilfe der Hinweise in der Aufgabenstellung um:
9 9,0 .0 0., . 0 0 -
2mR*(2 cos (5)0 - 2sm(§) 008(5)9 )+ 2mRsm(§) cos(i)(RH +9)=0
Nun dividieren wir beide Seiten der Gleichung durch Qmchos(g) und erhalten:

Qécos(g) — 62 sin(g) + %sin(g) =0

Durch scharfes Hinsehen, entdeckt man:

. 0 o . 0 2 0
29608(5) -0 sm(i) = 4@ sln(i)
Daraus ergibt sich nun die gesuchte DGL fiir die Masse m:
d? 0 0

: g . 0
dt281112+4R81n270

c¢) Die Variablentransformation lautet:

x = sin(=)
Die DGL lautet dann: g
xr = _Ex

d) Die allgemeine Losung lautet:

x(t) = sin(g)(t) = Aexp(iwt) + B exp(—iwt)

Mit komplexen Vorfaktoren A und B. Dies kénnen wir noch nach 6(¢) umformen:

. 1 /g 1
0(t) = 2aerln(Aexp(z§ ﬁt) + Bexp(—z§ Et))

6.3 Kurioses

Im Gegensatz zum mathematischen Pendel ist das Zykloidenpendel exakt harmonisch. Das bedeutet, dass die
Schwingungsfrequenz unabhéngig von der Auslenkung ist. Beim mathematischen Pendel ist dies nur fiir kleine
Auslenkungswinkel gegeben.Dies verschafft dem Zykloidenpendel einen groflen Vorteil wenn es um den Verbau
in beispielsweise Uhren geht. Die Pendelbewegung ist dann nédmlich mit dem Uhrwerk verbunden. Bei jedem
Durchgang 16st die Schwingung eine Bewegung im Uhrwerk aus, die die Zeitanzeige weiterschaltet. Genial, nicht
wahr?
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7 KRAFTFELDER UND ARBEIT

7 Kraftfelder und Arbeit

Aufgabe 7 Kraftfelder und Arbeit

Betrachte das Kraftfeld
kvy
F(:Ca Y, Z) = klaj
2k22

a) Zeige, dass es sich um eine konservative Kraft handelt, und bestimme das Potenzial V.

b) Berechne die Arbeit, die bei einer Bewegung von (0,0,0)7 nach (r,r,r)T verrichtet wird.

c) Zeige, dass alle Zentralkraftfelder, also Kraftfelder der Form F(r) = f(r) e, mit einer skalaren Funktion
f, r = |r| und dem Einheitsvektor e, = r/|r|, stets von einem Potenzial V abgeleitet werden kénnen.

d) Betrachte ein Teilchen mit Koordinate r und Masse m, das einer allgemeinen (ortsabhéngigen) Kraft F
unterliegt. Die kinetische Energie ist durch 7' = %mi‘2 gegeben. Nimm an, dass sich das Teilchen zum
Anfangszeitpunkt ¢; am Ort r(¢;) und zum Endzeitpunkt ¢; am Ort r(ty) befindet. Zeige, dass die Arbeit

r(ty)
W:/ F.dr,
r(t;)

die durch die Kraft verrichtet wird, durch die Differenz der kinetischen Energie vom Anfangs- und End-
zeitpunkt gegeben ist.

Federfithrende Dokumentation: Lucca Saar

7.1 Hintergrund
7.2 Musterlosung

(a) Konservativitit und Potential V'

Ziel. Wir priifen V x F' = 0. In einer einfach zusammenhingenden Domine (hier: ganz R3) ist das #iquivalent
zur Existenz eines Potentials V mit F = —VV.

Schritt 1: Rotation komponentenweise. Fiir F = (F,, F,, F.) gilt

Oy F. — 0. F,
VxF=|090,F,—0,F,
0. Fy — 0y F,

Mit F, = ky, Fy = kx, F, = 2koz erhalten wir

OyF. =0, 8.F, =0, 0.F, =0, 0,F, =0, 0,F, = ky, 0,F, = ky.

Damit
0-0
VxF=| 0-0 =0.
ki — Kk

Schritt 2: Schluss = konservativ. Da V x F = 0 in R3 und R? einfach zusammenhingend ist, ist F
konservativ.
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7.3 Kurioses 7 KRAFTFELDER UND ARBEIT

Schritt 3: Potential V konstruieren aus F = —VV. Wir losen

ov ov ov
—%—Fz—kly, —aiy—Fy—klx, —a—FZ—QkQZ

(i) Integration nach x:

ov
= kvy = V(z,y,2) = —kizy + f(y,2),

wobei f eine (vorerst) unbekannte Funktion ist, die von y, z abhiingen kann.
(ii) Vergleich mit —0V /0y = kyx:

ov 0
oy *57}( —kizy + f(y,2)) = krx — dy kyz.
Also 2 =0, d.h. f hangt nicht von y ab: f = f(z).
(iii) Vergleich mit —9V/0z = 2kgz:
df

—; = 2z = f(2) = —ko2® + C.

Ergebnis.

‘V(x’yvz):*klxy*kzz2+0‘

fiir eine beliebige Konstante C. (Kontrolle: —VV = (kyy, kiz, 2k2z) = F.)

(b) Arbeit von (0,0,0)” nach (r,r,r)T

Fiir konservative Felder ist die Arbeit wegunabhéngig und
W = / F - dr = V(Start) — V(Ziel).
2l

Mit C = 0 geniigt
V(0,0,0) = 0, V(r,r,r) = —(ky + ko)r2.

Daraus

W = (k + Bo)r? |

(c) Zentralkrifte sind konservativ

Sei F(r) = f(r) e, mit r = ||r|| und e, = r/r. Definiere
Vi) = - / £(s)ds.

Dann 9% = —f(r) und in Kugelkoordinaten VV = 9¥e, = —f(r)e,. Somit —VV = f(r)e, = F. Also ist F

konservativ.

