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Dr. habil. Philipp Hövel, Max Lauer und Studierende

Inhaltsverzeichnis

I Klassische Mechanik 4

1 Galilei-Transformationen als 10-Parameter-Gruppe 4
1.1 Hintergrund . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Musterlösung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Kurioses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Wurfparabel 7
2.1 Hintergrund . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Musterlösung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Kurioses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Rakete 10
3.1 Hintergrund . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Musterlösung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Kurioses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Zylinder- und Kugelkoordinaten 13
4.1 Hintergrund . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Musterlösung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3 Kurioses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5 Atwoodsche Fallmaschine 17
5.1 Hintergrund . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2 Musterlösung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.3 Kurioses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

6 Zykloidenpendel 21
6.1 Hintergrund . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.2 Musterlösung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.3 Kurioses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

7 Kraftfelder und Arbeit 23
7.1 Hintergrund . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
7.2 Musterlösung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
7.3 Kurioses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

8 Perle auf rotierendem Draht 25
8.1 Hintergrund . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
8.2 Musterlösung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
8.3 Kurioses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

9 Drei gekoppelte Fadenpendel 28
9.1 Hintergrund . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
9.2 Musterlösung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
9.3 Kurioses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

10 Kreuzprodukt 31
10.1 Hintergrund . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
10.2 Musterlösung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
10.3 Kurioses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31



INHALTSVERZEICHNIS INHALTSVERZEICHNIS

11 Lenzscher Vektor - Eine weitere Erhaltungsgröße 32
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21 Trägheitstensor eines Kegels 45
21.1 Hintergrund . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
21.2 Musterlösung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
21.3 Kurioses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

II Elektrodynamik 46

22 Delta-Funktion 46
22.1 Hintergrund . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
22.2 Musterlösung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
22.3 Kurioses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2



INHALTSVERZEICHNIS INHALTSVERZEICHNIS

23 Homogen geladene Kreisscheibe 47
23.1 Hintergrund . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
23.2 Musterlösung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
23.3 Kurioses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

24 Ladungsverteilungen und Delta-Funktion 48
24.1 Hintergrund . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
24.2 Musterlösung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
24.3 Kurioses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3



1 GALILEI-TRANSFORMATIONEN ALS 10-PARAMETER-GRUPPE

Teil I

Klassische Mechanik

1 Galilei-Transformationen als 10-Parameter-Gruppe

Aufgabe 1 Galilei-Transformationen als 10-Parameter-Gruppe

Galilei-Transformationen sind Transformationen zwischen zwei Bezugsystemen. K und K ′. Eine allgemeine
Galilei-Transformation is gegeben durch:

r = s0 + v0t+Rr′

t = t′ + t0,

wobei s0 ∈ R3 eine konstante Verschiebung angibt, v0 ∈ R3 die konstane Relativgeschwindigkeit, R ∈ R3×3 ei-
ne Rotationsmatrix (folglich eine orthogonale Transformation) und t0 ∈ R eine konstante zeitliche Verschiebung.

a) Zeige, dass die Menge der Galilei-Transformationen zusammen mit der Hintereinanderausführung als Ver-
knüpfung ◦ die Eigenschaften einer 10-Parameter-Gruppe aufweisen:

1. Die Verknüpfung ist assoziativ.

2. Es existiert ein neutrales Element.

3. Es existiert ein inverses Element.

4. Die Gruppe ist abgeschlossen bezüglich ihrer Verknüpfung (d.h. zwei hintereinander ausgeführte
Galilei-Transformationen sind auch eine Galilei-Transformation).

b) Bilden die Galilei-Transformationen eine kommutative Gruppe? Begründe! Wofür stehen die 10 Parameter?

Federführende Dokumentation: Lucca Saar

1.1 Hintergrund

1.2 Musterlösung

Definition (aus der Aufgabenstellung). Eine Galilei-Transformation verknüpft die Koordinaten eines
Ereignisses (r⃗′, t′) im Bezugssystem K ′ mit den Koordinaten (r⃗, t) im System K:

t = t′ + t0, (1)

r⃗ = s⃗0 + v⃗0 t+R r⃗′. (2)

Dabei sind

s⃗0 ∈ R3 (Translation),

v⃗0 ∈ R3 (Boost),

R ∈ SO(3) (Rotation),

t0 ∈ R (Zeitverschiebung).

Wegen R ∈ SO(3) gilt insbesondere R−1 = RT. Kompakt:

g = (R, v⃗0, s⃗0, t0).

Verknüpfungsgesetz. Seien g1 = (R1, v⃗0,1, s⃗0,1, t1) und g2 = (R2, v⃗0,2, s⃗0,2, t2). Wird zuerst g1 und danach
g2 angewendet, so erhält man

g2 ◦ g1 =
(
R2R1, v⃗0,2 +R2v⃗0,1, s⃗0,2 +R2s⃗0,1 + (v⃗0,2 +R2v⃗0,1) t1, t2 + t1

)
.

(Die Herleitung erfolgt weiter unten bei a)(4).)
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1.2 Musterlösung 1 GALILEI-TRANSFORMATIONEN ALS 10-PARAMETER-GRUPPE

a) Gruppenaxiome

(1) Assoziativität

Die Hintereinanderausführung ist assoziativ, denn sie beruht auf Matrixmultiplikation (assoziativ) und Additi-
on/Skalarmultiplikation von Vektoren (ebenfalls assoziativ). Daher gilt aufgrund der Vererbung für alle g1, g2, g3:

(g3 ◦ g2) ◦ g1 = g3 ◦ (g2 ◦ g1).

(2) Existenz eines neutralen Elements

Ziel: Finde e = (Re, v⃗0,e, s⃗0,e, te) mit e ◦ g = g und g ◦ e = g für alle g.
Bedingung e ◦ g = g:

e ◦ g =
(
ReR, v⃗0,e +Rev⃗0, s⃗0,e +Res⃗0 + (v⃗0,e +Rev⃗0) t0, te + t0

) !
= (R, v⃗0, s⃗0, t0).

Komponentenweise folgt
Re = I, v⃗0,e = 0⃗, s⃗0,e = 0⃗, te = 0.

Gegenprobe g ◦ e = g: Mit e = (I, 0⃗, 0⃗, 0) ist

g ◦ e = (RI, v⃗0 +R0⃗, s⃗0 +R0⃗ + (v⃗0 +R0⃗) · 0, t0 + 0) = g.

Ergebnis:

e = (I, 0⃗, 0⃗, 0) .

(3) Existenz eines inversen Elements

Ziel: Finde g−1 = (R̃, ˜⃗v0, ˜⃗s0, t̃) mit g−1 ◦ g = g ◦ g−1 = e.
Bedingung g−1 ◦ g = e:

g−1 ◦ g =
(
R̃R, ˜⃗v0 + R̃v⃗0, ˜⃗s0 + R̃s⃗0 + ( ˜⃗v0 + R̃v⃗0) t0, t̃+ t0

) !
= (I, 0⃗, 0⃗, 0).

Daraus
R̃ = R−1, ˜⃗v0 = −R−1v⃗0, ˜⃗s0 = −R−1s⃗0, t̃ = −t0.

Gegenprobe g ◦ g−1 = e: unmittelbare Einsetzung liefert e.
Ergebnis:

g−1 =
(
R−1, −R−1v⃗0, −R−1s⃗0, −t0

)
.

(4) Abgeschlossenheit

Ausgangspunkt: Wende g1 auf (r⃗′′, t′′) an:

t′ = t′′ + t1, r⃗′ = s⃗0,1 + v⃗0,1 t
′ +R1r⃗

′′ = (s⃗0,1 + v⃗0,1t1) + v⃗0,1t
′′ +R1r⃗

′′.

Dann wende g2 auf (r⃗′, t′) an:

t = t′ + t2 = t′′ + (t1 + t2), r⃗ = s⃗0,2 + v⃗0,2(t
′′ + t1 + t2) +R2r⃗

′.

Einsetzen und sortieren nach t′′ und r⃗′′:

r⃗ =
[
s⃗0,2 +R2s⃗0,1 + v⃗0,2(t1 + t2) +R2v⃗0,1t1

]︸ ︷︷ ︸
neue Translation

+
(
v⃗0,2 +R2v⃗0,1

)︸ ︷︷ ︸
neuer Boost

t′′ + R2R1︸ ︷︷ ︸
neue Rotation

r⃗′′.

Ablesen der neuen Parameter und der neuen Zeit:

R21 = R2R1,

v⃗0,21 = v⃗0,2 +R2v⃗0,1,

s⃗0,21 = s⃗0,2 +R2s⃗0,1 + (v⃗0,2 +R2v⃗0,1) t1,

t21 = t2 + t1.

Damit ist die Menge unter ◦ abgeschlossen.
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1.3 Kurioses 1 GALILEI-TRANSFORMATIONEN ALS 10-PARAMETER-GRUPPE

b) Kommutativität und Parameteranzahl

Nicht-Kommutativität. Im Allgemeinen gilt g2 ◦ g1 ̸= g1 ◦ g2. Erklärbar ist dies zum einen dadurch, dass
Rotationen im R3 nicht kommutativ (R2R1 ̸= R1R2) sind, zum anderen unterscheiden sich die Mischterme in
s⃗ (z. B. (v⃗2 +R2v⃗1)t1 vs. (v⃗1 +R1v⃗2)t2). Die Galilei-Gruppe ist daher nicht kommutativ.

10 Parameter. SO(3) liefert 3 (Rotation), v⃗ ∈ R3 liefert 3 (Boost), s⃗ ∈ R3 liefert 3 (Translation) und t0 ∈ R
liefert 1 (Zeitverschiebung):

3 + 3 + 3 + 1 = 10.

Somit handelt es sich um eine 10-Parameter-Gruppe.

1.3 Kurioses
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2 WURFPARABEL

2 Wurfparabel

Aufgabe 2 Wurfparabel

a) Betrachte einen Ball (als Massepunkt), der mit der Anfangsgeschwindigkeit v0 in einem Winkel α bzgl.
der Horizontalen geschossen wird. Das Ball bewege sich im Schwerfeld der Erde und Luftreibung wird
vernachlässigt.

1. Leite eine Beziehung zwischen der Höhe y des Balls und der zurückgelegten, horizontalen Distanz x
her.

2. Bestimme die Reichweite R(α) des Balls, d.h., die horizontale Distanz, wenn er wieder den Boden
erreicht.

3. Bestimme die maximale Höhe hmax(α) des Balls.

4. Bestimme die Flugzeit T (α), bis der Ball wieder auf dem Boden auftrifft.

b) Nimm an, dass der Ball eine Mauer der Höhe h in einer Entfernung l überwinden muss, um ein Tor im
Abstand 2l zu erreichen.

1. Wie lautet der Winkel θ (in Abhängigkeit von h und l), um das Tor zu treffen?
Hinweise: Verwende das Ergebnis von Teil a)

2. Wie groß muss die Anfangsgeschwindigkeit v0 sein (in Abhängigkeit von h und l), um das Tor zu
treffen?

Federführende Dokumentation: Lucca Saar

2.1 Hintergrund

Um die Aufgabe zu lösen muss folgendes Vorwissen vorhanden sein:

Kinematik Momentane Größen: v⃗(t) = ˙⃗r(t), a⃗(t) = ˙⃗v(t) = ¨⃗r(t).

Bewegungsgleichungen (konstante Beschleunigung) Aus dem zweiten Newtonschen Gesetz ma⃗ = F⃗

und der Gewichtskraft F⃗ = mg⃗ folgt

ma⃗ = mg⃗ ⇒ a⃗ = g⃗.

Durch Integrieren mit Anfangsbedingungen x(0) = y(0) = 0 sowie x′(0) = v0x, y
′(0) = v0y erhält man die

Bewegungsgleichungen des schrägen Wurfes:

x′′(t) = 0, x′(t) = v0x, x(t) = v0x t,

y′′(t) = − g, y′(t) = v0y − g t, y(t) = v0y t− 1
2g t

2.

