(Text-)Bücher:
Philipp Hövel: Control of complex nonlinear systems with delay , Springer Theses – Recognizing Outstanding Ph.D. Research, (Springer, Heidelberg, Germany) October 2010(ISBN: 978-3-642-14109-6)
Ali Hasan Nayfeh: The Method of Normal Forms, Wiley-VCH (2011).
Editors: Eckehard Schöll, Heinz Georg Schuster: Handbook of Chaos Control, Wiley VCH (2007).
Publikationen:
Igor S. Aranson and Lorenz Kramer: The world of the complex Ginzburg-Landau equation, Rev. Mod. Phys. 74, 99 (2002).
Zum Herunterladen: ARA02.pdf
Roland Aust, Thorben Kaul, Cun-Zheng Ning, Benjamin Lingnau & Kathy Lüdge: Modulation response of nanolasers: what rate equation approaches miss, Optical and Quantum Electronics 48, 109 (2016).
Zum Herunterladen: AUS16.pdf
Aleksander G. Balanov, Natalja B. Janson, and Eckehard Schöll: Delayed feedback control of chaos: Bifurcation analysis, Phys. Rev. E 71, 016222 (2005).
Zum Herunterladen: BAL05.pdf
Dwight Barkley: A model for fast computer simulation of waves in excitable media, Physica D 49, 61 (1991).
Zum Herunterladen: BAR91.pdf
P. Borckmans, A. De Wit, G. Dewel: Competition in ramped Turing structures, Physica A, 188, 137 (1992).
Zum Herunterladen: BRO92.pdf
M. C. Cross and P. C. Hohenberg: Pattern formation outside of equilibrium, Rev. Mod. Phys. 65, 851 (1993).
Zum Herunterladen: CRO93.pdf
Mircea R. Davidescu, Pawel Romanczuk, Thomas Gregor, and Iain D. Couzin: Growth produces coordination trade-offs in Trichoplax adhaerens, an animal lacking a central nervous system, Proc. Nat. Soc. USA 120, e2206163120 (2023).
Zum Herunterladen: DAV23.pdf
Matthew Dowle, Rolf Martin Mantel, and Dwight Barkley: Fast simulations of waves in three-dimensional excitable media. Int. J. Bif. Chaos 7, 2529 (1997).
Zum Herunterladen: DOW97.pdf
Bernold Fiedler, Valtenin Flunkert, Marc Georgi, Philipp Hövel & Eckehard Schöll: Refuting the odd number limitation of time-delayed feedback control, Phys. Rev. Lett. 98, 114101 (2007).
Zum Herunterladen: FIE07.pdf
Luis Gómez-Nava, Robert T. Lange, Pascal P. Klamser, Juliane Lukas, Lenin Arias-Rodriguez, David Bierbach, Jens Krause, Henning Sprekeler, and Pawel Romanczuk: Fish shoals resemble a stochastic excitable system driven by environmental perturbations, Nature Physics 19, 663 (2023).
Zum Herunterladen: GOM23.pdf
Wolfram Just, Miriam Bose, Sumit Bose, Harald Engel, and Eckehard Schöll: Spatiotemporal dynamics near a supercritical Turing-Hopf bifurcation in a two-dimensional reaction-diffusion system, Phys. Rev. E 64, 026219 (2001).
Zum Herunterladen: JUS01.pdf
Philipp Hövel and Eeckehard Schöll: Control of unstable steady states by time-delayed feedback methods, Phys. Rev. E 72, 046203 (2005).
Zum Herunterladen: HOE05.pdf
Pascal P. Klamser and Pawel Romanczuk: Collective predator evasion: Putting the criticality hypothesis to the test. PLoS Comput. Biol. 17, e1008832 (2021).
Zum Herunterladen: KLA21.pdf
Benjamin Lingnau, Jonas Turnwald & Kathy Lüdge: Class-C semiconductor lasers with time-delayed optical feedback, Phil. Trans. R. Soc. A 377, 20180124 (2019).
Zum Herunterladen: LIN19.pdf
Edward Ott, Celso Grebogi, and James A. Yorke: Controlling chaos, Phys. Rev. Lett. 64, 1196 (1990).
Zum Herunterladen: OTT90.pdf
Kestutis Pyragas: Continuous control of chaos by self-controlling feedback, Physics Letters A 170, 412 (1992).
Zum Herunterladen: PYR92.pdf
Otto E. Rössler: An Equation for Continuous Chaos. Physics Letters Vol. 57A, 397-398 (1976).
Zum Herunterladen: ROE76.pdf
Lennart Schmidt, Konrad Schönleber, Katharina Krischer & Vladimir García-Morales: Coexistence of synchrony and incoherence in oscillatory media under nonlinear global coupling, Chaos 24, 013102 (2014).
Zum Herunterladen: SCH14.pdf
Julien Clinton Sprott: Dynamical Models of Love, Nonlinear Dynamics, Psychology, and Life Sciences 8, 303 (2004).
Zum Herunterladen: SPR04.pdf
Steven H. Strogatz: Love affairs and differential equations, Mathematics Magazine 61, 35 {1988}.
Zum Herunterladen: STR88.pdf
V. S. Zykov, G. Bordiougov, H. Brandtstädter, I. Gerdes, and H. Engel: Global Control of Spiral Wave Dynamics in an Excitable Domain of Circular and Elliptical Shape, Phys. Rev. Lett. 92, 018304 (2004).
Zum Herunterladen: ZYK04.pdf