(d) Arbeit—Energie-Satz

Mit T = %mi’Q und Newton m# = F':
dr
—=mr-7F=F-7.
dt

Integration iiber [t;,tf] und Benutzung von dr = 7 dt liefert

r(ts)
W = F-dTZT(tf)—T(ti):AT.
r(ti)

7.3 Kurioses
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8 PERLE AUF ROTIERENDEM DRAHT

8 Perle auf rotierendem Draht

Aufgabe 8 Perle auf rotierendem Draht

Ein Teilchen der Masse m sei auf einem kreisformigen, rotierendem Draht angebracht und auf diesem frei
beweglich. Der Draht rotiere im homogenen Schwerefeld der Stirke g > 0 mit konstanter Winkelgeschwindigkeit
w um die Vertikale.

ve

m

a) Gib die Zwangsbedingungen an und charakterisiere sie.
b) Stelle die Lagrange-Funktion auf und leite die Bewegungsgleichung her.

c¢) Zeige, dass durch die Einfiihrung der dimensionslosen Zeit 7 = wt die Bewegungsgleichung auf die Form
d2e
dr?

mit einem Parameter 1 € R gebracht werden kann.

—sinfcosf — psinf =0 (7)

d) Uberfiihre die entdimensionalisierte Gleichung in ein System erster Ordnung, indem du die Grofie Q = %
einfiihrst. Bestimme die Fixpunkte (gi ) des Systems, also die Punkte, fiir die gilt: % (gi ) =0

e) Untersuche die Fixpunkte auf ihre Stabilitéit. Betrachte dazu eine eine kleine Stérung ( gi) + (gg) und
betrachte die sich ergebende Differenzialgleichung in linearer Ordnung von ( $9 ). Die Stabilitét ergibt sich
aus den Eigenwerten \; der Systemmatrix: Gilt fiir alle Eigenwerte Re(\;) < 0, dann ist der Fixpunkt
stabil, ansonsten ist er instabil.

Hinweis: Mit dem trigonometrischen Pythagoras kann man zeigen: sin(arccos(z)) = v/1 — 22.

f) Trage die Fixpunkte 6* iiber den Parameter u auf. Zeichne stabile Fixpunkte als durchgezogene und
instabile als durchbrochene Linie.

Federfithrende Dokumentation: Lucca Saar

8.1 Hintergrund
8.2 Musterlosung
(a) Zwangsbedingungen & Freiheitsgrade

e Holonom: Bewegung ist auf die Kreisbahn mit festem Radius R beschrinkt (|r| = R).
e Ideal: Normalkrifte des Drahts verrichten entlang der Bahn keine Arbeit.

e Rheonom: Die Zwangsbedingung ist zeitabhdngig, weil die Draht-Ebene mit Winkel wt um die Vertikale
rotiert.

e Freiheitsgrad: 1 (die Lage auf dem Ring ist vollstindig durch (¢) beschrieben).

(b) Lagrange-Funktion und E-L-Gleichung (vollstindige Herleitung)

Schritt 1: Explizite Bahn in Inertialkoordinaten. Die Position der Perle in der Inertial-Basis (é,, &y, €,)
kann so geschrieben werden:
sin 0(¢) cos(wt)
r(t) = R | sind(t) sin(wt)
cos 6(t)
Begriindung: (i) Abstand zur Rotationsachse: Rsin 6 (horizontaler Radius), (ii) Rotation um z liefert die cos(wt),
sin(wt)-Anteile, (iii) Héhe z = Rcos§.
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8.2 Musterlésung 8 PERLE AUF ROTIERENDEM DRAHT

Schritt 2: Geschwindigkeit » und ihr Betrag. Leite komponentenweise ab:

0 cos § coswt — wsin  sinwt
=R | 6cosl sinwt + wsinb coswt
—60sin 6

Quadrat der Geschwindigkeit (Skalarprodukt 7 - 7):
72 = R? [(9 cos B coswt — wsin @ sinwt)?
+ (0 cos 0 sinwt + wsin b coswt)? 4+ (—0sin 0)2] .
Ausmultiplizieren und sammeln (gemischte fw-Terme heben sich):
72 = R? (92 cos? 0 + w? sin? 0 + 62 sin® 9) =R? (92 + w?sin? 0).
Schritt 3: Kinetische und potentielle Energie.
oo 1 o0 2 02
T = gmr = §mR (9 + w” sin 0).
Die potentielle Energie (mit Nullniveau frei wihlbar) nehmen wir klassisch als V' = mgz = mgR cos 6.
Schritt 4: Lagrange-Funktion.
L(6,0,t) =T -V = imR? (92 + w?sin®0) — mgR cos .

Schritt 5: Euler—Lagrange-Gleichung. Berechne die Ableitungen:

oL Yy d (OL\ o5
oL 1 2 2 o : 2 2 .. .
%zimR - 2w*sinf cos§ — (—mgRsinf) = mR“w” sinf cos § + mgRsin 6.

EL-Gleichung & (9;L) — 0L = 0 liefert

mR*0 — (mR%u2 sin  cos  + mgR sin 0) =0.

Division durch mR2:

6 — w?sinfcos — £sin@ =0 |

R

(c) Entdimensionalisierung

. . . . 2 2 . .
Definiere dimensionslose Zeit 7 = wt. Dann % = wd% und % = wgdd?. Bezeichne ’ Ableitungen nach 7.

w20" — w?sinf cosh — %Sinﬁ =0.

; 2 — 9 .
Teile durch w* und setze p := 7l5:

0" —sinfcos® — pusinf = 0, p=—= |

(d) System 1. Ordnung und Fixpunkte
Setze 2 :=#’. Dann

0 =Q, Q' =sinf(cosb + p).

Fixpunkte (6*,Q*): Bedingungen 6’ = 0, Q' = 0 ergeben
O =0, sin 6* (cos 0* + p) = 0.

Also

‘ 0* € {0,7} oder cosf* = —p (nur falls |p| < 1). ‘
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8.3 Kurioses 8 PERLE AUF ROTIERENDEM DRAHT

(e) Linearstabilitit

Linearisierung von (8’, Q) um (6*,0):

A0 = 090 0t _ 0 1
8 8 (- 0)_ cos 20* + pcosf* 0)°

Eigenwerte erfiillen A\? = cos 260* + p cos 6*.
Falle:

e 0* =0:cos0=1, cos0- = A2 =1+ p >0 = reelle \ = Sattel = instabil.
e *=mcosm=—1,cos2n =1= N\ =1—p.