Extremwerte Um Maxima oder Minima von zeit- oder ortsabhängigen Größen zu bestimmen, wird das
Kriterium verwendet, dass an einem Extrempunkt die erste Ableitung verschwindet. Für eine Funktion f(t) gilt
also

df

dt
= 0

am Extrempunkt.
Dieses Vorgehen ist allgemeingültig: Wo die erste Ableitung einer glatten Funktion verschwindet, kann ein Ex-
trempunkt vorliegen; ob es sich um ein Maximum oder Minimum handelt, lässt sich anschließend beispielsweise
über das Vorzeichen der zweiten Ableitung entscheiden. Beim schrägen Wurf gibt es jedoch nur ein Maximum
im Kurvenverlauf, wodurch die zweite Ableitung nicht benötigt wird.
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2.2 Musterlösung 2 WURFPARABEL

2.2 Musterlösung

a) Grundgleichungen und Eliminierung der Zeit

Ansatz: Punktmasse, Startgeschwindigkeit v0 im Winkel α über der Horizontalen, Ursprung als Abwurf-
punktpunkt. Zerlegung:

v0x = v0 cosα, v0y = v0 sinα.

Bewegung ohne Luftreibung:

x(t) = v0x t = v0 cosα t,

y(t) = v0y t− 1
2gt

2 = v0 sinα t− 1
2gt

2.

(1) Bahnkurve y(x). Eliminiere t aus x = v0 cosα t:

t =
x

v0 cosα
.

Eingesetzt in y(t):

y(x) = x tanα− g

2v20 cos
2 α

x2 .

(2) Reichweite R(α). Aufschlag, wenn y = 0 (außer x = 0):

0 = x tanα− g

2v20 cos
2 α

x2 ⇒ x ̸= 0 : tanα =
g

2v20 cos
2 α

x.

Setze x = R und benutze sin(2α) = 2 sinα cosα:

R(α) =
v20
g

sin(2α) .

(3) Maximale Höhe hmax(α). Maximum von y(t) bei ẏ = 0:

ẏ(t) = v0 sinα− gt = 0 ⇒ tmax =
v0 sinα

g
.

Eingesetzt in y(t):

hmax = v0 sinα · v0 sinα
g

− 1

2
g

(
v0 sinα

g

)2

=
v20 sin

2 α

2g
.

Also

hmax(α) =
v20 sin

2 α

2g
.

(4) Flugzeit T (α). Nullstelle y(t) = 0 außer t = 0:

v0 sinα t− 1
2gt

2 = 0 ⇒ t
(
v0 sinα− 1

2gt
)
= 0 ⇒ t = T =

2v0 sinα

g
.

Also

T (α) =
2v0 sinα

g
.

b) Mauer bei x = l (Höhe h) und Tor bei x = 2l

Es wird verlangt, dass die Bahn durch die Punkte (x, y) = (l, h) und (2l, 0) geht. Beide Bedingungen werden in
y(x) eingesetzt und zunächst nach dem Winkel aufgelöst.
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2.3 Kurioses 2 WURFPARABEL

(1) Winkel θ(h, l). Aus y(2l) = 0:

0 = 2l tan θ − g

2v20 cos
2 θ

(2l)2 = 2l tan θ − 2gl2

v20 cos
2 θ

.

Daraus folgt

tan θ =
gl

v20 cos
2 θ

. (∗)

Aus y(l) = h:

h = l tan θ − g

2v20 cos
2 θ

l2.

Benutze (∗), um gl2

v20 cos
2 θ

= l tan θ umzuschreiben:

h = l tan θ − 1

2
l tan θ =

1

2
l tan θ ⇒ tan θ =

2h

l
⇒ θ = arctan

(2h
l

)
.

(2) Erforderliche Anfangsgeschwindigkeit v0(h, l). Der gefundene Winkel θ wird in (∗) eingesetzt:

v20 =
gl

tan θ cos2 θ
.

Mit tan θ = 2h/l und cos2 θ =
1

1 + tan2 θ
=

1

1 + 4h2/l2
=

l2

l2 + 4h2
:

v20 =
gl

(2h/l)
· l

2 + 4h2

l2
=

gl2

2h
· l

2 + 4h2

l2
=

g (l2 + 4h2)

2h
.

Damit

v0(h, l) =

√
g (l2 + 4h2)

2h
.

Einheitencheck: g in m/s2, h, l in m ⇒ v0 in m/s daher korrekt.

2.3 Kurioses

Schon Aristoteles glaubte, dass geworfene Körper sich zunächst geradeaus und anschließend senkrecht nach
unten bewegen. Erst Galileo Galilei zeigte im 17. Jahrhundert, dass die Bewegung aus der Überlagerung eines
gleichförmigen horizontalen und eines gleichmäßig beschleunigten vertikalen Anteils besteht und die Bahn somit
eine Parabel ist.
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3 RAKETE

3 Rakete

Aufgabe 3 Raketenproblem

Eine Rakete der Masse m(t) bewege sich mit einer Geschwindigkeit v(t) zum Zeitpunkt t von der Erde weg
senkrecht nach oben. Es wird ein homogenes Schwerefeld angenommen und der Einfluss des Luftwiderstandes
wird vernachlässigt. Die Rakete der Anfangsmasse m0 stößt pro Zeiteinheit die Gasmenge α = ∆m

∆t > 0 mit
konstanter Geschwindigkeit v0 (relativ zur Rakete) nach unten aus. Siehe Abbildung.

a) Zeige, dass die Bewegungsgleichung der Rakete die folgende Form hat

m
dv

dt
= −dm

dt
v0 −mg = αv0 −mg.

b) Integriere die Bewegungsgleichung, um einen Ausdruck für v(m) zu erhalten. Die Anfangsgeschwindigkeit
der Rakete sei v(m0) = 0.

c) Schätze ab, wieviel mal größer die Anfangsmasse der Rakete m0 gegenüber der Masse der leeren Rakete
sein muss, um die Fluchtgeschwindigkeit von der Erde v2 = 11,2km

s für die Parameter v0 = 2,1km
s und

α = m0

60 s zu erreichen.

d) Berechne v(t) aus v(m) mit Hilfe von m(t) = m0 −αt und entwickle v(t) für kleine Zeiten. Diskutiere das
Ergebnis. Hinweis: ln(1 + x) ≈ x für |x| < 1

Federführende Dokumentation: Max Lauer

3.1 Hintergrund

Das Raketenproblem gibt es logischerweise länger als es Raketen gibt. Für die Lösung eben dieses ist nicht mehr
von Nöten als die Newtonschen Gesetze. Das bedeutet, dass es das Raketenproblem seit dem 17. Jahrhundert
gibt. Damals konnte man sich sicherlich noch nicht ausmalen, dass die Rechnerei 250 Jahre später den Menschen
auf den Mond verhelfen wird. Erstmalig tauchte 1810 eine Lösung des Raketenproblems in einem Journal auf.
Diese stammte vom britischen Mathematiker William Moore.
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3.2 Musterlösung 3 RAKETE

3.2 Musterlösung

a) Nach Newtons zweitem Gesetz gilt für die Kraft:

dp

dt
= F (3a)

⇔ m
dv

dt
+

dm

dt
v = −mg + F ′. (3b)

F ′ bezeichnet hier die Kraft die das ausgestoßene Gas auf die Rakete ausübt.
Der Impuls des ausgestoßenen Gases beträgt:

∆p = ∆m(v − v0).

Teilt man diese Gleichung jetzt auf beiden Seiten durch ∆t, erhält man:

∆p

∆t
=

∆m

∆t
(v − v0).

Links und rechts auf der Seite dieser Gleichung stehen nun also eine Kraft, nämlich die Kraft, die auf die
ausgestoßenen Gasteilchen wirkt. nach Newtons 3. Gesetz (actio=reactio) wirkt die entgegengesetzte Kraft auf
die Rakete:

F ′ = −α(v − v0). (4)

Setzt man nun Gl. (4) in Gl. (3b) ein so erhält man folgende Bewegungsgleichung:

m
dv

dt
+

dm

dt
v = −mg − α(v − v0).

Die Gesamtmasse der Rakete ist:

m(t) = m0 − αt → dm

dt
= −α (5)

Setzt man Gl. (5) in die Bewegungsgleichung ein, so erhält man die gesuchte Form:

m
dv

dt
= −mg − dm

dt
v0 = −mg + αv0.

b) Nun wollen wir einen Ausdruck für v(m) finden. Dazu müssen wir aus unserer DGL die Variable t entfernen.
Es gilt:

dv

dt
=

dv

dm

dm

dt
= −α

dv

dm
.

Daraus ergibt sich:

−α
dv

dm
= −mg + αv0

⇔ dv =
g

α
dm− v0

m
dm.

Durch beidseitige Integration erhalten wir den Ausdruck für v(m):

v(m) =
g

α
m− v0 ln(m) + C.

C ist dabei die Integrationskonstante. Diese wird durch die Anfangsbedingung v(m0) = 0 festgelegt. Nach
Einsetzen der Anfangsbedingung erhält man als Lösung für v(m):

v(m) =
g

α
(m−m0)− v0 ln

(
m

m0

)
. (6)

c) Wir machen Gebrauch von der Abschätzung, dass m
m0

≪ 1 ist. Setzen wir alle gegebenen Werte in unsere
Gleichung ein, so erhalten wir:

v2 = g 60 s

(
m

m0
− 1

)
− v0 ln

(
m

m0

)
Aufgrund unserer Abschätzung können wir den Term m/(m0), der nicht im Logarithmus steht vernachlässigen.
Ohne diesen Term erhalten wir eine analytisch-lösbare Gleichung mit der Lösung:

m

m0
≈ 274.
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3.3 Kurioses 3 RAKETE

Das bedeutet, dass die Startmasse der Rakete ungefähr 274-Mal so schwer sein muss wie die Rakete beim
Verlassen der Erde.
d) Zunächst setzen wir in Gl. (6) v(m) = v(m(t)) mit m(t) wie in Gl. (5):

v(m(t)) = −gt− v0 ln

(
1− αt

m0

)
.

Mithilfe der Näherung für kleine t aus der Aufgabenstellung ergibt sich dadurch:

v(m(t)) ≈ t

(
v0

α

m0
− g

)
.

3.3 Kurioses

Das deutsche V-2-Raketen-Testmodell MW 18014 erreichte im Juni 1944 als erstes von Menschen geschaffenes
Objekt den Weltraum. Sputnik 1, gestartet von der Sowjetunion am 4. Oktober 1957, war der erste künstliche
Erdsatellit und gilt als Beginn der modernen Raumfahrt. Der sowjetische Kosmonaut Juri Gagarin wurde am
12. April 1961 mit der Wostok 1 Rakete als erster Mensch ins All befördert. All das, ohne Newtons Gesetze
unerreichbar (dieser Satz ergibt auch mehr oder weniger Sinn, wenn das Komma ein Wort vorangestellt wird,
und ein passend gewähltes Verb den Satz vervollständigt).
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4 ZYLINDER- UND KUGELKOORDINATEN

4 Zylinder- und Kugelkoordinaten

Aufgabe 4 Zylinder- und Kugelkoordinaten

a) Es gelten folgenden Umrechnungsregeln zwischen Zylinderkoordinaten (ρ, φ, z) und kartesische Koordina-
ten (x, y, z) :

x = ρ cos(φ)

y = ρ sin(φ).

Bestimmen die (normierte) Basis (eρ, eφ, ez) der Zylinderkoordinaten, das Wegelement, die Jacobi-Determinante
und das Volumenelement. Überzeuge dich, dass es sich um eine rechtshändige Orthonormalbasis handelt.

b) Eine Bahnkurve sei gegeben durch r(t) = ρ(t)eρ(t) + z(t)ez. Gib die Ausdrücke für die Geschwindigkeit
und die Beschleunigung in Zylinderkoordinaten an.

c) Wiederhole die Rechnungen aus a) und b) für Kugelkoordinaten (r, θ, φ), für die folgende Umrechnungs-
regeln gelten:

x = r sin(θ) cos(φ)

y = r sin(θ) sin(φ)

z = r cos(θ).

Federführende Dokumentation: Lucca Saar

4.1 Hintergrund

4.2 Musterlösung

a) Zylinderkoordinaten: Basisvektoren und Volumenelement

Gegeben sind die Umrechnungsregeln zwischen Zylinderkoordinaten (ρ, φ, z) und kartesischen Koordinaten
(x, y, z):

x = ρ cosφ,

y = ρ sinφ,

z = z.

Wir betrachten den Ortsvektor in kartesischer Darstellung

r⃗(x, y, z) = x êx + y êy + z êz.

