- Grundlegende mathematische Konzepte (Mengen, Abbildungen, Gruppen, Körper, Komplexe Zahlen)
- Analysis in einer Dimension (Differentiation und Integration)
- Vektorräume
- Euklidische Vektorräume
- Vektorprodukt
- Analysis in mehreren Dimensionen (Partielle Ableitungen, Linienintegrale, Integrationen in mehreren Dimensionen)
- Skalare Felder und Gradient
- Vektorfelder
- Lineare Abbildungen, Determinanten, Diagonalisierung von Matrizen
- Taylorreihen
- Differenzialgleichungen
- Fourieranalysis
- Oberflächenintegrale, Gauß Theorem, Stokes Theorem
- DozentIn: Bruno Heckel
- DozentIn: Lukas Krieger
- DozentIn: Peter Orth
- DozentIn: Julia Weibert
Quantum error correction is key to realize the computational power of quantum computers. To protect quantum information against unavoidable environmental noise, a logical quantum bit is encoded using several physical qubits. You will learn how this allows to detect and correct errors without disrupting the fragile quantum information stored in a coherent and entangled wavefunction of qubits.
In this seminar, we will discuss
•fundamentals of quantum error correction codes
•the threshold theorem that proves that quantum computing is in principle possible
•principles of fault-tolerant quantum computations
•recent experimental demonstrations of early fault-tolerance
- DozentIn: Peter Orth
- DozentIn: Prachi Sharma