— 11 < 1: A2 > 0 = instabil.
— u=1: Grenzfall A = 0.

— p > 1: A2 < 0 = rein imaginiir = linear stabil (Zentrum).
e cosf* = —p (existiert nur fiir [u| < 1): Dann A% = p? — 1 <0.

— |p| < 1: A2 < 0 = stabil (Zentrum).

— |u| = 1: neutraler Grenzfall.

8.3 Kurioses
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9 DREI GEKOPPELTE FADENPENDEL

9 Drei gekoppelte Fadenpendel

Aufgabe 9 Drei gekoppelte Fadenpendel

Aus der Vorlesung kennen wir ein System aus zwei Fadenpendeln, die iiber eine Feder miteinander gekoppelt
sind. Wir wollen dieses System nun um ein drittes gekoppeltes Pendel erweitern. Dabei nehmen wir an, dass
alle Pendel die Léange ¢ sowie Masse m besitzen und durch identische Federn der Federkonstante &k gekoppelt
sind. Als generalisierte Koordinaten dienen die Auslenkungen ¢;,7 = 1,2, 3.

a) Stelle die kinetische Energie T sowie die potenzielle Energie V' auf. Wir wollen das System fiir kleine
Winkel untersuchen, weshalb wir die auftretenden trigonomischen Funktionen in V' nihern. Die Auslen-
kung der Federn kann in dieser Ndherung iiber die Bogenlinge der Pendel beschrieben werden, sodass das
Endergebnis nur von ¢;,7 = 1,2, 3 abhéngen sollte.

b) Nutze die Lagrange-Gleichung, um Bewegungsgleichungen fiir die jeweiligen Auslenkungen ¢, aufzustellen.
Formuliere diese in Matrix-Schreibweise:

B ©1
Te =-K®, mit®= |9
¥3

Hinweis: T sollte in deinem Ergebnis durch die Einheitsmatriz gegeben sein.

Im Folgenden wollen wir die Eigenmoden des System naher untersuchen. Dafiir muss zuerst das Eigen-

wertproblem
det (K —wT) =0

gelost werden, um so die Eigenfrequenzen w; zu finden. Da dies fiir eine 3 x 3-Matrix nicht trivial ist, wird
eine faktorisierte Form des charakteristischen Polynoms angegeben:

g g  k g, .k
det(K—sz): (Z—Wz) <€+m—w2) <£+3m—w2> .

c¢) Lies die Eigenfrequenzen des Systems ab. Lose dann die Gleichungssysteme (K — w?T)A = 0, um die
(komplexen) Amplituden A; der einzelnen Pendel zu finden. Beschreibe damit, wie die einzelnen Pendel
relativ zueinander schwingen (Skizze) und sich die Amplituden zueinander verhalten.

Federfithrende Dokumentation: Max Lauer

9.1 Hintergrund

Dies ist eine schone Aufgabe zum Wiederholen des Lagrange-Formalismus. Zudem widerholt man die Vorgehens-
weise bei einem System aus gekoppelten Differentialgleichungen und erhilt am Ende der Rechnung im besten
Fall eine sehr schon anschauliche Losung.

Gekoppelte Oszillatoren kommen iiberall in der Natur vor.Beispielsweise die Interaktion von Atomen innerhalb
eines Molekiils durch gekoppelte Schwingungen lésst sich durch dieses Modell erkldren.
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9.2  Musterlésung 9 DREI GEKOPPELTE FADENPENDEL

9.2 Musterlosung
a) Bezeichne fiir diese Aufgabe s; die Auslenkungen der i-ten Masse von ihrer Ruhelage beziiglich ihres Faden-
pendels. Durch den Sinussatz und die Kleinwinkelndherung ergibt sich:
s; = sin(p;)l =~ ;!
Damit ergibt sich die kinetische Energie T" als Summe der kinetischen Energien der Massen m; zu:

2 m d ml?
Z?di = (901+<P2+903)

Das Potential ergibt sich als Summe vom Federpotential und dem Gravitationspotential einer jeden Masse. Das

Federpotential lautet wie folgt:
k
Vp=—5((s2— 51)° + (s3 — 52)°)

Mit der Naherung fiir die s; erhédlt man:
2

Vi =~

9 (203 + % + 5 — 20102 — 2p2¢03)

Das Gravitationspotential der einzelnen Massen hingt nur von der Hohe der Massen ab:
Vgi = mgl(1 + cos(g;))

Da wir kleine Winkel betrachten, konnen wir (1+ cos(p)) um o = 0 bis zur zweiten Ordnung taylor-entwickeln
und erhalten: m
Vgi= Eglcp?

b) Nun nutzen wir den Lagrange-Formalismus zweiter Art, um Bewegungsgleichungen fiir alle ; herzuleiten:

doL oL
dt ¢ Opi

Es ergeben sich folgende Differentialgleichungen:
N k k
i1 =—(=+ D1+ — 2
m m
. 2k
P2 =—(p1+¢3) —(—+
m m
N k k
s =—(—+ s + — 2
m m

Wir erhalten somit drei gekoppelte Differentialgleichung, beziehungsweise ein System aus Differentialgleichun-
gen, das wir mithilfe der Matrixschreibweise anschaulicher darstellen kénnen:

10 0\ (& (et 0 1
01 0)fé|=-| -5 E+8H -% ©2
0 0 1) \¢s 0 -k (B4 9)) \ps
¢) Die Eigenfrequenzen w? lauten:
2ot
YT
2_9  k
wz_l—'_m
2_9 3k
w3_l+m

Nun koénnen wir iiber die Eigenwertgleichung die Amlituden der einzelnen Schwingungen bei den Eigenmoden
ermitteln.
Fiir w? gilt:

L2 _k

Tk 2k Ok “ 7
-4 = 4 as | =0

0 ~m m as



9.3 Kurioses 9 DREI GEKOPPELTE FADENPENDEL

= a1 = as = as

Das bedeutet, dass bei w? alle Massen in Phase schwingen.
Fiir w3 gilt:

k
Ok —kE Ok al R
— — —_ ag = O
m mk m
O _E O a3
=ay=0Aa; = —asg

Das bedeutet, dass bei w3 die mittlere Masse ruht, und die beiden #uBeren Massen entgegengesetzte Schwin-
gungen mit kleicher Amplitude ausfiihren.
Fiir w3 gilt:

N
e

k0
_2k _k al
S S I P
5 | =
% E Ik
0 “m T m as
= a1 = a3z N\ay = —2a;

Das bedeutet, dass bei w? die duBeren Massen in Phase schwingen und die mittlere eine entgegengesetzte
Schwingung mit doppelter Amplitude ausfiihrt.