Setzt man die Umrechnungsvorschriften ein, so erhält man

r⃗(ρ, φ, z) = ρ cosφ êx + ρ sinφ êy + z êz.

Die Koordinatenlinien erhält man, indem man jeweils eine Koordinate variiert und die anderen festhält. Die
zugehörigen (nicht normierten) Basisvektoren sind die partiellen Ableitungen von r⃗ nach den Koordinaten:

∂r⃗

∂ρ
=

∂

∂ρ

(
ρ cosφ êx + ρ sinφ êy + z êz

)
= cosφ êx + sinφ êy + 0 · êz,

∂r⃗

∂φ
=

∂

∂φ

(
ρ cosφ êx + ρ sinφ êy + z êz

)
= −ρ sinφ êx + ρ cosφ êy + 0 · êz,

∂r⃗

∂z
=

∂

∂z

(
ρ cosφ êx + ρ sinφ êy + z êz

)
= 0 · êx + 0 · êy + 1 · êz.
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4.2 Musterlösung 4 ZYLINDER- UND KUGELKOORDINATEN

Die Längen dieser Vektoren sind

hρ =

∥∥∥∥∂r⃗∂ρ
∥∥∥∥ =

√
cos2 φ+ sin2 φ = 1,

hφ =

∥∥∥∥ ∂r⃗∂φ
∥∥∥∥ =

√
(−ρ sinφ)2 + (ρ cosφ)2 =

√
ρ2(sin2 φ+ cos2 φ) = ρ,

hz =

∥∥∥∥∂r⃗∂z
∥∥∥∥ = 1.

Die normierten Basisvektoren erhält man durch Division durch die jeweilige Länge:

êρ =
1

hρ

∂r⃗

∂ρ
=

∂r⃗

∂ρ
= cosφ êx + sinφ êy,

êφ =
1

hφ

∂r⃗

∂φ
=

1

ρ

(
−ρ sinφ êx + ρ cosφ êy

)
= − sinφ êx + cosφ êy,

êz =
1

hz

∂r⃗

∂z
= êz.

Damit haben wir die orthonormale Basis der Zylinderkoordinaten gefunden:(
êρ, êφ, êz

)
.

Orthonormalität: Wir überprüfen die Skalarprodukte explizit.

êρ · êρ = (cosφ êx + sinφ êy) · (cosφ êx + sinφ êy)

= cos2 φ+ sin2 φ = 1,

analog

êφ · êφ = (− sinφ êx + cosφ êy) · (− sinφ êx + cosφ êy)

= sin2 φ+ cos2 φ = 1,

und offensichtlich
êz · êz = 1.

Die gemischten Produkte
êρ · êφ = 0, êρ · êz = 0, êφ · êz = 0

folgen direkt, da êx, êy, êz orthonormal sind.
Rechtshändigkeit: Wir berechnen das Kreuzprodukt

êρ × êφ = (cosφ êx + sinφ êy)× (− sinφ êx + cosφ êy).

Verwendet man êx × êy = êz und êy × êx = −êz, erhält man

êρ × êφ = cosφ cosφ (êx × êy) + sinφ(− sinφ) (êy × êx)

=
(
cos2 φ+ sin2 φ

)
êz = êz.

Damit ist das Tripel (êρ, êφ, êz) rechtshändig.
Volumenelement:Das Volumenelement ergibt sich aus dem Betrag der Jacobi-Determinante det(∂(x, y, z)/∂(ρ, φ, z)).
Die Jacobi-Matrix ist

J =


∂x

∂ρ

∂x

∂φ

∂x

∂z
∂y

∂ρ

∂y

∂φ

∂y

∂z
∂z

∂ρ

∂z

∂φ

∂z

∂z

 =

cosφ −ρ sinφ 0
sinφ ρ cosφ 0
0 0 1

 .

Die Determinante ist

det J = 1 ·
∣∣∣∣cosφ −ρ sinφ
sinφ ρ cosφ

∣∣∣∣
= 1 ·

(
cosφ · ρ cosφ− (−ρ sinφ) · sinφ

)
= ρ(cos2 φ+ sin2 φ) = ρ.

Daher gilt
dV = |det J | dρ dφdz = ρdρ dφdz.
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4.2 Musterlösung 4 ZYLINDER- UND KUGELKOORDINATEN

b) Bewegung in Zylinderkoordinaten

Die Bahnkurve sei gegeben durch
r⃗(t) = ρ(t) êρ(t) + z(t) êz.

Beachte: êρ hängt über den Winkel φ(t) von der Zeit ab, êz ist konstant.

Geschwindigkeit. Die Geschwindigkeit ist die Zeitableitung des Ortsvektors:

v⃗(t) =
dr⃗

dt
=

d

dt

(
ρ(t) êρ(t) + z(t) êz

)
= ρ̇(t) êρ(t) + ρ(t) ˙̂eρ(t) + ż(t) êz,

wobei Punkte die Ableitung nach der Zeit bedeuten.
Um ˙̂eρ zu bestimmen, schreiben wir êρ explizit in kartesischen Komponenten:

êρ(t) = cosφ(t) êx + sinφ(t) êy.

Ableitung nach der Zeit:

˙̂eρ(t) = − sinφ(t) φ̇(t) êx + cosφ(t) φ̇(t) êy

= φ̇(t)
(
− sinφ(t) êx + cosφ(t) êy

)
.

Der Vektor in Klammern ist genau êφ(t), also

˙̂eρ = φ̇ êφ.

Die Einheitsvektoren êφ und êz sind bezüglich φ beziehungsweise z definiert; für êz gilt ˙̂ez = 0.
Einsetzen in v⃗:

v⃗(t) = ρ̇ êρ + ρ φ̇ êφ + ż êz.

Dies ist die Geschwindigkeit in Zylinderkoordinaten.

Beschleunigung. Nun bestimmen wir die zweite Ableitung:

a⃗(t) =
dv⃗

dt
=

d

dt

(
ρ̇ êρ + ρ φ̇ êφ + ż êz

)
= ρ̈ êρ + ρ̇ ˙̂eρ + ρ̇ φ̇ êφ + ρ φ̈ êφ + ρ φ̇ ˙̂eφ + z̈ êz.

Wir kennen bereits ˙̂eρ = φ̇ êφ. Analog bestimmen wir ˙̂eφ:

êφ(t) = − sinφ(t) êx + cosφ(t) êy.

Ableitung:

˙̂eφ(t) = − cosφ(t) φ̇(t) êx − sinφ(t) φ̇(t) êy

= −φ̇(t)
(
cosφ(t) êx + sinφ(t) êy

)
= −φ̇(t) êρ(t).

Also
˙̂eφ = −φ̇ êρ.

Damit gilt

a⃗ = ρ̈ êρ + ρ̇ (φ̇ êφ) + ρ̇ φ̇ êφ + ρ φ̈ êφ + ρ φ̇ (−φ̇ êρ) + z̈ êz

= ρ̈ êρ + 2ρ̇ φ̇ êφ + ρ φ̈ êφ − ρ φ̇2 êρ + z̈ êz.

Wir fassen die Komponenten zusammen:

a⃗ = (ρ̈− ρ φ̇2) êρ + (ρ φ̈+ 2ρ̇ φ̇) êφ + z̈ êz.
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4.3 Kurioses 4 ZYLINDER- UND KUGELKOORDINATEN

c) Kugelkoordinaten

Die Umrechnung in Kugelkoordinaten (r, θ, φ) lautet

x = r sin θ cosφ,

y = r sin θ sinφ,

z = r cos θ.

Ortsvektor und nicht normierte Basisvektoren. Der Ortsvektor ist

r⃗ = x êx + y êy + z êz = r sin θ cosφ êx + r sin θ sinφ êy + r cos θ êz.

Die partiellen Ableitungen nach den Kugelkoordinaten sind

∂r⃗

∂r
= sin θ cosφ êx + sin θ sinφ êy + cos θ êz,

∂r⃗

∂θ
= r cos θ cosφ êx + r cos θ sinφ êy − r sin θ êz,

∂r⃗

∂φ
= −r sin θ sinφ êx + r sin θ cosφ êy + 0 · êz.

Die Längen dieser Vektoren:

hr =

∥∥∥∥∂r⃗∂r
∥∥∥∥ =

√
sin2 θ(cos2 φ+ sin2 φ) + cos2 θ =

√
sin2 θ + cos2 θ = 1,

hθ =

∥∥∥∥∂r⃗∂θ
∥∥∥∥ =

√
r2
(
cos2 θ(cos2 φ+ sin2 φ) + sin2 θ

)
=

√
r2(cos2 θ + sin2 θ) = r,

hφ =

∥∥∥∥ ∂r⃗∂φ
∥∥∥∥ =

√
r2 sin2 θ(sin2 φ+ cos2 φ) = r sin θ.

Normierte Basisvektoren. Durch Normierung erhalten wir

êr =
1

hr

∂r⃗

∂r
=

∂r⃗

∂r
= sin θ cosφ êx + sin θ sinφ êy + cos θ êz,

êθ =
1

hθ

∂r⃗

∂θ
=

1

r

∂r⃗

∂θ

= cos θ cosφ êx + cos θ sinφ êy − sin θ êz,

êφ =
1

hφ

∂r⃗

∂φ
=

1

r sin θ

∂r⃗

∂φ

= − sinφ êx + cosφ êy.

Damit ist
(êr, êθ, êφ)

eine orthonormale Basis in Kugelkoordinaten. Analog wie oben zeigt man êr · êr = 1 etc. und êr × êθ = êφ,
also Rechtshändigkeit.

Volumenelement. Die Jacobi-Matrix ∂(x, y, z)/∂(r, θ, φ) hat Determinante detJ = r2 sin θ. Damit

dV = r2 sin θ dr dθ dφ.

Bewegung. Eine Bahnkurve in Kugelkoordinaten kann als

r⃗(t) = r(t) êr(t)

geschrieben werden. Mit der Standardrechnung (analog zu Teil b) erhält man:

v⃗ = ṙ êr + rθ̇ êθ + r sin θ φ̇ êφ,

a⃗ = (r̈ − rθ̇2 − r sin2 θ φ̇2) êr

+ (rθ̈ + 2ṙθ̇ − r sin θ cos θ φ̇2) êθ

+ (r sin θ φ̈+ 2ṙ sin θ φ̇+ 2r cos θ θ̇ φ̇) êφ.

4.3 Kurioses
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5 ATWOODSCHE FALLMASCHINE

5 Atwoodsche Fallmaschine

Aufgabe 5 Atwoodsche Fallmaschine
Zwei Massen m1,m2 hängen an einem nicht dehnbaren Faden der Länge l über einer festen Rolle im Schwerefeld
der Erde senkrecht nach unten. Die Rolle und der Faden werden als masse- und reibungslos betrachtet.

a) Skizziere das System und trage alle relevanten Größen und Variablen ein.

b) Analysiere das System mit Hilfe der Newtonschen Mechanik:

1. Benenne alle Kräfte, die auf die beiden Massen wirken.

2. Leite eine Bewegungsgleichung für z1 her.

c) Analysiere das System mit Hilfe der Lagrange-Gleichungen zweiter Art:

1. Schreibe die Lagrange-Funktion L(z1, z2, ż1, ż2) = T − V für das System ohne Berücksichtigung der
Zwangsbedingung auf.

2. Wähle eine geeignete generalisierte Koordinate q aus, die die Zwangsbedingung berücksichtigt, und
drücke L(q, q̇) in dieser Koordinate aus.

3. Stelle die Lagrange-Gleichung 2. Art auf.

d) Löse die Bewegungsgleichung.

e) Nimm an, dass für t = 0 beide Massen in 12m Höhe als Ruhelage (v(0) = 0) hängen. Berechne – für die
Parameter, g = 10m

s2 , m1 = 12 kg und m2 = 48 kg die Zeit t, bis zum Auftreffen der schwereren Massen
auf dem Boden.

f) Berechne die Geschwindigkeit v der Masse m2 beim Auftreffen auf den Boden.

Federführende Dokumentation: Lucca Saar

5.1 Hintergrund

5.2 Musterlösung

a) Skizze

b) Newtonsche Herleitung der Bewegungsgleichung

1. Kräfte. Auf jede Masse wirkt

• die Gewichtskraft mig nach unten,

• die Seilspannung T nach oben.

