The goal of this course is to learn the basics of differentiable/complex manifolds and Hodge theory.
Topics:
- Differentiable/complex manifolds and differentiable/holomorphic vector bundles
- Differential forms on differentiable/complex manifolds
- De Rham and Dolbeault cohomology
- Riemannian/hermitian/Kähler manifolds
- Harmonic forms on compact riemannian/hermitian manifolds
- The Hodge decomposition on compact Kähler manifolds
Further details at: https://www.math.uni-sb.de/ag/lazic/tsakanikas/ComplexGeometryWS2122.html
- DozentIn: Vladimir Lazic
- DozentIn: Nikolaos Tsakanikas
- DozentIn: Zhixin Xie
The content includes:
- morphisms between sheaves and schemes
- abstract varieties
- properness and separatedness
- sheaves of modules, invertible sheaves and divisors
- projective morphisms, basepoint free divisors, ample divisors, blowups
- differentials and canonical sheaves, smoothness revisited
- cohomology of sheaves, Čech cohomology
- Serre duality, Riemann-Roch on curves
- morphisms with connested fibres, Iitaka fibrations.
Further details at: https://www.uni-saarland.de/lehrstuhl/lazic/teaching/algebraic-geometry-ii-ws2122.html
- DozentIn: Vladimir Lazic
- DozentIn: Nikolaos Tsakanikas
- DozentIn: Zhixin Xie
Mathematik für Naturwissenschaftler I zusammen mit der im Sommersemester 2021 stattfindenden Vorlesung Mathematik für Naturwissenschaftler II behandelt die Grundlagen der ein- und mehrdimensionalen Analysis und der Linearen Algebra, sowie Anwendungen auf die Fehler- und Ausgleichsrechnung und die beschreibende Statistik.
- DozentIn: Vladimir Lazic
- DozentIn: Nikolaos Tsakanikas
- DozentIn: Zhixin Xie