9.3 Kurioses

Als ich diese Aufgabe zum ersten Mal gerechnet hatte, habe ich das Gravitationspotential vernachlissigt, da
ich annahm, dass der Hohenunterschied klein gegeniiber der Auslenkung der Federn ist. Man kann leicht sehen,
dass die Eigenmoden genau dieselben sind wie in der Musterlésung.

Die Eigenmoden scheinen also nicht vom Gravitationspotential beeinflusst zu werden.
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10 KREUZPRODUKT

10 Kreuzprodukt

Aufgabe 10 Kreuzprodukt
Wir betrachten zwei Vektoren a,b € R3, a = (a1, az,a3)’, b = (b1, ba, b3)T.

a) Wie lauten die Komponenten des Kreuzprodukts zwischen a und b?

)
b) Zeige, dass a x b = —b x a gilt.
c) Zeige, dass a x b senkrecht auf a und b steht.
d) Zeige, dass

|a X b| = ab sin a,

wobei o der Winkel zwischen a und b ist.
Hinweis: Untersuche |a x b|%.

e) Zeige, dass die Vektoren im Spatprodukt zyklisch vertauscht werden kénnen:
a-(bxc)=c-(axb)=b-(cxa)

Argumentiert mit der geometrischen Interpretation des Spatprodukts, warum die zyklische Vertauschbar-
keit zu erwarten ist.

f) Zeige mithilfe der BAC-CAB-Regel die Jacobi-Identitét:
ax(bxc)+bx(cxa)+cx(axb)=0.

Federfithrende Dokumentation:

10.1 Hintergrund
10.2 Musterlosung
10.3 Kurioses

31



11 LENZSCHER VEKTOR - EINE WEITERE ERHALTUNGSGROSSE

11 Lenzscher Vektor - Eine weitere Erhaltungsgrofie

Aufgabe 11 Lenzscher Vektor - Eine weitere Erhaltungsgrifse

In der Vorlesung haben wir die Freiheitsgerade des Zwei-Korper-Problems von 12 auf 2 reduziert, indem wir
die FErhaltungsgrifien des Systems gefunden haben: Die Konstanz des Gesamtimpulses (3), die geradlinig,
gleichférmige Bewegung des Schwerpunkts (3), die Erhaltung des Drehimpulses (3), sowie die Energieerhal-
tung (1). Fiir das Kepler-Potenzial lidsst sich noch eine weitere Konstante der Bewegung finden, der Lenzsche
Vektor (oder auch Laplace-Runge-Lenz Vektor), definiert durch

_px€ r

—, mit £=rxp=7rxmr.
mk r

A

a) Zeige durch Berechnung der totalen zeitlichen Ableitung, dass es sich bei A wirklich um eine Erhaltungs-
grofle handelt.
Hinweis: Fs gilt a x (b x ¢c)=b(a-c) —c(a-b). Zeige zudem, dass r -1 = rr-.

b) Berechne den Betrag |A| und weise nach, dass er der Exzentrizitit € = /1 + 275522 entspricht.

¢) Zeige, dass der Lenzsche Vektor entlang des Vektors zum Perihel zeigen muss, also A || Pmin, Pmathrmmin
bezeichne dabei den Perihelvektor.
Hinweis: Begriinde zundchst, warum wir den Lenzschen Vektor einfach an vy berechnen kénnen und
trotzdem eine allgemeine Aussage treffen kénnen. Wie stehen 1y, und der entsprechende Impulsvektor
zueinander?

d) Der Lenzsche Vektor erlaubt eine integrationsfreie Herleitung der Bahnkurve

D it 02 - 2F 2
mi = — E = —_— .
’ p mk’ mk?

rle) = 1+ ecos(p)

Berechne dazu das Skalarprodukt A - r und leite obige Formel her.
Hinweis: Definiere ¢ als <t (A, r).

Anmerkung: Auch wenn es sich bei A um einen Vektor handelt, legt er nur eine einzelne Erhaltungsgrofie fest,
nédmlich die Konstanz der Perihelrichtung. Dies liegt daran, dass A bereits in der Bahnebene liegt und der
Betrag durch die Exzentrizitdt eine Funktion der beiden Erhaltungsgrofien E und £ ist.

Federfithrende Dokumentation: Max Lauer

11.1 Hintergrund

Der Lenz-Vektor ist eine weitere konstante der Bewegung. Er zeigt vom Brennpunkt der Bahn (Kraftzentrum)
zum néchstgelegenen Bahnpunkt (Perihel bei der Erdbahn) und hat somit eine Richtung parallel zur grofien
Bahnachse. In der klassischen Mechanik wird der Vektor hauptséchlich benutzt, um die Form und Orientierung
der Umlaufbahn eines astronomischen Korpers um einen anderen zu beschreiben, etwa die Bahn eines Planeten
um seinen Stern.

11.2 Musterlésung
a)

d- d,pxL F
Rl G _L
dt dt( mk r)
dp - dr
= — L N — —_——
milar < ETP ) T gy
L ist eine Erhaltungsgrofle, das heifit: i—{’ =0
¥ F=-VVmitV=-k
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11.3 Kurioses 11 LENZSCHER VEKTOR - EINE WEITERE ERHALTUNGSGROSSE

Also &7 — _ k7
dt 3 .