Wir wählen die positive Richtung nach unten.

2. Bewegungsgleichung für z1. Für die Masse m1 gilt die zweite Newtonsche Gleichung:

m1z̈1 = m1g − T.

Für die Masse m2 entsprechend:
m2z̈2 = m2g − T.

Die Zwangsbedingung
z1 + z2 = l

impliziert nach zweimaliger Ableitung

z̈1 + z̈2 = 0 ⇒ z̈2 = −z̈1.

Aus der Gleichung für m1 folgt
T = m1g −m1z̈1.

17



5.2 Musterlösung 5 ATWOODSCHE FALLMASCHINE

Setzen wir dies in die Gleichung für m2 ein, so erhalten wir

m2z̈2 = m2g − T = m2g − (m1g −m1z̈1)

= (m2 −m1)g +m1z̈1.

Mit z̈2 = −z̈1 folgt

m2(−z̈1) = (m2 −m1)g +m1z̈1.

Wir bringen alle Terme mit z̈1 auf die linke Seite:

−m2z̈1 −m1z̈1 = (m2 −m1)g.

Links klammern wir z̈1 aus:
−(m1 +m2)z̈1 = (m2 −m1)g.

Multiplikation mit −1 ergibt
(m1 +m2)z̈1 = (m1 −m2)g.

Also

z̈1 =
m1 −m2

m1 +m2
g.

Entsprechend folgt aus z̈2 = −z̈1

z̈2 =
m2 −m1

m1 +m2
g.

Für m2 > m1 ist z̈2 > 0, die schwerere Masse bewegt sich nach unten.

c) Lagrange-Formalismus

1. Lagrange-Funktion mit Koordinaten z1, z2. Die kinetische Energie ist

T =
1

2
m1ż

2
1 +

1

2
m2ż

2
2 .

Mit der Wahl der Nullhöhe an der Rolle ist die potentielle Energie

V = m1gz1 +m2gz2.

Also

L(z1, z2, ż1, ż2) = T − V =
1

2
m1ż

2
1 +

1

2
m2ż

2
2 −m1gz1 −m2gz2.

2. Einführung einer generalisierten Koordinate. Die Zwangsbedingung lautet

z1 + z2 = l.

Wir wählen
q(t) := z1(t)

als generalisierte Koordinate. Dann ist
z2 = l − q, ż2 = −q̇.

Wir setzen dies in T und V ein.
Zuerst die kinetische Energie:

T =
1

2
m1q̇

2 +
1

2
m2(−q̇)2 =

1

2
m1q̇

2 +
1

2
m2q̇

2

=
1

2
(m1 +m2)q̇

2.

Dann die potentielle Energie:

V = m1gq +m2g(l − q)

= m1gq +m2gl −m2gq

= g(m1 −m2)q +m2gl.

Die Lagrange-Funktion in der Koordinate q ist

L(q, q̇) = T − V

=
1

2
(m1 +m2)q̇

2 − g(m1 −m2)q −m2gl.

Die Konstante −m2gl spielt für die Bewegungsgleichung keine Rolle.

18



5.2 Musterlösung 5 ATWOODSCHE FALLMASCHINE

3. Lagrange-Gleichung 2. Art. Die Euler-Lagrange-Gleichung lautet

d

dt

(
∂L

∂q̇

)
− ∂L

∂q
= 0.

Zunächst

∂L

∂q̇
= (m1 +m2)q̇,

d

dt

(
∂L

∂q̇

)
= (m1 +m2)q̈.

Weiter

∂L

∂q
= −g(m1 −m2).

Damit wird die Lagrange-Gleichung zu

(m1 +m2)q̈ −
(
−g(m1 −m2)

)
= 0,

also
(m1 +m2)q̈ + g(m1 −m2) = 0.

Wir lösen nach q̈ auf:

q̈ =
m2 −m1

m1 +m2
g.

Da q = z1 ist, stimmt dies mit dem Ergebnis aus Teil b) überein.

d) Lösung der Bewegungsgleichung

Die Gleichung

q̈ = a, a :=
m2 −m1

m1 +m2
g = konstant,

ist die eines gleichmäßig beschleunigten Systems.
Die allgemeine Lösung lautet

q(t) = q(0) + q̇(0)t+
1

2
at2.

Schreibt man wieder z1 statt q, so ist

z1(t) = z1(0) + ż1(0)t+
1

2

m2 −m1

m1 +m2
g t2.

Wegen z2 = l − z1 folgt

z2(t) = l − z1(0)− ż1(0)t−
1

2

m2 −m1

m1 +m2
g t2.

e) Einschalten der Anfangsbedingungen und Zeit bis zum Aufprall

Gegeben ist: Zu t = 0 hängen beide Massen in Ruhe in 12m Höhe über dem Boden. Wir interessieren uns für
die Zeit, bis die schwerere Masse m2 den Boden erreicht.
Es ist praktisch, für m2 eine neue Koordinate

s(t) := Weg der Masse m2 nach unten, gemessen ab ihrer Anfangslage

einzuführen. Dann gilt:

s(0) = 0,

ṡ(0) = 0,

s̈ = a =
m2 −m1

m1 +m2
g.

Mit s = 0 am Anfang und Endpunkt s = 12m beim Auftreffen auf den Boden.
Die Bewegungsgleichung ist also

s(t) =
1

2
at2,
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5.3 Kurioses 5 ATWOODSCHE FALLMASCHINE

da s(0) = 0 und ṡ(0) = 0.
Wir setzen s(tBoden) = 12m:

12 =
1

2
at2Boden =

1

2

m2 −m1

m1 +m2
g t2Boden.

Einsetzen von g = 10m/s2, m1 = 12 kg, m2 = 48 kg:

a =
m2 −m1

m1 +m2
g =

48− 12

48 + 12
· 10 =

36

60
· 10 = 0,6 · 10 = 6m/s2.

Damit

12 =
1

2
· 6 · t2Boden = 3t2Boden.

Also

t2Boden =
12

3
= 4 ⇒ tBoden = 2 s.

f) Geschwindigkeit beim Auftreffen

Die Geschwindigkeit von m2 zum Zeitpunkt tBoden ergibt sich aus

v(t) = ṡ(t) = at.

Für t = tBoden = 2 s und a = 6m/s2:

vBoden = atBoden = 6m/s2 · 2 s = 12m/s.

Die schwerere Masse m2 trifft den Boden also mit einer Geschwindigkeit von

vBoden = 12m/s.

5.3 Kurioses
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6 ZYKLOIDENPENDEL

6 Zykloidenpendel

Aufgabe 6 Zykloidenpendel
Betrachte eine Masse m, deren Bewegung im homogenen Erdschwerefeld g auf eine Zykloide eingeschränkt ist.

m g

θ = −π θ = +π

θ = 0

x

y

Der Ortsvektor der Masse ist parametrisiert durch −π ≤ θ ≤ π als r = R
(

θ+sin θ
−1−cos θ

)
gegeben, wobei 0 < R =

const. ist.

a) Stell die Lagrange-Funktion des Systems auf. Wähle dabei θ als generalisierte Variable q.

b) Leite folgende Bewgungsgleichung für die Masse m her:

d2

dt2
sin

q

2
+

g

4R
sin

q

2
= 0.

Hinweis: Die Halbwinkelidentitäten 2 cos2 q
2 = (1 + cos q) und sin q = 2 sin q

2 cos
q
2 können hilfreich sein.

c) Wie lautet eine geeignete Variablentransformation, um die Bewgungsgleichung in die eines harmonischen
Oszillators zu überführen? Wie lautet die entsprechende Periode?

d) Gib die Lösung q(t) an.
Hinweis: Verwende dein Wissen über die Lösung des harmonischen Oszillators.

Federführende Dokumentation: Max Lauer

6.1 Hintergrund

Als Hintergrund dieser Aufgabe dient lediglich die Lagrangemechanik. Dies ist eine wunderschöne Aufgabe um
den Lagrange-Formalismus zweiter Art und die harmonische Schwingung einzuüben.

6.2 Musterlösung

a) Wir berechnen zunächst den Betrag der Geschwindigkeit v und damit unsere kinetische Energie T :

v2 = ẋ2 + ẏ2

v2 = (R(θ̇ + θ̇ cos(θ))2 + (Rθ̇ sin(θ))2 = 2R2θ̇2(1 + cos(θ))

⇒ T =
m

2
v̇2 = mR2θ̇2(1 + cos(θ))

Unser Potential hängt nur von der Höhe ab, also von y:

V = mgh = mgR(−1− cos(θ))

Daraus erhalten wir die Lagrangefunktion T − V :

L = mR(1 + cos(θ))(Rθ̇2 + g)

b) Wir benutzen die Lagrange Gleichung zweiter Art:

d

dt

∂L
∂θ̇

− ∂L
∂θ

= 0

⇔ 2θ̈mR2(1 + cos(θ))− 2mR2θ̇2 sin(θ) +mR sin(θ)(Rθ̇2 + g) = 0
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6.3 Kurioses 6 ZYKLOIDENPENDEL

⇔ 2mR2((1 + cos(θ))θ̈ − sin(θ)θ̇2) +mR sin(θ)(Rθ̇2 + g) = 0

Nun schreiben wir diesen Ausdruck mithilfe der Hinweise in der Aufgabenstellung um:

2mR2(2 cos2(
θ

2
)θ̈ − 2 sin(

θ

2
) cos(

θ

2
)θ̇2) + 2mR sin(

θ

2
) cos(

θ

2
)(Rθ̇2 + g) = 0

Nun dividieren wir beide Seiten der Gleichung durch 2mR2cos( θ2 ) und erhalten:

2θ̈cos(
θ

2
)− θ̇2 sin(

θ

2
) +

g

R
sin(

θ

2
) = 0

Durch scharfes Hinsehen, entdeckt man:

2θ̈cos(
θ

2
)− θ̇2 sin(

θ

2
) = 4

d2

dt2
sin(

θ

2
)

Daraus ergibt sich nun die gesuchte DGL für die Masse m:

d2

dt2
sin

θ

2
+

g

4R
sin

θ

2
= 0

c) Die Variablentransformation lautet:

x := sin(
θ

2
)

Die DGL lautet dann:
ẍ = − g

4R
x

Die entsprechende Periode der Schwingung lautet:

ω :=
1

2

√
g

R

d) Die allgemeine Lösung lautet:

x(t) = sin(
θ

2
)(t) = A exp(iωt) +B exp(−iωt)

Mit komplexen Vorfaktoren A und B. Dies können wir noch nach θ(t) umformen:

θ(t) = 2 arcsin(A exp(i
1

2

√
g

R
t) +B exp(−i

1

2

√
g

R
t))

6.3 Kurioses

Im Gegensatz zum mathematischen Pendel ist das Zykloidenpendel exakt harmonisch. Das bedeutet, dass die
Schwingungsfrequenz unabhängig von der Auslenkung ist. Beim mathematischen Pendel ist dies nur für kleine
Auslenkungswinkel gegeben.Dies verschafft dem Zykloidenpendel einen großen Vorteil wenn es um den Verbau
in beispielsweise Uhren geht. Die Pendelbewegung ist dann nämlich mit dem Uhrwerk verbunden. Bei jedem
Durchgang löst die Schwingung eine Bewegung im Uhrwerk aus, die die Zeitanzeige weiterschaltet. Genial, nicht
wahr?
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7 KRAFTFELDER UND ARBEIT

7 Kraftfelder und Arbeit

Aufgabe 7 Kraftfelder und Arbeit

Betrachte das Kraftfeld

F (x, y, z) =

 k1y
k1x
2k2z


a) Zeige, dass es sich um eine konservative Kraft handelt, und bestimme das Potenzial V .

b) Berechne die Arbeit, die bei einer Bewegung von (0, 0, 0)T nach (r, r, r)T verrichtet wird.

c) Zeige, dass alle Zentralkraftfelder, also Kraftfelder der Form F(r) = f(r) er mit einer skalaren Funktion
f , r ≡ |r| und dem Einheitsvektor er = r/|r|, stets von einem Potenzial V abgeleitet werden können.

d) Betrachte ein Teilchen mit Koordinate r und Masse m, das einer allgemeinen (ortsabhängigen) Kraft F
unterliegt. Die kinetische Energie ist durch T = 1

2mṙ2 gegeben. Nimm an, dass sich das Teilchen zum
Anfangszeitpunkt ti am Ort r(ti) und zum Endzeitpunkt tf am Ort r(tf ) befindet. Zeige, dass die Arbeit

W =

∫ r(tf )

r(ti)

F · dr ,

die durch die Kraft verrichtet wird, durch die Differenz der kinetischen Energie vom Anfangs- und End-
zeitpunkt gegeben ist.

