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Aufgabe 13 Legendre-Transformation

Die Legendre-Transformierte einer konvexen Funktion f(x) lautet:

g(y) = yx(y)− f(x(y)) mit y = f ′(x).

a) Zeige, dass die Rücktransformation auf die Variable x, d.h., h(x) = xy(x)−g(y(x)) wieder auf die Funktion
f(x) führt.

b) Betrachte die Funktion f(x) = x2.

1. Berechne die Legendre-Transformierte g(y) von f(x).

2. Zeige durch direkte Rechnung, dass die Legendre-Rückransformierte h(x) von g(y) wieder f(x) ergibt.

c) Was folgt aus der Voraussetzung einer konvexen Funktion f(x) für die Ableitung f ′(x)?

d) Wie lässt sich aus dieser Erkenntnis eine geometrische Beweis für die Legendre-Transformierte konstruie-
ren?
Hinweis: Skizziere eine gültige Ableitung y = f ′(x) und x = g′(y) in der (x, y)-Ebene.

Aufgabe 14 Atwoodsche Fallmaschine – reloaded
Wir betrachten noch einmal das System aus Aufgabe 5: Zwei Massen m1,m2 hängen an einem nicht dehnbaren
Faden der Länge l über einer festen Rolle im Schwerefeld der Erde senkrecht nach unten. Die Rolle und der
Faden werden als masse- und reibungslos betrachtet.

a) Wie lautet eine geeignete generalisierte Koordinate q?

b) Wie lautet die Lagrange-Funktion L(q, q̇) des Systems?

c) Analysiere das System mit Hilfe des Hamilton-Formalismus:

1. Stelle die zur Lagrange-Funktion dazugehörige Hamilton-Funktion H(q, p) auf.

2. Zeige, dass die Hamiltonschen Gleichungen die Bewegungsgleichung aus Aufgabe 5 reproduzieren.

Aufgabe 15 Teilchen auf einer Kegeloberfläche

Wir betrachten ein Teilchen der Masse m welches sich reibungsfrei und nur unter dem Einfluss der Gravitation
auf einer kegelförmigen Oberfläche bewege. Für dieses Problem eignen sich hervorragend Zylinderkoordinaten
(ρ, φ, z), mit z ≥ 0, wobei wir annehmen, dass die radiale Komponente durch ρ = c z beschrieben werde. Damit
bleiben φ und z als generalisierte Koordinaten.

a) Stelle die kinetische und potenzielle Energie als Funktion von φ und z und deren zeitlichen Ableitungen
auf und gib die Lagrange-Funktion an.
Hinweis: Es ist hilfreich, die kinetische Energie in Zylinderkoordinaten zu schreiben.
Zur Kontrolle: Für die Lagrange-Funktion solltest du folgendes Ergebnis erhalten haben:
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b) Berechne die beiden generalisierten Impulse pφ und pz und gibt die Hamilton-FunktionH ≡ H(φ, z, pφ, pz)
an. Verifiziere, dass H der Gesamtenergie entspricht.

c) Stelle nun die kanonischen Bewegungsgleichungen für die φ- und z-Komponenten auf. Gibt es eine Erhal-
tungsgröße? Wenn ja, welche?
Hinweis: Denke an das Kepler-Problem und dessen Erhaltungsgrößen zurück.

d) Begründe, dass die Bewegung des Teilchens zwischen zwei verschiedenen Höhen zmin und zmax ablaufen
muss. Betrachte dazu die Hamilton-Funktion für z −→ 0 und z −→ ∞ und argumentiere mit der Konstanz
der Energie E.

e) An den Wendepunkten zmin und zmax muss ż = 0 gelten. Begründe, dass dies nur passieren kann, wenn
der zugehörige konjugierte Impuls gerade verschwindet, pz = 0. Zeige graphisch, dass dies für genau zwei
Werte von z eintrifft. Nutze dabei den Fakt, dass H = E.
Hinweis: Skizziere H für pz = 0 und zeichne dir ein Energieniveau E ein. Erinnere dich dann an die
Diskussion des effektiven Potenzials beim Zentralkraft-Problem.

f) Es ist möglich, dass sich das Teilchen auf einer Kreisbahn mit konstanter Höhe z(t) = z0 ∀ t dreht. Was
muss dann für ż und ṗz gelten? Was folgt für den Wert des Drehimpulses pφ, der benötigt wird, um diese
Bewegung zu ermöglichen?