Anstatt L schreibt man 7 x p'und anstatt p schreibt man nun m# und erhélt insgesamt:

d> 7 S

—A=—— x(Fx7)—

dt r3 ( ) r2

Mithilfe der Hinweise in der Aufgabenstellung vereinfacht sich der Term zu:

2_ i P — g7
3 - 57— =0
r r

Fr

Daraus folgt, dass X eine Erhaltungsgrofe ist.
Zuletzt wird noch die Identitéit aus dem Hinweis in der Aufgabenstellung gezeigt:

. d1 d1
777" = &57;‘2 = &57’2 =7y
b) Betrachte A2 :
- - 2 -
A = 7x L)? +1 P (P x L
(mk)Q(pX ) + + mkr("” (px ))

Wegen (7 x L)? = p2L?, da 7 L L ergibt sich:

> 2L% p* k& 2I°E
A= (- - ) 41="T
mk2(2m 7")+

Daraus folgt:
A

€

¢) Wir wissen, dass A eine Erhaltungsgrofe ist. Das bedeutet, dass dessen Wert an jedem Punkt der Bahn gleich
ist. Daher wéhlen wir den Perihelvektor r,5,. Der Impuls am Perihel p;, steht senkrecht auf dem Perihelvektor.
AuBlerdem steht der Drehimpuls ebenfalls senkrecht zur Ebene auf der sich der Impuls und der Perihelvektor
befinden. Am Perihel ist 7 = 0. Daraus folgt, dass p, « €;. Das heifit, dass (p, x E) | 7min- Logischerweise ist
T";}'" auch parallel zum Perihelvektor.

Damit folgt: A | 7min

d)

" 1 dp - T
. _’: — | — L P — = — — = —
" mk ( dt xL)-r r mk repeT
Andererseits ist: .
A -7 = Arcos(p)
Insgesamt folgt also durch Gleichsetzen der beiden Terme und Umstellen nach r:

p

rle) = 1+ ecos(p)

11.3 Kurioses

Der Laplace-Runge-Lenz-Vektor ermoglicht daher die elegante Herleitung der Bahnkurve r(p) eines Teilchens
(z.B. Planet im Keplerproblem, Alphateilchen gestreut am Atomkern) in diesem Kraftfeld, ohe eine einzige
Bewegungsgleichung 16sen zu miissen.
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12 KREISFORMIGE ORBITS

12 Kreisformige Orbits

Aufgabe 12 Kreisformige Orbits

Ve (1)

By --1{}

By -~

Abbildung 1: Graph von Veg(r) fiir das Kepler-Potenzial.

Abbildung [12]| zeigt das effektive Potenzial.

€2
Vet (r) =V (r) + Gy
wobei hier V(r) als Kepler-Potenzial V (r) = —k/r gewiihlt wurde. Zudem wurden zwei Energieniveaus F; und

E5 gekennzeichnet.

a) Betrachte die Schnittstellen des Energieniveaus E; mit der Kurve des effektiven Potenzials. Welche be-
sonderen Punkte des Orbits liegen an diesen Stellen. Was gilt insbesondere fiir die zeitliche Anderung des
Radius 7 an diesen Stellen?

b) Betrachte nun das Energieniveau F5. An welcher besonderen Stelle des effektiven Potenzial liegt es? Was
gilt hier fiir den Radius einer Bahn bzw. seine Anderungsrate 77 Was bedeutet dies fiir die Form des
Orbits?

¢) Leite mit deinen Erkenntnissen nun eine Bedingung fiir die Existenz stabiler Kreisbahnen her. Finde einen
Ausdruck in Abhéngigkeit der Ableitungen des Potenzials V (r).

d) Sei V(r) = —k/r™. Nutze deine hergeleitete Stabilitéitsbedingung, um herauszufinden, fiir welche n stabile
Kreisbahnen auftreten kénnen.

Federfithrende Dokumentation:

12.1 Hintergrund
12.2 Musterlésung
12.3 Kurioses
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13 LEGENDRE-TRANSFORMATION

13 Legendre-Transformation

Aufgabe 13 Legendre-Transformation

Die Legendre-Transformierte einer konvexen Funktion f(x) lautet:

9(y) = ya(y) — flz(y)) mit y=f'(z).

a) Zeige, dass die Riicktransformation auf die Variable x, d.h., h(z) = zy(x)—g(y(z)) wieder auf die Funktion
f(x) fithrt.

b) Betrachte die Funktion f(z) = 22.

1. Berechne die Legendre-Transformierte g(y) von f(z).
2. Zeige durch direkte Rechnung, dass die Legendre-Riickransformierte h(z) von g(y) wieder f(z) ergibt.

c) Was folgt aus der Voraussetzung einer konvexen Funktion f(z) fiir die Ableitung f/(x)?

d) Wie ldsst sich aus dieser Erkenntnis eine geometrische Beweis fiir die Legendre-Transformierte konstruie-
?
ren’

Hinweis: Skizziere eine giiltige Ableitung y = f'(x) und = = ¢'(y) in der (x, y)-Ebene.

Federfithrende Dokumentation:

13.1 Hintergrund
13.2 Musterlésung
13.3 Kurioses
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14 ATWOODSCHE FALLMASCHINE — RELOADED

14 Atwoodsche Fallmaschine — reloaded

Aufgabe 14 Atwoodsche Fallmaschine — reloaded

Wir betrachten noch einmal das System aus Aufgabe 5: Zwei Massen m1, mo héngen an einem nicht dehnbaren
Faden der Lange [ iiber einer festen Rolle im Schwerefeld der Erde senkrecht nach unten. Die Rolle und der
Faden werden als masse- und reibungslos betrachtet.

a) Wie lautet eine geeignete generalisierte Koordinate g7
b) Wie lautet die Lagrange-Funktion L(g, q) des Systems?
c¢) Analysiere das System mit Hilfe des Hamilton-Formalismus:

1. Stelle die zur Lagrange-Funktion dazugehérige Hamilton-Funktion H(q,p) auf.

2. Zeige, dass die Hamiltonschen Gleichungen die Bewegungsgleichung aus Aufgabe 5 reproduzieren.

Federfithrende Dokumentation:

14.1 Hintergrund
14.2 Musterlésung
14.3 Kurioses
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15 TEILCHEN AUF EINER KEGELOBERFLACHE

15

Teilchen auf einer Kegeloberfliche

Aufgabe 15 Teilchen auf einer Kegeloberfliche

Wir betrachten ein Teilchen der Masse m welches sich reibungsfrei und nur unter dem Einfluss der Gravitation
auf einer kegelférmigen Oberfliche bewege. Fiir dieses Problem eignen sich hervorragend Zylinderkoordinaten
(p, ¥, 2), mit z > 0, wobei wir annehmen, dass die radiale Komponente durch p = ¢ z beschrieben werde. Damit
bleiben ¢ und z als generalisierte Koordinaten.