Federführende Dokumentation: Lucca Saar

7.1 Hintergrund

7.2 Musterlösung

(a) Konservativität und Potential V

Ziel. Wir prüfen ∇× F = 0. In einer einfach zusammenhängenden Domäne (hier: ganz R3) ist das äquivalent
zur Existenz eines Potentials V mit F = −∇V .

Schritt 1: Rotation komponentenweise. Für F = (Fx, Fy, Fz) gilt

∇× F =

∂yFz − ∂zFy

∂zFx − ∂xFz

∂xFy − ∂yFx

 .

Mit Fx = k1y, Fy = k1x, Fz = 2k2z erhalten wir

∂yFz = 0, ∂zFy = 0, ∂zFx = 0, ∂xFz = 0, ∂xFy = k1, ∂yFx = k1.

Damit

∇× F =

 0− 0
0− 0
k1 − k1

 = 0.

Schritt 2: Schluss ⇒ konservativ. Da ∇ × F = 0 in R3 und R3 einfach zusammenhängend ist, ist F
konservativ.
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7.3 Kurioses 7 KRAFTFELDER UND ARBEIT

Schritt 3: Potential V konstruieren aus F = −∇V . Wir lösen

−∂V

∂x
= Fx = k1y, −∂V

∂y
= Fy = k1x, −∂V

∂z
= Fz = 2k2z.

(i) Integration nach x:

−∂V

∂x
= k1y ⇒ V (x, y, z) = −k1xy + f(y, z),

wobei f eine (vorerst) unbekannte Funktion ist, die von y, z abhängen kann.
(ii) Vergleich mit −∂V/∂y = k1x:

−∂V

∂y
= − ∂

∂y

(
− k1xy + f(y, z)

)
= k1x− ∂f

∂y
= k1x.

Also ∂f
∂y = 0, d. h. f hängt nicht von y ab: f = f(z).

(iii) Vergleich mit −∂V/∂z = 2k2z:

−df

dz
= 2k2z ⇒ f(z) = −k2z

2 + C.

Ergebnis.

V (x, y, z) = −k1 xy − k2 z
2 + C

für eine beliebige Konstante C. (Kontrolle: −∇V = (k1y, k1x, 2k2z) = F .)

(b) Arbeit von (0, 0, 0)T nach (r, r, r)T

Für konservative Felder ist die Arbeit wegunabhängig und

W =

∫
γ

F · dr = V (Start)− V (Ziel).

Mit C = 0 genügt
V (0, 0, 0) = 0, V (r, r, r) = −(k1 + k2)r

2.

Daraus

W = (k1 + k2) r
2 .

(c) Zentralkräfte sind konservativ

Sei F (r) = f(r)er mit r = ∥r∥ und er = r/r. Definiere

V (r) = −
∫ r

f(s) ds.

Dann dV
dr = −f(r) und in Kugelkoordinaten ∇V = dV

dr er = −f(r)er. Somit −∇V = f(r)er = F . Also ist F
konservativ.

(d) Arbeit–Energie-Satz

Mit T = 1
2mṙ2 und Newton mr̈ = F :

dT

dt
= mṙ · r̈ = F · ṙ.

Integration über [ti, tf ] und Benutzung von dr = ṙ dt liefert

W =

∫ r(tf )

r(ti)

F · dr = T (tf )− T (ti) = ∆T .

7.3 Kurioses
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8 PERLE AUF ROTIERENDEM DRAHT

8 Perle auf rotierendem Draht

Aufgabe 8 Perle auf rotierendem Draht
Ein Teilchen der Masse m sei auf einem kreisförmigen, rotierendem Draht angebracht und auf diesem frei
beweglich. Der Draht rotiere im homogenen Schwerefeld der Stärke g ≥ 0 mit konstanter Winkelgeschwindigkeit
ω um die Vertikale.

ω

z

g
R

θ
m

a) Gib die Zwangsbedingungen an und charakterisiere sie.

b) Stelle die Lagrange-Funktion auf und leite die Bewegungsgleichung her.

c) Zeige, dass durch die Einführung der dimensionslosen Zeit τ = ωt die Bewegungsgleichung auf die Form

d2θ

dτ2
− sin θ cos θ − µ sin θ = 0 (7)

mit einem Parameter µ ∈ R gebracht werden kann.

d) Überführe die entdimensionalisierte Gleichung in ein System erster Ordnung, indem du die Größe Ω = dθ
dτ

einführst. Bestimme die Fixpunkte
(

θ⋆

Ω⋆

)
des Systems, also die Punkte, für die gilt: d

dτ

(
θ⋆

Ω⋆

)
= 0

e) Untersuche die Fixpunkte auf ihre Stabilität. Betrachte dazu eine eine kleine Störung
(

θ⋆

Ω⋆

)
+
(

δθ
δΩ

)
und

betrachte die sich ergebende Differenzialgleichung in linearer Ordnung von
(

δθ
δΩ

)
. Die Stabilität ergibt sich

aus den Eigenwerten λi der Systemmatrix: Gilt für alle Eigenwerte Re(λi) ≤ 0, dann ist der Fixpunkt
stabil, ansonsten ist er instabil.
Hinweis: Mit dem trigonometrischen Pythagoras kann man zeigen: sin(arccos(x)) =

√
1− x2.

f) Trage die Fixpunkte θ⋆ über den Parameter µ auf. Zeichne stabile Fixpunkte als durchgezogene und
instabile als durchbrochene Linie.

Federführende Dokumentation: Lucca Saar

8.1 Hintergrund

8.2 Musterlösung

(a) Zwangsbedingungen & Freiheitsgrade

• Holonom: Bewegung ist auf die Kreisbahn mit festem Radius R beschränkt (|r| = R).

• Ideal: Normalkräfte des Drahts verrichten entlang der Bahn keine Arbeit.

• Rheonom: Die Zwangsbedingung ist zeitabhängig, weil die Draht-Ebene mit Winkel ωt um die Vertikale
rotiert.

• Freiheitsgrad: 1 (die Lage auf dem Ring ist vollständig durch θ(t) beschrieben).

(b) Lagrange-Funktion und E-L-Gleichung (vollständige Herleitung)

Schritt 1: Explizite Bahn in Inertialkoordinaten. Die Position der Perle in der Inertial -Basis (êx, êy, êz)
kann so geschrieben werden:

r(t) = R

sin θ(t) cos(ωt)
sin θ(t) sin(ωt)

cos θ(t)

 .

Begründung: (i) Abstand zur Rotationsachse: R sin θ (horizontaler Radius), (ii) Rotation um z liefert die cos(ωt),
sin(ωt)-Anteile, (iii) Höhe z = R cos θ.
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8.2 Musterlösung 8 PERLE AUF ROTIERENDEM DRAHT

Schritt 2: Geschwindigkeit ṙ und ihr Betrag. Leite komponentenweise ab:

ṙ = R

θ̇ cos θ cosωt− ω sin θ sinωt

θ̇ cos θ sinωt+ ω sin θ cosωt

−θ̇ sin θ

 .

Quadrat der Geschwindigkeit (Skalarprodukt ṙ · ṙ):

ṙ2 = R2
[
(θ̇ cos θ cosωt− ω sin θ sinωt)2

+ (θ̇ cos θ sinωt+ ω sin θ cosωt)2 + (−θ̇ sin θ)2
]
.

Ausmultiplizieren und sammeln (gemischte θ̇ω-Terme heben sich):

ṙ2 = R2
(
θ̇2 cos2 θ + ω2 sin2 θ + θ̇2 sin2 θ

)
= R2

(
θ̇2 + ω2 sin2 θ

)
.

Schritt 3: Kinetische und potentielle Energie.

T =
1

2
m ṙ2 =

1

2
mR2

(
θ̇2 + ω2 sin2 θ

)
.

Die potentielle Energie (mit Nullniveau frei wählbar) nehmen wir klassisch als V = mgz = mgR cos θ.

Schritt 4: Lagrange-Funktion.

L(θ, θ̇, t) = T − V = 1
2mR2

(
θ̇2 + ω2 sin2 θ

)
−mgR cos θ.

Schritt 5: Euler–Lagrange-Gleichung. Berechne die Ableitungen:

∂L

∂θ̇
= mR2θ̇,

d

dt

(∂L
∂θ̇

)
= mR2θ̈.

∂L

∂θ
= 1

2mR2 · 2ω2 sin θ cos θ − (−mgR sin θ) = mR2ω2 sin θ cos θ +mgR sin θ.

EL-Gleichung d
dt (∂θ̇L)− ∂θL = 0 liefert

mR2θ̈ −
(
mR2ω2 sin θ cos θ +mgR sin θ

)
= 0.

Division durch mR2:

θ̈ − ω2 sin θ cos θ − g

R
sin θ = 0 .

(c) Entdimensionalisierung

Definiere dimensionslose Zeit τ = ωt. Dann d
dt = ω d

dτ und d2

dt2 = ω2 d2

dτ2 . Bezeichne
′ Ableitungen nach τ .

ω2θ′′ − ω2 sin θ cos θ − g

R
sin θ = 0.

Teile durch ω2 und setze µ := g
Rω2 :

θ′′ − sin θ cos θ − µ sin θ = 0, µ =
g

Rω2
.

(d) System 1. Ordnung und Fixpunkte

Setze Ω := θ′. Dann
θ′ = Ω, Ω′ = sin θ

(
cos θ + µ

)
.

Fixpunkte (θ⋆,Ω⋆): Bedingungen θ′ = 0, Ω′ = 0 ergeben

Ω⋆ = 0, sin θ⋆(cos θ⋆ + µ) = 0.

Also
θ⋆ ∈ {0, π} oder cos θ⋆ = −µ (nur falls |µ| ≤ 1).
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8.3 Kurioses 8 PERLE AUF ROTIERENDEM DRAHT

(e) Linearstabilität

Linearisierung von (θ′,Ω′)T um (θ⋆, 0):

A(θ⋆) =

(
∂θθ

′ ∂Ωθ
′

∂θΩ
′ ∂ΩΩ

′

)
(θ⋆,0)

=

(
0 1

cos 2θ⋆ + µ cos θ⋆ 0

)
.

Eigenwerte erfüllen λ2 = cos 2θ⋆ + µ cos θ⋆.
Fälle:

• θ⋆ = 0: cos 0 = 1, cos 0· ⇒ λ2 = 1 + µ > 0 ⇒ reelle λ ⇒ Sattel ⇒ instabil.

• θ⋆ = π: cosπ = −1, cos 2π = 1 ⇒ λ2 = 1− µ.

– µ < 1: λ2 > 0 ⇒ instabil.

– µ = 1: Grenzfall λ = 0.

– µ > 1: λ2 < 0 ⇒ rein imaginär ⇒ linear stabil (Zentrum).

• cos θ⋆ = −µ (existiert nur für |µ| ≤ 1): Dann λ2 = µ2 − 1 ≤ 0.

– |µ| < 1: λ2 < 0 ⇒ stabil (Zentrum).

– |µ| = 1: neutraler Grenzfall.

8.3 Kurioses
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9 DREI GEKOPPELTE FADENPENDEL

9 Drei gekoppelte Fadenpendel

Aufgabe 9 Drei gekoppelte Fadenpendel
Aus der Vorlesung kennen wir ein System aus zwei Fadenpendeln, die über eine Feder miteinander gekoppelt
sind. Wir wollen dieses System nun um ein drittes gekoppeltes Pendel erweitern. Dabei nehmen wir an, dass
alle Pendel die Länge ℓ sowie Masse m besitzen und durch identische Federn der Federkonstante k gekoppelt
sind. Als generalisierte Koordinaten dienen die Auslenkungen φi, i = 1, 2, 3.

