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Aufgabe 13 Legendre-Transformation

Die Legendre-Transformierte einer konvexen Funktion f(z) lautet:

9(y) = yx(y) — f(z(y)) mit y= f'(z).

a) Zeige, dass die Riicktransformation auf die Variable x, d.h., h(z) = zy(x)—g(y(z)) wieder auf die Funktion
f(x) fithrt.

b) Betrachte die Funktion f(z) = 22.

1. Berechne die Legendre-Transformierte g(y) von f(z).
2. Zeige durch direkte Rechnung, dass die Legendre-Riickransformierte h(x) von g(y) wieder f(z) ergibt.

c) Was folgt aus der Voraussetzung einer konvexen Funktion f(z) fiir die Ableitung f/(x)?

d) Wie lidsst sich aus dieser Erkenntnis eine geometrische Beweis fiir die Legendre-Transformierte konstruie-
ren?
Hinweis: Skizziere eine giiltige Ableitung y = f/(z) und z = ¢'(y) in der (z,y)-Ebene.

Aufgabe 14 Atwoodsche Fallmaschine — reloaded

Wir betrachten noch einmal das System aus Aufgabe 5: Zwei Massen my, mo hingen an einem nicht dehnbaren
Faden der Lénge [ iiber einer festen Rolle im Schwerefeld der Erde senkrecht nach unten. Die Rolle und der
Faden werden als masse- und reibungslos betrachtet.

a) Wie lautet eine geeignete generalisierte Koordinate g7
b) Wie lautet die Lagrange-Funktion L(q, ¢) des Systems?
¢) Analysiere das System mit Hilfe des Hamilton-Formalismus:

1. Stelle die zur Lagrange-Funktion dazugehérige Hamilton-Funktion H(q,p) auf.

2. Zeige, dass die Hamiltonschen Gleichungen die Bewegungsgleichung aus Aufgabe 5 reproduzieren.

Aufgabe 15 Teilchen auf einer Kegeloberfliche

Wir betrachten ein Teilchen der Masse m welches sich reibungsfrei und nur unter dem Einfluss der Gravitation
auf einer kegelférmigen Oberfliche bewege. Fiir dieses Problem eignen sich hervorragend Zylinderkoordinaten
(p, ¥, z), mit z > 0, wobei wir annehmen, dass die radiale Komponente durch p = ¢ z beschrieben werde. Damit
bleiben ¢ und z als generalisierte Koordinaten.

a) Stelle die kinetische und potenzielle Energie als Funktion von ¢ und z und deren zeitlichen Ableitungen
auf und gib die Lagrange-Funktion an.
Hinweis: Es ist hilfreich, die kinetische Energie in Zylinderkoordinaten zu schreiben.
Zur Kontrolle: Fiir die Lagrange-Funktion solltest du folgendes Ergebnis erhalten haben:

1
Lip, 2 ¢, 2) = 5m((+1) 2+ (c2¢)?) —mg =



b) Berechne die beiden generalisierten Impulse p,, und p, und gibt die Hamilton-Funktion H = H (¢, 2, pe, p:)
an. Verifiziere, dass H der Gesamtenergie entspricht.

c¢) Stelle nun die kanonischen Bewegungsgleichungen fiir die - und z-Komponenten auf. Gibt es eine Erhal-
tungsgroffe? Wenn ja, welche?
Hinweis: Denke an das Kepler-Problem und dessen Erhaltungsgréfien zuriick.

d) Begriinde, dass die Bewegung des Teilchens zwischen zwei verschiedenen Héhen zy,i, und zpmax ablaufen
muss. Betrachte dazu die Hamilton-Funktion fiir z — 0 und z — oo und argumentiere mit der Konstanz
der Energie FE.

e) An den Wendepunkten zyi, und zmax muss 2 = 0 gelten. Begriinde, dass dies nur passieren kann, wenn
der zugehorige konjugierte Impuls gerade verschwindet, p, = 0. Zeige graphisch, dass dies fiir genau zwei
Werte von z eintrifft. Nutze dabei den Fakt, dass H = F.

Hinweis: Skizziere H fiir p, = 0 und zeichne dir ein Energieniveau F ein. Erinnere dich dann an die
Diskussion des effektiven Potenzials beim Zentralkraft-Problem.

f) Es ist moglich, dass sich das Teilchen auf einer Kreisbahn mit konstanter Hohe 2(t) = 2o V¢ dreht. Was
muss dann fiir Z und p, gelten? Was folgt fiir den Wert des Drehimpulses p,, der benstigt wird, um diese
Bewegung zu ermoglichen?