2)

Stelle die kinetische und potenzielle Energie als Funktion von ¢ und z und deren zeitlichen Ableitungen
auf und gib die Lagrange-Funktion an.

Hinweis: Es ist hilfreich, die kinetische Energie in Zylinderkoordinaten zu schreiben.

Zur Kontrolle: Fiir die Lagrange-Funktion solltest du folgendes Ergebnis erhalten haben:

1
L(p, z, ¢, 2) = §m<(02 +1) 22 + (cz gb)2) —mgz.

Berechne die beiden generalisierten Impulse p,, und p. und gibt die Hamilton-Funktion H = H (g, z, py, p-)
an. Verifiziere, dass H der Gesamtenergie entspricht.

Stelle nun die kanonischen Bewegungsgleichungen fiir die - und z-Komponenten auf. Gibt es eine Erhal-
tungsgrofe? Wenn ja, welche?
Hinweis: Denke an das Kepler-Problem und dessen Erhaltungsgrofien zuriick.

Begriinde, dass die Bewegung des Teilchens zwischen zwei verschiedenen Hohen zpy,i, und zmax ablaufen
muss. Betrachte dazu die Hamilton-Funktion fiir z — 0 und z — oo und argumentiere mit der Konstanz
der Energie E.

An den Wendepunkten zpi, und zpmax muss 2 = 0 gelten. Begriinde, dass dies nur passieren kann, wenn
der zugehorige konjugierte Impuls gerade verschwindet, p, = 0. Zeige graphisch, dass dies fiir genau zwei
Werte von z eintrifft. Nutze dabei den Fakt, dass H = F.

Hinweis: Skizziere H fiir p, = 0 und zeichne dir ein Energieniveau F ein. Erinnere dich dann an die
Diskussion des effektiven Potenzials beim Zentralkraft-Problem.

Es ist moglich, dass sich das Teilchen auf einer Kreisbahn mit konstanter Hohe z(t) = 2o V¢ dreht. Was
muss dann fiir 2 und p, gelten? Was folgt fiir den Wert des Drehimpulses p,, der benétigt wird, um diese
Bewegung zu ermoglichen?

Federfithrende Dokumentation: Max Lauer

15.1 Hintergrund

Zum Losen dieser Aufgabe wird lediglich das Wissen {iber die Hamiltonmechanik benétigt. Eine gute Aufgabe
zu Einiiben des Hamiltonformalismus und gut zur Wiederholung der krummlinigen Koordinaten.

15.2 Musterlosung

a) Die Geschwindigkeit in Zylinderkoordinaten ist:

v? = %+ 224 2% = (P + 1) + pP?

Damit ist die kinetische Energie:

T= 2+ DZ + (c2)?)

Damit ist die Lagrangefunktion:

b)

L=T-V="2(c+ 1) + (cp)?) — mgz

oL

5 = P =m(c®+ 1)z

37



15.3 Kurioses 15 TEILCHEN AUF EINER KEGELOBERFLACHE

oL
" = p, = mc222p?

a5
H=Y gpi—L
Nach lingerer Rechnung und durch Ausdriicken von ¢; durch die kanonischen Impulse erhilt man:

2
Pz Py,

H =
2m(c?+1)  2mc2z?

+mgz

E=T+V

Nach Ausdriicken von ¢; durch die kanonischen Impulse erhéilt man auch hier:

P2 r;
E = z ¥
2m(c? +1)  2mc22z2 +mgz
Also:
H=F
c) Die kanonischen Gleichungen liefern:
. 0H 0
P = — o =
¥ a(p
o= OH _ pe
Op,  mc?z?
2
O @
P== "%, I e

_OH _ p:

~ Op.  m(c2+1)
Damit ist der Impuls in Radialrichtung eine Erhaltungsgréfie. Dies entspricht dem Drehimpuls.
d) Betrachten wir die Grenzwerte H(z — 0) und H(z — c0).

H(z—0)=00
H(z = o) =

Wegen H = E muss die Bewegung also zwischen einem maximalen und einem minimalen Wert von z ablaufen,
sodass die Energie konstant sein kann.
e) Aus dne kanonischen Gleichungen wissen wir:

oH Pz

°T dp. m(c?+1)

An den Wendepunkten muss Z = 0 sein. Daraus folgt, dass ebenso p, = 0 sein muss.
Fiir die Gesamtenergie folgt mit der Beziehung H = E:

2
Py
Hp: =0) =g ap Tmoz=E
f) Wenn sich die Hoéhe nicht dndert, gilt 2 = 0. Daraus folgt auch, dass p, = 0 und p, = 0 Vt.

2

OH pw 1
) = ——F/—— = — = O
P 0z mg + me2z3

Daraus ergibt sich die Bedingung fiir den Drehimpuls in Abhéngigkeit der festen Hohe zg:

! / .3
p‘P = mc gZO

15.3 Kurioses

Zu dieser Aufgabe gibt es wenig Kurioses zu schreiben. Es ist anschaulich, dass wenn die Masse auf einer festen
Hohe bleiben soll, der Drehimpuls fiir das Kréiftegleichgewicht sorgt, dhnlich wie bei Planetenbahnen.