ℓ ℓ ℓ

φ1 φ2 φ3

k k

a) Stelle die kinetische Energie T sowie die potenzielle Energie V auf. Wir wollen das System für kleine
Winkel untersuchen, weshalb wir die auftretenden trigonomischen Funktionen in V nähern. Die Auslen-
kung der Federn kann in dieser Näherung über die Bogenlänge der Pendel beschrieben werden, sodass das
Endergebnis nur von φi, i = 1, 2, 3 abhängen sollte.

b) Nutze die Lagrange-Gleichung, um Bewegungsgleichungen für die jeweiligen Auslenkungen φi aufzustellen.
Formuliere diese in Matrix-Schreibweise:

TΦ̈ = −KΦ , mit Φ =

φ1

φ2

φ3

 .

Hinweis: T sollte in deinem Ergebnis durch die Einheitsmatrix gegeben sein.

Im Folgenden wollen wir die Eigenmoden des System näher untersuchen. Dafür muss zuerst das Eigen-
wertproblem

det
(
K− ω2T

)
= 0

gelöst werden, um so die Eigenfrequenzen ωi zu finden. Da dies für eine 3×3-Matrix nicht trivial ist, wird
eine faktorisierte Form des charakteristischen Polynoms angegeben:

det
(
K− ω2T

)
=
(g
ℓ
− ω2

)(g

ℓ
+

k

m
− ω2

)(
g

ℓ
+ 3

k

m
− ω2

)
.

c) Lies die Eigenfrequenzen des Systems ab. Löse dann die Gleichungssysteme (K − ω2
iT)A = 0, um die

(komplexen) Amplituden Ai der einzelnen Pendel zu finden. Beschreibe damit, wie die einzelnen Pendel
relativ zueinander schwingen (Skizze) und sich die Amplituden zueinander verhalten.

Federführende Dokumentation: Max Lauer

9.1 Hintergrund

Dies ist eine schöne Aufgabe zum Wiederholen des Lagrange-Formalismus. Zudem widerholt man die Vorgehens-
weise bei einem System aus gekoppelten Differentialgleichungen und erhält am Ende der Rechnung im besten
Fall eine sehr schön anschauliche Lösung.
Gekoppelte Oszillatoren kommen überall in der Natur vor.Beispielsweise die Interaktion von Atomen innerhalb
eines Moleküls durch gekoppelte Schwingungen lässt sich durch dieses Modell erklären.
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9.2 Musterlösung 9 DREI GEKOPPELTE FADENPENDEL

9.2 Musterlösung

a) Bezeichne für diese Aufgabe si die Auslenkungen der i-ten Masse von ihrer Ruhelage bezüglich ihres Faden-
pendels. Durch den Sinussatz und die Kleinwinkelnäherung ergibt sich:

si = sin(φi)l ≈ φil

Damit ergibt sich die kinetische Energie T als Summe der kinetischen Energien der Massen mi zu:

T =

3∑
i=1

m

2

d

dt
si =

ml2

2
(φ̇2

1 + φ̇2
2 + φ̇2

3)

Das Potential ergibt sich als Summe vom Federpotential und dem Gravitationspotential einer jeden Masse. Das
Federpotential lautet wie folgt:

VF = −k

2
((s2 − s1)

2 + (s3 − s2)
2)

Mit der Näherung für die si erhält man:

VF = −kl2

2
(2φ2

2 + φ2
1 + φ2

3 − 2φ1φ2 − 2φ2φ3)

Das Gravitationspotential der einzelnen Massen hängt nur von der Höhe der Massen ab:

Vg,i = mgl(1 + cos(φi))

Da wir kleine Winkel betrachten, können wir (1+cos(φ)) um φ0 = 0 bis zur zweiten Ordnung taylor-entwickeln
und erhalten:

Vg,i =
m

2
glφ2

i

b) Nun nutzen wir den Lagrange-Formalismus zweiter Art, um Bewegungsgleichungen für alle φi herzuleiten:

d

dt

∂L
∂φ̇i

− ∂L
∂φi

= 0

Es ergeben sich folgende Differentialgleichungen:

φ̈1 = −(
k

m
+

g

l
)φ1 +

k

m
φ2

φ̈2 =
k

m
(φ1 + φ3)− (

2k

m
+

g

l
)φ2

φ̈3 = −(
k

m
+

g

l
)φ3 +

k

m
φ2

Wir erhalten somit drei gekoppelte Differentialgleichung, beziehungsweise ein System aus Differentialgleichun-
gen, das wir mithilfe der Matrixschreibweise anschaulicher darstellen können:1 0 0

0 1 0
0 0 1

φ̈1

φ̈2

φ̈3

 = −

( k
m + g

l ) − k
m 0

− k
m ( 2km + g

l ) − k
m

0 − k
m ( k

m + g
l )

φ1

φ2

φ3


c) Die Eigenfrequenzen ω2

i lauten:

ω2
1 =

g

l

ω2
2 =

g

l
+

k

m

ω2
3 =

g

l
+

3k

m

Nun können wir über die Eigenwertgleichung die Amlituden der einzelnen Schwingungen bei den Eigenmoden
ermitteln.
Für ω2

1 gilt:  k
m − k

m 0
− k

m
2k
m − k

m

0 − k
m

k
m

a1
a2
a3

 = 0⃗
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9.3 Kurioses 9 DREI GEKOPPELTE FADENPENDEL

⇒ a1 = a2 = a3

Das bedeutet, dass bei ω2
1 alle Massen in Phase schwingen.

Für ω2
2 gilt:  0 − k

m 0
− k

m
k
m − k

m

0 − k
m 0

a1
a2
a3

 = 0⃗

⇒ a2 = 0 ∧ a1 = −a3

Das bedeutet, dass bei ω2
2 die mittlere Masse ruht, und die beiden äußeren Massen entgegengesetzte Schwin-

gungen mit kleicher Amplitude ausführen.
Für ω2

3 gilt: − 2k
m − k

m 0
− k

m − k
m − k

m

0 − k
m − 2k

m

a1
a2
a3

 = 0⃗

⇒ a1 = a3 ∧ a2 = −2a1

Das bedeutet, dass bei ω2
3 die äußeren Massen in Phase schwingen und die mittlere eine entgegengesetzte

Schwingung mit doppelter Amplitude ausführt.

9.3 Kurioses

Als ich diese Aufgabe zum ersten Mal gerechnet hatte, habe ich das Gravitationspotential vernachlässigt, da
ich annahm, dass der Höhenunterschied klein gegenüber der Auslenkung der Federn ist. Man kann leicht sehen,
dass die Eigenmoden genau dieselben sind wie in der Musterlösung.
Die Eigenmoden scheinen also nicht vom Gravitationspotential beeinflusst zu werden.
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10 KREUZPRODUKT

10 Kreuzprodukt

Aufgabe 10 Kreuzprodukt

Wir betrachten zwei Vektoren a,b ∈ R3, a = (a1, a2, a3)
T , b = (b1, b2, b3)

T .

a) Wie lauten die Komponenten des Kreuzprodukts zwischen a und b?

b) Zeige, dass a× b = −b× a gilt.

c) Zeige, dass a× b senkrecht auf a und b steht.

d) Zeige, dass
|a× b| = ab sinα,

wobei α der Winkel zwischen a und b ist.
Hinweis: Untersuche |a× b|2.

e) Zeige, dass die Vektoren im Spatprodukt zyklisch vertauscht werden können:

a · (b× c) = c · (a× b) = b · (c× a)

Argumentiert mit der geometrischen Interpretation des Spatprodukts, warum die zyklische Vertauschbar-
keit zu erwarten ist.

f) Zeige mithilfe der BAC-CAB-Regel die Jacobi-Identität:

a× (b× c) + b× (c× a) + c× (a× b) = 0.

Federführende Dokumentation:

10.1 Hintergrund

10.2 Musterlösung

10.3 Kurioses
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11 LENZSCHER VEKTOR - EINE WEITERE ERHALTUNGSGRÖSSE

11 Lenzscher Vektor - Eine weitere Erhaltungsgröße

Aufgabe 11 Lenzscher Vektor - Eine weitere Erhaltungsgröße

In der Vorlesung haben wir die Freiheitsgerade des Zwei-Körper-Problems von 12 auf 2 reduziert, indem wir
die Erhaltungsgrößen des Systems gefunden haben: Die Konstanz des Gesamtimpulses (3), die geradlinig,
gleichförmige Bewegung des Schwerpunkts (3), die Erhaltung des Drehimpulses (3), sowie die Energieerhal-
tung (1). Für das Kepler-Potenzial lässt sich noch eine weitere Konstante der Bewegung finden, der Lenzsche
Vektor (oder auch Laplace–Runge-Lenz Vektor), definiert durch

Λ =
p× ℓ

mk
− r

r
, mit ℓ = r × p = r ×mṙ.

a) Zeige durch Berechnung der totalen zeitlichen Ableitung, dass es sich bei Λ wirklich um eine Erhaltungs-
größe handelt.
Hinweis: Es gilt a× (b× c) = b (a · c)− c (a · b). Zeige zudem, dass r · ṙ = rṙ.

b) Berechne den Betrag |Λ| und weise nach, dass er der Exzentrizität ε =
√
1 + 2Eℓ2

mk2 entspricht.

c) Zeige, dass der Lenzsche Vektor entlang des Vektors zum Perihel zeigen muss, also Λ ∥ rmin, rmathrmmin
bezeichne dabei den Perihelvektor.
Hinweis: Begründe zunächst, warum wir den Lenzschen Vektor einfach an rmin berechnen können und
trotzdem eine allgemeine Aussage treffen können. Wie stehen rmin und der entsprechende Impulsvektor
zueinander?

d) Der Lenzsche Vektor erlaubt eine integrationsfreie Herleitung der Bahnkurve

r(φ) =
p

1 + ε cos(φ)
, mit p =

ℓ2

mk
, ε =

√
1 +

2Eℓ2

mk2
.

Berechne dazu das Skalarprodukt Λ · r und leite obige Formel her.
Hinweis: Definiere φ als ∢ (Λ, r).

Anmerkung: Auch wenn es sich bei Λ um einen Vektor handelt, legt er nur eine einzelne Erhaltungsgröße fest,
nämlich die Konstanz der Perihelrichtung. Dies liegt daran, dass Λ bereits in der Bahnebene liegt und der
Betrag durch die Exzentrizität eine Funktion der beiden Erhaltungsgrößen E und ℓ ist.
Federführende Dokumentation: Max Lauer

11.1 Hintergrund

Der Lenz-Vektor ist eine weitere konstante der Bewegung. Er zeigt vom Brennpunkt der Bahn (Kraftzentrum)
zum nächstgelegenen Bahnpunkt (Perihel bei der Erdbahn) und hat somit eine Richtung parallel zur großen
Bahnachse. In der klassischen Mechanik wird der Vektor hauptsächlich benutzt, um die Form und Orientierung
der Umlaufbahn eines astronomischen Körpers um einen anderen zu beschreiben, etwa die Bahn eines Planeten
um seinen Stern.

11.2 Musterlösung

a)

d

dt
Λ⃗ =

d

dt
(
p⃗× L⃗

mk
− r⃗

r
)

=
1

mk
(
dp⃗

dt
× L⃗+ p⃗× dL⃗

dt
)− d

dt

r⃗

r

L⃗ ist eine Erhaltungsgröße, das heißt: dL⃗
dt = 0

dp⃗
dt = F⃗ = −∇V mit V = −k

r
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11.3 Kurioses 11 LENZSCHER VEKTOR - EINE WEITERE ERHALTUNGSGRÖSSE

Also dp⃗
dt = −kr⃗

r3

Anstatt L⃗ schreibt man r⃗ × p⃗ und anstatt p⃗ schreibt man nun ṁ⃗r und erhält insgesamt:

d

dt
Λ⃗ = − r⃗

r3
× (r⃗ × ⃗̇

r⃗)−
˙⃗rr − ṙr⃗

r2

Mithilfe der Hinweise in der Aufgabenstellung vereinfacht sich der Term zu:

˙⃗rr2 − ṙr⃗r

r3
−
˙⃗rr − ṙr⃗

r2
= 0

Daraus folgt, dass Λ⃗ eine Erhaltungsgröße ist.
Zuletzt wird noch die Identität aus dem Hinweis in der Aufgabenstellung gezeigt:

r⃗ · ˙⃗r =
d

dt

1

2
r⃗2 =

d

dt

1

2
r2 = rṙ

b) Betrachte Λ⃗2 :

Λ⃗2 =
1

(mk)2
(p⃗× L⃗)2 + 1 +

2

mkr
(r⃗ · (p⃗× L⃗))

Wegen (p⃗× L⃗)2 = p2L2, da p⃗ ⊥ L⃗ ergibt sich:

Λ⃗2 =
2L2

mk2
(
p2

2m
− k

r
) + 1 =

2L2E

mk2
+ 1

Daraus folgt: ∣∣∣Λ⃗∣∣∣ = ε

c) Wir wissen, dass Λ⃗ eine Erhaltungsgröße ist. Das bedeutet, dass dessen Wert an jedem Punkt der Bahn gleich
ist. Daher wählen wir den Perihelvektor ⃗rmin. Der Impuls am Perihel p⃗p steht senkrecht auf dem Perihelvektor.
Außerdem steht der Drehimpuls ebenfalls senkrecht zur Ebene auf der sich der Impuls und der Perihelvektor
befinden. Am Perihel ist ṙ = 0. Daraus folgt, dass p⃗p ∝ e⃗φ. Das heißt, dass (p⃗p × L⃗) ∥ ⃗rmin. Logischerweise ist

⃗rmin

r auch parallel zum Perihelvektor.