Ein Physikerfreund merkte an, dass ausgehend von der Aufgabenstellung nicht ganz klar sei, ob die Gravitation
von der Erde kidme, oder ob der Kegel eine gravitationskraft auf das Teilchen auwirkt. Natiirlich ist der erste
Fall hier gemeint. Letzterer wéire aber bestimmt spafig zu rechnen...
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16 LANGE VON RAUMKURVEN

16 Lange von Raumkurven

Aufgabe 16 Linge von Raumkurven

2)

b) Gegeben sei eine Raumkurve
v [to;tl] — R"
t — ~(t)

im R"™. Leiten Sie eine Formel fiir das infinitesimale Linienelement ds und damit einen Ausdruck fiir die
Lénge der Kurve her.

V2t
c¢) Berechen Sie die Linge von 3: [0;In(2)] — R3, t — | ¢t

€7t

d) Leiten Sie fiir eine Kurve im R?2, die durch den Graphen einer Funktion f : I — R, mit I C R, gegeben
ist, eine Formel fiir das infinitesimale Linienelement und die Lénge der Kurve her.

e) Berechnen Sie die Lange einer Kettenlinie f: [-1;1] — R, x —— cosh(x).

Federfithrende Dokumentation:

16.1 Hintergrund
16.2 Musterlésung
16.3 Kurioses
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17 MASSENPUNKT AUF ROTIERENDER STANGE

17 Massenpunkt auf rotierender Stange

Aufgabe 17 Massenpunkt auf rotierender Stange

Ein Massenpunkt der Masse m bewegt sich reibungs-
frei auf einer um die feste Achse rotierenden Stange.
Die Stange rotiert in der (x,y)-Ebene mit konstan-
ter Winkelgeschwindigkeit w. Die zugehorige Lagrange-
Funktion lautet:

Lir,i) = 507 +1%?),

wobei r die Radialkoordinate des Massenpunkts bezeich-
net.

a) Leite die Lagrange-Funktion L her.

b) Stelle die Hamilton-Funktion H auf und gib die Hamiltonschen Gleichungen an.

)
)
c¢) Leite daraus die Bewegungsgleichung ab und gib ihre allgemeine Losung an.
d) Gilt 2% = 0? Gilt H = const.?

)

e) Ist H gleich der Gesamtenergie des Massenpunkts? Ist die Gesamtenergie F erhalten?

Federfithrende Dokumentation:

17.1 Hintergrund
17.2 Musterlosung
17.3 Kurioses
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18 EBENES PENDEL IM PHASENRAUM

18 Ebenes Pendel im Phasenraum

Aufgabe 18 Ebenes Pendel im Phasenraum

Ein ebenes Pendel besteht aus einer Masse m am Ende
einer masselosen Stange der Linge [. Im Schwerefeld hat
das Pendel die potenzielle Energie

V(p) = mgl(1 - cos ),

wobei ¢ den Auslenkwinkel des Pendels bezeichnet.

a) Stelle die Hamilton-Funktion H auf.
b) Gilt %—i] = 07 Ist H gleich der Gesamtenergie E?

c) Skizziere mogliche Bahnkurven fiir Energien £ > 0 im zweidimensionalen (¢, p,,)-Phasenraum. Betrachte
die folgenden Félle:

1. E=0

2. E < mgl
2
Hinweis: Hier gilt ¢ <1, also 1 —cosp ~ Z-.

3. E =2mgl
Hinweis: Benutze 1+ cosz = 2cos® (£).

4. E > 2mgl
Ermittel fiir jeden dieser Fille eine explizite oder implizite Relation zwischen ¢ und p,,.

Federfithrende Dokumentation: Max Lauer

18.1 Hintergrund

In dieser Aufgabe kann der Hamiltonformalismus abermals eingeiibt werden. Zudem kommmt im letzten Auf-
gabenteil zum Abschéitzen von Energien, und erhikt anschauliche physikalische Zustéinde des ebenen Pendels.

18.2 Musterlésung

a) Die Lagrangefunktion erhélt man, indem man ¢ als generalisierte Koordinate verwendet und die kinetische
Energie in Kugelkoordinaten schreibt. Die Hohe des Pendels driickt man ebenso durch ¢ aus und erhélt somit:

2,2
L=T-V= ml2<p — mgl(1 — cos(p))

Der generalisierte Impuls ist:
2 .
P =77 =ml°p
¥ 8@
Daraus ergibt sich dann also die Hamiltonfunktion:

mi%p? i
+mgl(1 —cos(p)) = ... = D

H = ¢p, — +mgl(1 — cos(y))

b) Offensichtlich ist:

0OH
ot Y
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18.3 Kurioses 18 EBENES PENDEL IM PHASENRAUM

2,:2 2

l
E=T+vV="1 ;0 + mgl(1 — cos(p)) = 211;:}2 + mgl(1 —cos(p)) = H
c)
1:E=H=0
=p=0
=p, =0
Damit ist die Bahnkurve im Phasenraum also lediglich ein Punkt im Ursprung.
2:F < mgl
o2
:><,0<<1:>1—cos(g0)%7
Daraus ergibt sich die Ellipsengleichung;:
2
Dy n mglp? _1
2mi2E 2F

Die Bahnkurve im Phasenraum ist damit eine Ellipse.
3:E = 2mgl

= p, = £/ 4m?2gl? cos(%)

Die Bahnkurve im Phasenraum die Verbindung des negativen und positiven Quadrates des Cosinus.
4: E> 2mgl

»

2ml?
Die Bahnkurve im Phasenraum entspricht einer Waagerechten, die eine konstante Winkelgeschwindigkeit impli-
ziert. Das bedeutet es liegt eine freie Rotation vor.