Damit folgt: Λ⃗ ∥ ⃗rmin

d)

Λ⃗ · r⃗ =
1

mk
(
dp⃗

dt
× L⃗) · r⃗ − r⃗2

r
=

L2

mk
− r = p− r

Andererseits ist:
Λ⃗ · r⃗ = Λr cos(φ)

Insgesamt folgt also durch Gleichsetzen der beiden Terme und Umstellen nach r:

r(φ) =
p

1 + ε cos(φ)

11.3 Kurioses

Der Laplace-Runge-Lenz-Vektor ermöglicht daher die elegante Herleitung der Bahnkurve r(φ) eines Teilchens
(z.B. Planet im Keplerproblem, Alphateilchen gestreut am Atomkern) in diesem Kraftfeld, ohe eine einzige
Bewegungsgleichung lösen zu müssen.
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12 KREISFÖRMIGE ORBITS

12 Kreisförmige Orbits

Aufgabe 12 Kreisförmige Orbits

Veff(r)

r

E1

E2

Abbildung 1: Graph von Veff(r) für das Kepler-Potenzial.

Abbildung 12 zeigt das effektive Potenzial.

Veff(r) = V (r) +
ℓ2

2mr2
,

wobei hier V (r) als Kepler-Potenzial V (r) = −k/r gewählt wurde. Zudem wurden zwei Energieniveaus E1 und
E2 gekennzeichnet.

a) Betrachte die Schnittstellen des Energieniveaus E1 mit der Kurve des effektiven Potenzials. Welche be-
sonderen Punkte des Orbits liegen an diesen Stellen. Was gilt insbesondere für die zeitliche Änderung des
Radius ṙ an diesen Stellen?

b) Betrachte nun das Energieniveau E2. An welcher besonderen Stelle des effektiven Potenzial liegt es? Was
gilt hier für den Radius einer Bahn bzw. seine Änderungsrate ṙ? Was bedeutet dies für die Form des
Orbits?

c) Leite mit deinen Erkenntnissen nun eine Bedingung für die Existenz stabiler Kreisbahnen her. Finde einen
Ausdruck in Abhängigkeit der Ableitungen des Potenzials V (r).

d) Sei V (r) = −k/rn. Nutze deine hergeleitete Stabilitätsbedingung, um herauszufinden, für welche n stabile
Kreisbahnen auftreten können.

Federführende Dokumentation:

12.1 Hintergrund

12.2 Musterlösung

12.3 Kurioses
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13 LEGENDRE-TRANSFORMATION

13 Legendre-Transformation

Aufgabe 13 Legendre-Transformation

Die Legendre-Transformierte einer konvexen Funktion f(x) lautet:

g(y) = yx(y)− f(x(y)) mit y = f ′(x).

a) Zeige, dass die Rücktransformation auf die Variable x, d.h., h(x) = xy(x)−g(y(x)) wieder auf die Funktion
f(x) führt.

b) Betrachte die Funktion f(x) = x2.

1. Berechne die Legendre-Transformierte g(y) von f(x).

2. Zeige durch direkte Rechnung, dass die Legendre-Rückransformierte h(x) von g(y) wieder f(x) ergibt.

c) Was folgt aus der Voraussetzung einer konvexen Funktion f(x) für die Ableitung f ′(x)?

d) Wie lässt sich aus dieser Erkenntnis eine geometrische Beweis für die Legendre-Transformierte konstruie-
ren?
Hinweis: Skizziere eine gültige Ableitung y = f ′(x) und x = g′(y) in der (x, y)-Ebene.

Federführende Dokumentation:

13.1 Hintergrund

13.2 Musterlösung

13.3 Kurioses
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14 ATWOODSCHE FALLMASCHINE – RELOADED

14 Atwoodsche Fallmaschine – reloaded

Aufgabe 14 Atwoodsche Fallmaschine – reloaded
Wir betrachten noch einmal das System aus Aufgabe 5: Zwei Massen m1,m2 hängen an einem nicht dehnbaren
Faden der Länge l über einer festen Rolle im Schwerefeld der Erde senkrecht nach unten. Die Rolle und der
Faden werden als masse- und reibungslos betrachtet.

a) Wie lautet eine geeignete generalisierte Koordinate q?

b) Wie lautet die Lagrange-Funktion L(q, q̇) des Systems?

c) Analysiere das System mit Hilfe des Hamilton-Formalismus:

1. Stelle die zur Lagrange-Funktion dazugehörige Hamilton-Funktion H(q, p) auf.

2. Zeige, dass die Hamiltonschen Gleichungen die Bewegungsgleichung aus Aufgabe 5 reproduzieren.

Federführende Dokumentation:

14.1 Hintergrund

14.2 Musterlösung

14.3 Kurioses
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15 TEILCHEN AUF EINER KEGELOBERFLÄCHE

15 Teilchen auf einer Kegeloberfläche

Aufgabe 15 Teilchen auf einer Kegeloberfläche

Wir betrachten ein Teilchen der Masse m welches sich reibungsfrei und nur unter dem Einfluss der Gravitation
auf einer kegelförmigen Oberfläche bewege. Für dieses Problem eignen sich hervorragend Zylinderkoordinaten
(ρ, φ, z), mit z ≥ 0, wobei wir annehmen, dass die radiale Komponente durch ρ = c z beschrieben werde. Damit
bleiben φ und z als generalisierte Koordinaten.

a) Stelle die kinetische und potenzielle Energie als Funktion von φ und z und deren zeitlichen Ableitungen
auf und gib die Lagrange-Funktion an.
Hinweis: Es ist hilfreich, die kinetische Energie in Zylinderkoordinaten zu schreiben.
Zur Kontrolle: Für die Lagrange-Funktion solltest du folgendes Ergebnis erhalten haben:

L(φ, z, φ̇, ż) =
1

2
m
(
(c2 + 1) ż2 + (cz φ̇)2

)
−mg z .

b) Berechne die beiden generalisierten Impulse pφ und pz und gibt die Hamilton-FunktionH ≡ H(φ, z, pφ, pz)
an. Verifiziere, dass H der Gesamtenergie entspricht.

c) Stelle nun die kanonischen Bewegungsgleichungen für die φ- und z-Komponenten auf. Gibt es eine Erhal-
tungsgröße? Wenn ja, welche?
Hinweis: Denke an das Kepler-Problem und dessen Erhaltungsgrößen zurück.

d) Begründe, dass die Bewegung des Teilchens zwischen zwei verschiedenen Höhen zmin und zmax ablaufen
muss. Betrachte dazu die Hamilton-Funktion für z −→ 0 und z −→ ∞ und argumentiere mit der Konstanz
der Energie E.

e) An den Wendepunkten zmin und zmax muss ż = 0 gelten. Begründe, dass dies nur passieren kann, wenn
der zugehörige konjugierte Impuls gerade verschwindet, pz = 0. Zeige graphisch, dass dies für genau zwei
Werte von z eintrifft. Nutze dabei den Fakt, dass H = E.
Hinweis: Skizziere H für pz = 0 und zeichne dir ein Energieniveau E ein. Erinnere dich dann an die
Diskussion des effektiven Potenzials beim Zentralkraft-Problem.

f) Es ist möglich, dass sich das Teilchen auf einer Kreisbahn mit konstanter Höhe z(t) = z0 ∀ t dreht. Was
muss dann für ż und ṗz gelten? Was folgt für den Wert des Drehimpulses pφ, der benötigt wird, um diese
Bewegung zu ermöglichen?

Federführende Dokumentation: Max Lauer

15.1 Hintergrund

Zum Lösen dieser Aufgabe wird lediglich das Wissen über die Hamiltonmechanik benötigt. Eine gute Aufgabe
zu Einüben des Hamiltonformalismus und gut zur Wiederholung der krummlinigen Koordinaten.

15.2 Musterlösung

a) Die Geschwindigkeit in Zylinderkoordinaten ist:

v2 = ρ̇2 + ż2 + ρ2φ̇2 = (c2 + 1)z2 + ρ2φ̇2

Damit ist die kinetische Energie:

T =
m

2
((c2 + 1)ż2 + (czφ̇)2)

Damit ist die Lagrangefunktion:

L = T − V =
m

2
((c2 + 1)ż2 + (czφ̇)2)−mgz

b)
∂L
∂ż

= pz = m(c2 + 1)ż
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15.3 Kurioses 15 TEILCHEN AUF EINER KEGELOBERFLÄCHE

∂L
∂φ̇

= pφ = mc2z2φ̇2

H =
∑
i

q̇ipi − L

Nach längerer Rechnung und durch Ausdrücken von q̇i durch die kanonischen Impulse erhält man:

H =
p2z

2m(c2 + 1)
+

p2φ
2mc2z2

+mgz

E = T + V

Nach Ausdrücken von q̇i durch die kanonischen Impulse erhält man auch hier:

E =
p2z

2m(c2 + 1)
+

p2φ
2mc2z2

+mgz

Also:
H = E

c) Die kanonischen Gleichungen liefern:

ṗφ = −∂H

∂φ
= 0

φ̇ =
∂H

∂pφ
=

pφ
mc2z2

ṗz = −∂H

∂z
= −mg +

p2φ
mc2z3

ż =
∂H

∂pz
=

pz
m(c2 + 1)

Damit ist der Impuls in Radialrichtung eine Erhaltungsgröße. Dies entspricht dem Drehimpuls.
d) Betrachten wir die Grenzwerte H(z → 0) und H(z → ∞).

H(z → 0) = ∞

H(z → ∞) = ∞

Wegen H = E muss die Bewegung also zwischen einem maximalen und einem minimalen Wert von z ablaufen,
sodass die Energie konstant sein kann.
e) Aus dne kanonischen Gleichungen wissen wir:

ż =
∂H

∂pz
=

pz
m(c2 + 1)

An den Wendepunkten muss ż = 0 sein. Daraus folgt, dass ebenso pz = 0 sein muss.
Für die Gesamtenergie folgt mit der Beziehung H = E:

H(pz = 0) =
p2φ

2mc2z2
+mgz = E

f) Wenn sich die Höhe nicht ändert, gilt ż = 0. Daraus folgt auch, dass pz = 0 und ṗz = 0 ∀t.