=F —mgl(1 —cos(¢)) = E

18.3 Kurioses

Das ebene Pendel ist wohl die am meisten gerechnete Aufgabe in der klassischen Mechanik im Grundstudium.
Leider gibt es Wenig Kurioses iiber es zu schreiben. Fiir kleine Auslenkungen wird die DGL harmonisch, jedoch
ist sie das fiir groflere Auslenkungswinkel natiirlich nicht mehr wegen des Cosinusterms.
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19 SCHWERPUNKT

19 Schwerpunkt

Aufgabe 19 Schwerpunkt
Betrachte einen Wiirfel W mit Kantenlinge a und Massendichte p(z,y, z) = B2? mit 8 = const. Der Koordi-
natenursprung liege so in einer Ecke, dass alle Koordinaten der Wiirfelpunkte positiv sind.

a) Skizziere den Wiirfel.

b) Berechne die Gesamtmasse des Wiirfels M = [, p(z,y, z) dV.

c) Berechnee den Schwerpunkt S = (S, Sy, S.) mit S, = ﬁ fW p(z,y,2)kdV, wobei k = z,y, 2.
d) Skizziere den Schwerpunkt in der (z,y)-Ebene.

Federfithrende Dokumentation:

19.1 Hintergrund
19.2 Musterlésung
19.3 Kurioses
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20 TRAGHEITSTENSOR VON ZYLINDER, STAB, SCHEIBE, PUNKTMASSE

20

Trigheitstensor von Zylinder, Stab, Scheibe, Punktmasse

Aufgabe 20 Tragheitstensor von Zylinder, Stab, Scheibe, Punktmasse

2)

Bestimme die Matrixform des Tragheitstensors @ fiir einen Zylinder mit Héhe A und Radius R. Nutze
dazu Zylinderkoordinaten (p, ¢, z) und lege das kérperfeste Koordinatensystem so, dass sein Ursprung im
Schwerpunkt des Zylinders liege. Gehe von einer homogenen Massedichte aus, d.h pu(r) = p = %, Vr € V,
m und V entsprechend die Masse bzw. das Volumen des betrachteten Koérpers.

Hinweis: Ein Zylinder mit Hohe h und Radius R der Basis besitzt das Volumen V = 7w R2h. Driicke damit
dein Endergebnis so aus, dass nur noch die Masse m des Korpers auftaucht, nicht die Massedichte. Du
musst zudem nicht alle Integrale explizit berechnen, wenn du iiber die Symmetrie die Gleichheit mehrerer
Trégheitsmomente begriinden kannst. Kannst du auch eine Aussage iiber die Derivationsmomente ©;;,
i # j treffen?

Uberlege dir, welche Grenziibergéinge du machen musst, um aus dem Zylinder einen Stab der Liinge £ oder
eine Scheibe vom Radius R, beide mit vernachlidssigbarer Dicke, zu erhalten. Gib dann mittels Teil a) die
entsprechenden Trégheitsmomente an.

Betrachten wir erneut einen diinnen Stab der Lénge ¢. Die angegebenen Trégheitsmomente beziehen sich
zur Zeit auf dessen Schwerpunkt. Wie lauten die Trégheitsmomente, wenn sich der Fixpunkt des Stabes
hingegen an einem seiner Endpunkte befindet?

Hinweis: Verwende den Satz von Steiner.

Eine idealisierte Punktmasse m im Ursprung besitzt kein Trigheitsmoment. Gilt dies auch, wenn wir die
Punktmasse um eine Achse e, im festen Abstand d rotiert? Gib das Trigheitsmoment der Punktmasse
beziiglich der Drehachse an.

Federfithrende Dokumentation:

20.1 Hintergrund

20.2 Musterlosung
20.3 Kurioses
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21 TRAGHEITSTENSOR EINES KEGELS

21

Trigheitstensor eines Kegels

Aufgabe 21 Tragheitstensor eines Kegels

Wir wollen nun den Trégsheitstensor eines Kreiskegels berechnen. Dabei eignen sich zur Betrachtung Zylinderko-
ordinaten (p, ¢, z). Wir platzieren den Kegel so, dass seine Spitze mit dem Ursprung O des Koordinatensystems
zusammenfillt und seine Symmetrieachse entlang der z-Achse verlaufe (siehe Skizze unterhalb). Die Hohe des
Kegels sei h, der Radius der Basis R. Zudem gehen wir von einer homogen Massdichte pu(r) = pu = {7 fiir jedem
Punkt des Kegels aus.

Abbildung 2: Querschnitt in der (z, z)-Ebene durch den Kegel. Die Spitze des Kegels ruhe im Ursprung O des
Koordinatensystems und die Symmetrieachse verlaufe entlang der z-Achse. Der Schwerpunkt S, liegt in diesem
Fall auch auf dieser Achse und hat eine Entfernung von 3h/4 zum Ursprung.

a)

d)

Um die Matrix-Darstellung des Trigheitstensors ® berechnen zu koénnen, muss zunéchst die Radialkom-
ponente p parametrisiert werden. Stelle daher eine Funktion p(z) in Abhéngigkeit von h und R auf, die
den derzeitigen Radius des Kegels an einer beliebigen Koordinate z € [0, h] beschreibe.

Berechne nun die Diagonalelemente O, der Matrix-Darstellung des Trigheitstensors. Formuliere dein
Endergebnis dabei so, dass nur noch die Masse m = V' auftritt.

Hinweis: Das Volumen V eines Kreiskegels mit Radius R und Hohe h betragt V = %WRQh. Beachte, dass
das Volumenelement in Zylinderkoodinaten dr = p dp dp dz lautet. Bei der Integration ist die obere Grenze
des radialen Anteils durch p(z) aus Teil a) gegeben. Diese Integration muss also vor der Ausfithrung des
Integrals iiber die z-Komponente stattfinden. Du musst nicht alle drei Berechnung ausfithren, wenn du
iiber die Symmetrie die Gleichheit mehrerer Trigheitsmomente begriinden kannst.

Unsere Berechnung des Trégheitstensors bezieht sich zur Zeit noch auf den Koordinatenursprung O. Gib
die Trégheitsmomente nun beziiglich des Schwerpunkts S, an. Zeige dazu zunéchst, dass dieser bei %ez
liegt.

Hinweis: Nutze den Satz von Steiner, um die verschobenen Trégheitsmomente zu berechnen.

Wann handelt es sich bei einem Kegel um einen Kugelkreisel, d.h.: Wann sind alle Haupttragheitsmomente
gleich?

Federfithrende Dokumentation:

21.1 Hintergrund

21.2 Musterlésung
21.3 Kurioses
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