ṗz = −∂H

∂z
= −mg +

p2φ
mc2z3

!
= 0

Daraus ergibt sich die Bedingung für den Drehimpuls in Abhängigkeit der festen Höhe z0:

pφ
!
= mc

√
gz30

15.3 Kurioses

Zu dieser Aufgabe gibt es wenig Kurioses zu schreiben. Es ist anschaulich, dass wenn die Masse auf einer festen
Höhe bleiben soll, der Drehimpuls für das Kräftegleichgewicht sorgt, ähnlich wie bei Planetenbahnen.
Ein Physikerfreund merkte an, dass ausgehend von der Aufgabenstellung nicht ganz klar sei, ob die Gravitation
von der Erde käme, oder ob der Kegel eine gravitationskraft auf das Teilchen auwirkt. Natürlich ist der erste
Fall hier gemeint. Letzterer wäre aber bestimmt spaßig zu rechnen...
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16 LÄNGE VON RAUMKURVEN

16 Länge von Raumkurven

Aufgabe 16 Länge von Raumkurven

a)

b) Gegeben sei eine Raumkurve
γ : [t0; t1] −→ Rn

t 7−→ γ(t)

im Rn. Leiten Sie eine Formel für das infinitesimale Linienelement ds und damit einen Ausdruck für die
Länge der Kurve her.

c) Berechen Sie die Länge von β : [0; ln(2)] −→ R3, t 7−→

√
2t
et

e−t

 .

d) Leiten Sie für eine Kurve im R2, die durch den Graphen einer Funktion f : I −→ R, mit I ⊂ R, gegeben
ist, eine Formel für das infinitesimale Linienelement und die Länge der Kurve her.

e) Berechnen Sie die Länge einer Kettenlinie f : [−1; 1] −→ R, x 7−→ cosh(x).

Federführende Dokumentation:

16.1 Hintergrund

16.2 Musterlösung

16.3 Kurioses
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17 MASSENPUNKT AUF ROTIERENDER STANGE

17 Massenpunkt auf rotierender Stange

Aufgabe 17 Massenpunkt auf rotierender Stange

Ein Massenpunkt der Masse m bewegt sich reibungs-
frei auf einer um die feste Achse rotierenden Stange.
Die Stange rotiert in der (x, y)-Ebene mit konstan-
ter Winkelgeschwindigkeit ω. Die zugehörige Lagrange-
Funktion lautet:

L(r, ṙ) =
m

2
(ṙ2 + r2ω2) ,

wobei r die Radialkoordinate des Massenpunkts bezeich-
net.

a) Leite die Lagrange-Funktion L her.

b) Stelle die Hamilton-Funktion H auf und gib die Hamiltonschen Gleichungen an.

c) Leite daraus die Bewegungsgleichung ab und gib ihre allgemeine Lösung an.

d) Gilt ∂H
∂t = 0? Gilt H = const.?

e) Ist H gleich der Gesamtenergie des Massenpunkts? Ist die Gesamtenergie E erhalten?

Federführende Dokumentation:

17.1 Hintergrund

17.2 Musterlösung

17.3 Kurioses
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18 EBENES PENDEL IM PHASENRAUM

18 Ebenes Pendel im Phasenraum

Aufgabe 18 Ebenes Pendel im Phasenraum

Ein ebenes Pendel besteht aus einer Masse m am Ende
einer masselosen Stange der Länge l. Im Schwerefeld hat
das Pendel die potenzielle Energie

V (φ) = mgl(1− cosφ) ,

wobei φ den Auslenkwinkel des Pendels bezeichnet.

a) Stelle die Hamilton-Funktion H auf.

b) Gilt ∂H
∂t = 0? Ist H gleich der Gesamtenergie E?

c) Skizziere mögliche Bahnkurven für Energien E ≥ 0 im zweidimensionalen (φ, pφ)-Phasenraum. Betrachte
die folgenden Fälle:

1. E = 0

2. E ≪ mgl

Hinweis: Hier gilt φ ≪ 1, also 1− cosφ ≈ φ2

2 .

3. E = 2mgl
Hinweis: Benutze 1 + cosx = 2 cos2

(
x
2

)
.

4. E ≫ 2mgl

Ermittel für jeden dieser Fälle eine explizite oder implizite Relation zwischen φ und pφ.

Federführende Dokumentation: Max Lauer

18.1 Hintergrund

In dieser Aufgabe kann der Hamiltonformalismus abermals eingeübt werden. Zudem kommmt im letzten Auf-
gabenteil zum Abschätzen von Energien, und erhäkt anschauliche physikalische Zustände des ebenen Pendels.

18.2 Musterlösung

a) Die Lagrangefunktion erhält man, indem man φ als generalisierte Koordinate verwendet und die kinetische
Energie in Kugelkoordinaten schreibt. Die Höhe des Pendels drückt man ebenso durch φ aus und erhält somit:

L = T − V =
ml2φ̇2

2
−mgl(1− cos(φ))

Der generalisierte Impuls ist:

pφ =
∂L
∂φ̇

= ml2φ̇

Daraus ergibt sich dann also die Hamiltonfunktion:

H = φ̇pφ − ml2φ̇2

2
+mgl(1− cos(φ)) = ... =

p2φ
2ml2

+mgl(1− cos(φ))

b) Offensichtlich ist:
∂H

∂t
= 0
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18.3 Kurioses 18 EBENES PENDEL IM PHASENRAUM

E = T + V =
ml2φ̇2

2
+mgl(1− cos(φ)) =

p2φ
2ml2

+mgl(1− cos(φ)) = H

c)
1:E = H = 0

⇒ φ̇ = 0

⇒ pφ = 0

Damit ist die Bahnkurve im Phasenraum also lediglich ein Punkt im Ursprung.
2:E ≪ mgl

⇒ φ ≪ 1 ⇒ 1− cos(φ) ≈ φ2

2

Daraus ergibt sich die Ellipsengleichung:

p2φ
2ml2E

+
mglφ2

2E
= 1

Die Bahnkurve im Phasenraum ist damit eine Ellipse.
3:E = 2mgl

⇒ pφ = ±
√

4m2gl3 cos(
φ

2
)

Die Bahnkurve im Phasenraum die Verbindung des negativen und positiven Quadrates des Cosinus.
4: E ≫ 2mgl

⇒
p2φ

2ml2
= E −mgl(1− cos(φ)) ≈ E

Die Bahnkurve im Phasenraum entspricht einer Waagerechten, die eine konstante Winkelgeschwindigkeit impli-
ziert. Das bedeutet es liegt eine freie Rotation vor.

18.3 Kurioses

Das ebene Pendel ist wohl die am meisten gerechnete Aufgabe in der klassischen Mechanik im Grundstudium.
Leider gibt es Wenig Kurioses über es zu schreiben. Für kleine Auslenkungen wird die DGL harmonisch, jedoch
ist sie das für größere Auslenkungswinkel natürlich nicht mehr wegen des Cosinusterms.
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19 SCHWERPUNKT

19 Schwerpunkt

Aufgabe 19 Schwerpunkt
Betrachte einen Würfel W mit Kantenlänge a und Massendichte ρ(x, y, z) = βx2 mit β = const. Der Koordi-
natenursprung liege so in einer Ecke, dass alle Koordinaten der Würfelpunkte positiv sind.

a) Skizziere den Würfel.

b) Berechne die Gesamtmasse des Würfels M =
∫
W

ρ(x, y, z) dV.

c) Berechnee den Schwerpunkt S = (Sx, Sy, Sz) mit Sk = 1
M

∫
W

ρ(x, y, z) k dV, wobei k = x, y, z.

d) Skizziere den Schwerpunkt in der (x, y)-Ebene.

Federführende Dokumentation:

19.1 Hintergrund

19.2 Musterlösung

19.3 Kurioses
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20 TRÄGHEITSTENSOR VON ZYLINDER, STAB, SCHEIBE, PUNKTMASSE

20 Trägheitstensor von Zylinder, Stab, Scheibe, Punktmasse

Aufgabe 20 Trägheitstensor von Zylinder, Stab, Scheibe, Punktmasse

a) Bestimme die Matrixform des Trägheitstensors Θ für einen Zylinder mit Höhe h und Radius R. Nutze
dazu Zylinderkoordinaten (ρ, φ, z) und lege das körperfeste Koordinatensystem so, dass sein Ursprung im
Schwerpunkt des Zylinders liege. Gehe von einer homogenen Massedichte aus, d.h µ(r) = µ = m

V , ∀r ∈ V ,
m und V entsprechend die Masse bzw. das Volumen des betrachteten Körpers.
Hinweis: Ein Zylinder mit Höhe h und Radius R der Basis besitzt das Volumen V = πR2h. Drücke damit
dein Endergebnis so aus, dass nur noch die Masse m des Körpers auftaucht, nicht die Massedichte. Du
musst zudem nicht alle Integrale explizit berechnen, wenn du über die Symmetrie die Gleichheit mehrerer
Trägheitsmomente begründen kannst. Kannst du auch eine Aussage über die Derivationsmomente Θij ,
i ̸= j treffen?

b) Überlege dir, welche Grenzübergänge du machen musst, um aus dem Zylinder einen Stab der Länge ℓ oder
eine Scheibe vom Radius R, beide mit vernachlässigbarer Dicke, zu erhalten. Gib dann mittels Teil a) die
entsprechenden Trägheitsmomente an.

c) Betrachten wir erneut einen dünnen Stab der Länge ℓ. Die angegebenen Trägheitsmomente beziehen sich
zur Zeit auf dessen Schwerpunkt. Wie lauten die Trägheitsmomente, wenn sich der Fixpunkt des Stabes
hingegen an einem seiner Endpunkte befindet?
Hinweis: Verwende den Satz von Steiner.

d) Eine idealisierte Punktmasse m im Ursprung besitzt kein Trägheitsmoment. Gilt dies auch, wenn wir die
Punktmasse um eine Achse en im festen Abstand d rotiert? Gib das Trägheitsmoment der Punktmasse
bezüglich der Drehachse an.

Federführende Dokumentation:

20.1 Hintergrund

20.2 Musterlösung

20.3 Kurioses
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21 TRÄGHEITSTENSOR EINES KEGELS

21 Trägheitstensor eines Kegels

Aufgabe 21 Trägheitstensor eines Kegels
Wir wollen nun den Trägsheitstensor eines Kreiskegels berechnen. Dabei eignen sich zur Betrachtung Zylinderko-
ordinaten (ρ, φ, z). Wir platzieren den Kegel so, dass seine Spitze mit dem Ursprung O des Koordinatensystems
zusammenfällt und seine Symmetrieachse entlang der z-Achse verlaufe (siehe Skizze unterhalb). Die Höhe des
Kegels sei h, der Radius der Basis R. Zudem gehen wir von einer homogen Massdichte µ(r) ≡ µ = m

V für jedem
Punkt des Kegels aus.

x

z

h

R

O

Sm

3h
4

Abbildung 2: Querschnitt in der (x, z)-Ebene durch den Kegel. Die Spitze des Kegels ruhe im Ursprung O des
Koordinatensystems und die Symmetrieachse verlaufe entlang der z-Achse. Der Schwerpunkt Sm liegt in diesem
Fall auch auf dieser Achse und hat eine Entfernung von 3h/4 zum Ursprung.

a) Um die Matrix-Darstellung des Trägheitstensors Θ berechnen zu können, muss zunächst die Radialkom-
ponente ρ parametrisiert werden. Stelle daher eine Funktion ρ(z) in Abhängigkeit von h und R auf, die
den derzeitigen Radius des Kegels an einer beliebigen Koordinate z ∈ [0, h] beschreibe.

b) Berechne nun die Diagonalelemente Θii der Matrix-Darstellung des Trägheitstensors. Formuliere dein
Endergebnis dabei so, dass nur noch die Masse m = µV auftritt.
Hinweis: Das Volumen V eines Kreiskegels mit Radius R und Höhe h beträgt V = 1

3πR
2h. Beachte, dass

das Volumenelement in Zylinderkoodinaten dr = ρ dρ dφdz lautet. Bei der Integration ist die obere Grenze
des radialen Anteils durch ρ(z) aus Teil a) gegeben. Diese Integration muss also vor der Ausführung des
Integrals über die z-Komponente stattfinden. Du musst nicht alle drei Berechnung ausführen, wenn du
über die Symmetrie die Gleichheit mehrerer Trägheitsmomente begründen kannst.

c) Unsere Berechnung des Trägheitstensors bezieht sich zur Zeit noch auf den Koordinatenursprung O. Gib
die Trägheitsmomente nun bezüglich des Schwerpunkts Sm an. Zeige dazu zunächst, dass dieser bei 3h

4 ez
liegt.
Hinweis: Nutze den Satz von Steiner, um die verschobenen Trägheitsmomente zu berechnen.

d) Wann handelt es sich bei einem Kegel um einen Kugelkreisel, d.h.: Wann sind alle Hauptträgheitsmomente
gleich?

Federführende Dokumentation:

21.1 Hintergrund

21.2 Musterlösung

21.3 Kurioses
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